noshot 7.0.0__py3-none-any.whl → 9.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +201 -0
- noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +201 -0
- noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb +409 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +274 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +170 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +1087 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +178 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +185 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +106 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +177 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +195 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +267 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +104 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +109 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +220 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +99 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +211 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +99 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +118 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +603 -0
- noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb +231 -0
- noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb +269 -0
- noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb +274 -0
- noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb +263 -0
- noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb +198 -0
- noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb +201 -0
- noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv +1339 -0
- noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data +151 -0
- noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv +396 -0
- noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv +650 -0
- {noshot-7.0.0.dist-info → noshot-9.0.0.dist-info}/METADATA +1 -1
- noshot-9.0.0.dist-info/RECORD +71 -0
- noshot-7.0.0.dist-info/RECORD +0 -41
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/1. EDA-PCA (Rice Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/10. HMM Veterbi.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/2. KNN (Balance Scale Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/2. KNN (Iris Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/2. KNN (Sobar-72 Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/3. LDA (Balance Scale Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/4. Linear Regression (Machine Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/4. Linear Regression (Real Estate Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/5. Logistic Regression (Magic04 Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/5. Logistic Regression (Wine Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/7. SVM (Rice Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/9. CNN (Cifar10 Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/1. PCA.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/10. CNN.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/11. HMM.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/2. KNN.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/3. LDA.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/4. Linear Regression.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/5. Logistic Regression.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/6. Naive Bayes (Titanic).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/6. Naive Bayes (Wine).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/7. SVM Linear.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/8. SVM Non-Linear.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/9. FNN With Regularization.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/9. FNN Without Regularization.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/All in One Lab CIA 1 Q.ipynb +0 -0
- {noshot-7.0.0.dist-info → noshot-9.0.0.dist-info}/WHEEL +0 -0
- {noshot-7.0.0.dist-info → noshot-9.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-7.0.0.dist-info → noshot-9.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,170 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"metadata": {
|
7
|
+
"colab": {
|
8
|
+
"base_uri": "https://localhost:8080/",
|
9
|
+
"height": 950
|
10
|
+
},
|
11
|
+
"id": "b0LKhNW8Gj66",
|
12
|
+
"outputId": "44c10b03-2311-42ae-c173-e5ab8802c8bb"
|
13
|
+
},
|
14
|
+
"outputs": [],
|
15
|
+
"source": [
|
16
|
+
"import tensorflow as tf\n",
|
17
|
+
"from tensorflow.keras import layers, models\n",
|
18
|
+
"from tensorflow.keras.datasets import mnist\n",
|
19
|
+
"from tensorflow.keras.utils import to_categorical\n",
|
20
|
+
"import matplotlib.pyplot as plt\n",
|
21
|
+
"\n",
|
22
|
+
"(train_images, train_labels), (test_images, test_labels) = mnist.load_data()\n",
|
23
|
+
"\n",
|
24
|
+
"train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255\n",
|
25
|
+
"test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255\n",
|
26
|
+
"\n",
|
27
|
+
"train_labels = to_categorical(train_labels)\n",
|
28
|
+
"test_labels = to_categorical(test_labels)\n",
|
29
|
+
"\n",
|
30
|
+
"model = models.Sequential([\n",
|
31
|
+
" layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),\n",
|
32
|
+
" layers.MaxPooling2D((2, 2)),\n",
|
33
|
+
"\n",
|
34
|
+
" layers.Conv2D(64, (3, 3), activation='relu'),\n",
|
35
|
+
" layers.MaxPooling2D((2, 2)),\n",
|
36
|
+
"\n",
|
37
|
+
" layers.Conv2D(64, (3, 3), activation='relu'),\n",
|
38
|
+
"\n",
|
39
|
+
" layers.Flatten(),\n",
|
40
|
+
"\n",
|
41
|
+
" layers.Dense(64, activation='relu'),\n",
|
42
|
+
" layers.Dense(10, activation='softmax')\n",
|
43
|
+
"\n",
|
44
|
+
"model.compile(optimizer='adam',\n",
|
45
|
+
" loss='categorical_crossentropy',\n",
|
46
|
+
" metrics=['accuracy'])\n",
|
47
|
+
"\n",
|
48
|
+
"history = model.fit(train_images, train_labels,\n",
|
49
|
+
" epochs=10,\n",
|
50
|
+
" batch_size=64,\n",
|
51
|
+
" validation_data=(test_images, test_labels))\n",
|
52
|
+
"\n",
|
53
|
+
"\n",
|
54
|
+
"test_loss, test_acc = model.evaluate(test_images, test_labels)\n",
|
55
|
+
"print(f'Test accuracy: {test_acc}')\n",
|
56
|
+
"\n",
|
57
|
+
"plt.plot(history.history['accuracy'], label='accuracy')\n",
|
58
|
+
"plt.plot(history.history['val_accuracy'], label='val_accuracy')\n",
|
59
|
+
"plt.xlabel('Epoch')\n",
|
60
|
+
"plt.ylabel('Accuracy')\n",
|
61
|
+
"plt.ylim([0.9, 1])\n",
|
62
|
+
"plt.legend(loc='lower right')\n",
|
63
|
+
"plt.show()"
|
64
|
+
]
|
65
|
+
},
|
66
|
+
{
|
67
|
+
"cell_type": "code",
|
68
|
+
"execution_count": null,
|
69
|
+
"metadata": {
|
70
|
+
"colab": {
|
71
|
+
"base_uri": "https://localhost:8080/",
|
72
|
+
"height": 490
|
73
|
+
},
|
74
|
+
"id": "xksHSflCK28c",
|
75
|
+
"outputId": "1f629cb2-ad9d-4e2d-c8e9-65122b60b720"
|
76
|
+
},
|
77
|
+
"outputs": [],
|
78
|
+
"source": [
|
79
|
+
"plt.plot(history.history['loss'], label='Training Loss')\n",
|
80
|
+
"plt.plot(history.history['val_loss'], label='Validation Loss')\n",
|
81
|
+
"plt.title('Model Loss')\n",
|
82
|
+
"plt.xlabel('Epoch')\n",
|
83
|
+
"plt.ylabel('Loss')\n",
|
84
|
+
"plt.legend(loc='upper right')"
|
85
|
+
]
|
86
|
+
},
|
87
|
+
{
|
88
|
+
"cell_type": "code",
|
89
|
+
"execution_count": null,
|
90
|
+
"metadata": {
|
91
|
+
"id": "iuB44zyhK8FK"
|
92
|
+
},
|
93
|
+
"outputs": [],
|
94
|
+
"source": [
|
95
|
+
"import tensorflow as tf\n",
|
96
|
+
"from tensorflow.keras.models import Sequential\n",
|
97
|
+
"from tensorflow.keras.layers import Conv2D, Dense, Flatten\n",
|
98
|
+
"from tensorflow.keras.datasets import mnist\n",
|
99
|
+
"from tensorflow.keras.utils import to_categorical\n",
|
100
|
+
"import matplotlib.pyplot as plt\n",
|
101
|
+
"\n",
|
102
|
+
"(train_images, train_labels), (test_images, test_labels) = mnist.load_data()\n",
|
103
|
+
"\n",
|
104
|
+
"train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255\n",
|
105
|
+
"test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255\n",
|
106
|
+
"\n",
|
107
|
+
"train_labels = to_categorical(train_labels)\n",
|
108
|
+
"test_labels = to_categorical(test_labels)\n",
|
109
|
+
"\n",
|
110
|
+
"model = Sequential([\n",
|
111
|
+
" Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),\n",
|
112
|
+
" Flatten(),\n",
|
113
|
+
" Dense(64, activation='relu'),\n",
|
114
|
+
" Dense(10, activation='softmax')\n",
|
115
|
+
"])\n",
|
116
|
+
"model.compile(optimizer='adam',\n",
|
117
|
+
" loss='categorical_crossentropy',\n",
|
118
|
+
" metrics=['accuracy'])\n",
|
119
|
+
"\n",
|
120
|
+
"history = model.fit(train_images, train_labels,\n",
|
121
|
+
" epochs=2,\n",
|
122
|
+
" batch_size=64,\n",
|
123
|
+
" validation_data=(test_images, test_labels))\n",
|
124
|
+
"\n",
|
125
|
+
"\n",
|
126
|
+
"test_loss, test_acc = model.evaluate(test_images, test_labels)\n",
|
127
|
+
"print(f'Test accuracy: {test_acc}')\n",
|
128
|
+
"\n",
|
129
|
+
"plt.plot(history.history['accuracy'], label='accuracy')\n",
|
130
|
+
"plt.plot(history.history['val_accuracy'], label='val_accuracy')\n",
|
131
|
+
"plt.xlabel('Epoch')\n",
|
132
|
+
"plt.ylabel('Accuracy')\n",
|
133
|
+
"plt.ylim([0.9, 1])\n",
|
134
|
+
"plt.legend(loc='lower right')\n",
|
135
|
+
"plt.show()"
|
136
|
+
]
|
137
|
+
},
|
138
|
+
{
|
139
|
+
"cell_type": "code",
|
140
|
+
"execution_count": null,
|
141
|
+
"metadata": {},
|
142
|
+
"outputs": [],
|
143
|
+
"source": []
|
144
|
+
}
|
145
|
+
],
|
146
|
+
"metadata": {
|
147
|
+
"colab": {
|
148
|
+
"provenance": []
|
149
|
+
},
|
150
|
+
"kernelspec": {
|
151
|
+
"display_name": "Python 3 (ipykernel)",
|
152
|
+
"language": "python",
|
153
|
+
"name": "python3"
|
154
|
+
},
|
155
|
+
"language_info": {
|
156
|
+
"codemirror_mode": {
|
157
|
+
"name": "ipython",
|
158
|
+
"version": 3
|
159
|
+
},
|
160
|
+
"file_extension": ".py",
|
161
|
+
"mimetype": "text/x-python",
|
162
|
+
"name": "python",
|
163
|
+
"nbconvert_exporter": "python",
|
164
|
+
"pygments_lexer": "ipython3",
|
165
|
+
"version": "3.12.4"
|
166
|
+
}
|
167
|
+
},
|
168
|
+
"nbformat": 4,
|
169
|
+
"nbformat_minor": 4
|
170
|
+
}
|