noshot 7.0.0__py3-none-any.whl → 9.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (67) hide show
  1. noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +201 -0
  2. noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +201 -0
  3. noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb +409 -0
  4. noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +274 -0
  5. noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +170 -0
  6. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +1087 -0
  7. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +178 -0
  8. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +185 -0
  9. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +106 -0
  10. noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +177 -0
  11. noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +195 -0
  12. noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +267 -0
  13. noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +104 -0
  14. noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +109 -0
  15. noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +220 -0
  16. noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +99 -0
  17. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +211 -0
  18. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +99 -0
  19. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +118 -0
  20. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +603 -0
  21. noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb +231 -0
  22. noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb +269 -0
  23. noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb +274 -0
  24. noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb +263 -0
  25. noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb +198 -0
  26. noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb +201 -0
  27. noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv +1339 -0
  28. noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data +151 -0
  29. noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv +396 -0
  30. noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv +650 -0
  31. {noshot-7.0.0.dist-info → noshot-9.0.0.dist-info}/METADATA +1 -1
  32. noshot-9.0.0.dist-info/RECORD +71 -0
  33. noshot-7.0.0.dist-info/RECORD +0 -41
  34. /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -0
  35. /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/1. EDA-PCA (Rice Dataset).ipynb +0 -0
  36. /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/10. HMM Veterbi.ipynb +0 -0
  37. /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/2. KNN (Balance Scale Dataset).ipynb +0 -0
  38. /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/2. KNN (Iris Dataset).ipynb +0 -0
  39. /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/2. KNN (Sobar-72 Dataset).ipynb +0 -0
  40. /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/3. LDA (Balance Scale Dataset).ipynb +0 -0
  41. /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -0
  42. /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/4. Linear Regression (Machine Dataset).ipynb +0 -0
  43. /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/4. Linear Regression (Real Estate Dataset).ipynb +0 -0
  44. /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/5. Logistic Regression (Magic04 Dataset).ipynb +0 -0
  45. /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/5. Logistic Regression (Wine Dataset).ipynb +0 -0
  46. /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -0
  47. /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -0
  48. /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/7. SVM (Rice Dataset).ipynb +0 -0
  49. /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -0
  50. /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/9. CNN (Cifar10 Dataset).ipynb +0 -0
  51. /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/1. PCA.ipynb +0 -0
  52. /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/10. CNN.ipynb +0 -0
  53. /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/11. HMM.ipynb +0 -0
  54. /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/2. KNN.ipynb +0 -0
  55. /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/3. LDA.ipynb +0 -0
  56. /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/4. Linear Regression.ipynb +0 -0
  57. /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/5. Logistic Regression.ipynb +0 -0
  58. /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/6. Naive Bayes (Titanic).ipynb +0 -0
  59. /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/6. Naive Bayes (Wine).ipynb +0 -0
  60. /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/7. SVM Linear.ipynb +0 -0
  61. /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/8. SVM Non-Linear.ipynb +0 -0
  62. /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/9. FNN With Regularization.ipynb +0 -0
  63. /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/9. FNN Without Regularization.ipynb +0 -0
  64. /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/All in One Lab CIA 1 Q.ipynb +0 -0
  65. {noshot-7.0.0.dist-info → noshot-9.0.0.dist-info}/WHEEL +0 -0
  66. {noshot-7.0.0.dist-info → noshot-9.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  67. {noshot-7.0.0.dist-info → noshot-9.0.0.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: noshot
3
- Version: 7.0.0
3
+ Version: 9.0.0
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -0,0 +1,71 @@
1
+ noshot/__init__.py,sha256=000R40tii8lDFU8C1fBaD3SOnxD0PWRNWZU-km49YrU,21
2
+ noshot/main.py,sha256=zXegIqjJPARlPnQMS-B2dAENcvyaZkNwmue63Gm8lHU,663
3
+ noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb,sha256=VAk1gwoDTBMSdXJxiOLJRvWnzJs84kdNr8Tn_1LaGZw,8802
4
+ noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb,sha256=o3Ho3f1CcYhzNW5yB8PEt5WuxFvgc04_bT73wMmpx14,8772
5
+ noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb,sha256=dQ3HgLix6HLqPltFiPrElmEdYAsvR6flDpHEIjcngp4,24774
6
+ noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb,sha256=mJFkK3jsrr1I967c3Ovm8jpMnO1wjAfb--pNeYnWZ7I,14767
7
+ noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb,sha256=1QYmUb1QZ4FtmdwoWhTbF9divKNMOxS8AMOy56At0xg,3625
8
+ noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb,sha256=1rp60fJyQl0bxzFWeJb6XR8VRtlQeonv9Yw5_9pvIH8,4133
9
+ noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb,sha256=0ESvYG9FT7wgcL2JUzMH2ChpSzevz2eez0X53a9wK20,4986
10
+ noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb,sha256=tbkkRm6xHnmM-K8cRpnK8LH1pUmQl30bdyo0dFSNFcw,2988
11
+ noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb,sha256=9vxuGgpq2poMGb_AOJY_rpvUCzHwd-iCVYSXxseYVRs,4287
12
+ noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb,sha256=oEHLzQlc0aD1HiardgHPbTL2F-uXcm2_htA_dSmM68M,5840
13
+ noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb,sha256=Z3zwZQKJmvCEgzTWN1OqgiOAF9Lw5oLIY1A63SRJ5tg,2101
14
+ noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb,sha256=N_IFGBAckF8vJI0lPPbZ1soG50B1_IVyACCyU7jvo3U,2651
15
+ noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb,sha256=PxFEgyFi6n5nURhtjeT__OP5T-UsggOI9RfBKfpDNBo,3081
16
+ noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb,sha256=avtEqkS38VccYJrQa91kjpmYG43dsDYiMcYtp70SbpA,3895
17
+ noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb,sha256=sSujtrR8C9GGjpIR4v6YN6gTF1cYMIxz5Ufnv_Fp5-I,3376
18
+ noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb,sha256=YphX35eCBBWu5sCSLS6bw__Em4gbwAzOW49z_Zv-tRs,2668
19
+ noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb,sha256=gHvmS1w__3JxhdsxjcSstgrCfoBWfxp8e738O1rVlew,3077
20
+ noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb,sha256=Ile_WuRAt8Is1HbKdDXu-ogHvQRNBGyxpd8OWauEEek,2058
21
+ noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb,sha256=zJ4GGRSwNY73DQCEeAP8ladl6H_WB54B1C_nSyKb9q8,3762
22
+ noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb,sha256=JaXAnYDa1AViE2WErFX8QzExbNyGvDYTsf3Vdlie8rs,7122
23
+ noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb,sha256=Jt_x0JTXNM1KqbYQ8afLtj0qIHysN63UUzFnmZfCE3c,3996
24
+ noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb,sha256=QiJKjyYDWetwngiOwTi4fzuDIorkNLilAFV47V56kO4,3907
25
+ noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb,sha256=zraQfH-LW-CYMMawfVX--jaejlcTB2SE92wscb_eb50,3329
26
+ noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb,sha256=RvE_6vM5OWlFKVvGG9-K9sQfz9AtC_fRP5lgRgQrndo,11203
27
+ noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb,sha256=CP1tuMZoL6MyMIZXn7PL_Epof_0l5EWhKz6ySg3u_W4,4049
28
+ noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb,sha256=-VyjQ_i6r-1KaGagT3Aoq8UQ_1xYxcDPhmORxuu5eBg,3183
29
+ noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb,sha256=e6qdlsdkQn-2D8s55C5ekZrd8oClxIglwsJoyW624GQ,2630
30
+ noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb,sha256=yC-rMnCgSjKyY7iVeuoIVlXq6ge8xYLKUijL2gAMuMo,3074
31
+ noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb,sha256=EItNyvs2EHMY42SBEHlKxJ8_y6Oi4qlJOjsEMcOGCWg,4572
32
+ noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb,sha256=iW3yRzgGRgkhG-VkIGNU5LJuk-ef4ZlxmPx4Vl_PCSQ,2278
33
+ noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb,sha256=ZUd1r_W94BdAOMhpXfL6gCylrAgU7E2NOI3xkW4vnHM,3526
34
+ noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb,sha256=E4psLvzD8XzKGTFyd2759CRjhUa-7WO8Ow577nDLIWo,6351
35
+ noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb,sha256=SKdyms9nCdr3e0O3Os6Om3kFz9ebahv0OueqhJ4Psc4,6980
36
+ noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb,sha256=ZsdOcoPzaXM8bQV2ct5uOjRj6wF9Km0cc9iR1zRdXXQ,7520
37
+ noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb,sha256=wJLu6e0vgrXxH_J1pVM8wB6Wg-o3lPcuzZ45hId1g2o,27364
38
+ noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb,sha256=CnC8HU8x8GQOc6O_bA5YTtfKRJbH_J_agZTbonLwno4,6060
39
+ noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb,sha256=OsPCe4ZLzed96tBpQ1H0KPtROT462pGHTbpecmT13n4,5282
40
+ noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb,sha256=QtVv-mPZ3bG_AqnnzSSMXXHPHm94N_M5zZJAVQx_cEg,46615
41
+ noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb,sha256=kl7Vcq3x7joA0I_n0MRTwDd2y5nQPfu8Oc729xQwRLA,5733
42
+ noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb,sha256=ducKJvoZXPbQ8KMlU8Vl_VtkkziW0Evc0wJs2YGPKKA,5495
43
+ noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb,sha256=GNdyfNAvkBtDQqSNfWD9VMcwIpcpE4LWhi-4KjES8jQ,2768
44
+ noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb,sha256=-7Qa-bGgYZJtuZclr00_TkmVcH7zgMxKsjNN9PQTGko,5284
45
+ noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb,sha256=5PZVV-mWca3CtSSRGavzp-LNwFKWJHn-SBGY2pwsjcg,4846
46
+ noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb,sha256=pSQVwAmyP4z3g_xcgk_EjsX21Qk1Rnyv-K8MSZlbTE8,5691
47
+ noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb,sha256=fHtNkZjbbAra8an4hLcSX92KuRt9pbma4GlPBH26OcY,3210
48
+ noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb,sha256=91UbAZ41vK6q_K08IeXVZRDpDmQ3Xz8ZKVq0os0Eo0Y,2711
49
+ noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb,sha256=QjQ2aT8HF8mg8bGDzLExJWimtKBfvcRKOhwoQts5bHw,4850
50
+ noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb,sha256=OX9i_Pk-j-vswnwjAHxGfCtdvn5wcv4WrkXy6gLF6-c,3154
51
+ noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb,sha256=wzI5UoSCQvExOhWRpKzhEl21s-rbe7R3oE0AeIbN7fk,8056
52
+ noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb,sha256=rDY1cJzA1MXQWM7fA-T72c5RR68KZTzbSdYYiX-J-yU,2813
53
+ noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb,sha256=4vCJo_ODnUrqz8WUrk-Dtvt0BIWz6gfGbc43LASV62o,4806
54
+ noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb,sha256=hc__yVZbRoSVy9sur02kfTCNE_TenLdHjYxG4iosT5U,22230
55
+ noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb,sha256=W8PwhK_SGvFoeO7Ox-rkKpFjIdvf6ln6taefb6cIzSY,7073
56
+ noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb,sha256=BO1TuKB4v72r9NSdjz6ob-bzIgWDwX6S7RKlpCBcGDE,8450
57
+ noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb,sha256=FtUEsUGHxV1pFrQLU4INFFpHHe9VWlV-lDprhfUSCcI,8308
58
+ noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb,sha256=g5GCadTaFZxDVzN5JrWHXPcjrTuJ36Q-6rki4asGs_8,7855
59
+ noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb,sha256=AiHQ-0wJRkH68gz5fBF3Kt-iXvImSra4hNAKhiCv_eg,5282
60
+ noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb,sha256=zwLOjk5pWZt113F7WXTzuUyUt5C1HMt0iWbz9VXQ8Cg,5505
61
+ noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv,sha256=OI7_Z5VX0IrBn0Y9Al3l4LStxIJTfIRW0Zk014Yh_Uc,55628
62
+ noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data,sha256=b2CLcacxchYxm00ntNm8hOar1zTtp4crcaRYVp4mVsA,4551
63
+ noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv,sha256=dnzX-s54dAWJJsKLcXCHrV_rmncC9AVRAhN3yg15dGo,71609
64
+ noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv,sha256=6nnPKJRApzZilddcT1eTL_i0dSqvIvgmhM4pi3R83bs,117234
65
+ noshot/utils/__init__.py,sha256=QVrN1ZpzPXxZqDOqot5-t_ulFjZXVx7Cvr-Is9AK0po,110
66
+ noshot/utils/shell_utils.py,sha256=-XfgYlNQlULa_rRJ3vsfTns4m_jiueGEj396J_y0Gus,2611
67
+ noshot-9.0.0.dist-info/licenses/LICENSE.txt,sha256=fgCruaVm5cUjFGOeEoGIimT6nnUunBqcNZHpGzK8TSw,1086
68
+ noshot-9.0.0.dist-info/METADATA,sha256=q0WpAfRb9MV9hadVVEMIjXigVzYVZh_D3DJv3J_bYls,2573
69
+ noshot-9.0.0.dist-info/WHEEL,sha256=ck4Vq1_RXyvS4Jt6SI0Vz6fyVs4GWg7AINwpsaGEgPE,91
70
+ noshot-9.0.0.dist-info/top_level.txt,sha256=UL-c0HffdRwohz-y9icY_rnY48pQDdxGcBsgyCKh2Q8,7
71
+ noshot-9.0.0.dist-info/RECORD,,
@@ -1,41 +0,0 @@
1
- noshot/__init__.py,sha256=000R40tii8lDFU8C1fBaD3SOnxD0PWRNWZU-km49YrU,21
2
- noshot/main.py,sha256=zXegIqjJPARlPnQMS-B2dAENcvyaZkNwmue63Gm8lHU,663
3
- noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb,sha256=dQ3HgLix6HLqPltFiPrElmEdYAsvR6flDpHEIjcngp4,24774
4
- noshot/data/ML TS XAI/ML/Tamilan Code/1. EDA-PCA (Balance Scale Dataset).ipynb,sha256=1QYmUb1QZ4FtmdwoWhTbF9divKNMOxS8AMOy56At0xg,3625
5
- noshot/data/ML TS XAI/ML/Tamilan Code/1. EDA-PCA (Rice Dataset).ipynb,sha256=1rp60fJyQl0bxzFWeJb6XR8VRtlQeonv9Yw5_9pvIH8,4133
6
- noshot/data/ML TS XAI/ML/Tamilan Code/10. HMM Veterbi.ipynb,sha256=0ESvYG9FT7wgcL2JUzMH2ChpSzevz2eez0X53a9wK20,4986
7
- noshot/data/ML TS XAI/ML/Tamilan Code/2. KNN (Balance Scale Dataset).ipynb,sha256=tbkkRm6xHnmM-K8cRpnK8LH1pUmQl30bdyo0dFSNFcw,2988
8
- noshot/data/ML TS XAI/ML/Tamilan Code/2. KNN (Iris Dataset).ipynb,sha256=9vxuGgpq2poMGb_AOJY_rpvUCzHwd-iCVYSXxseYVRs,4287
9
- noshot/data/ML TS XAI/ML/Tamilan Code/2. KNN (Sobar-72 Dataset).ipynb,sha256=oEHLzQlc0aD1HiardgHPbTL2F-uXcm2_htA_dSmM68M,5840
10
- noshot/data/ML TS XAI/ML/Tamilan Code/3. LDA (Balance Scale Dataset).ipynb,sha256=Z3zwZQKJmvCEgzTWN1OqgiOAF9Lw5oLIY1A63SRJ5tg,2101
11
- noshot/data/ML TS XAI/ML/Tamilan Code/3. LDA (NPHA Doctor Visits Dataset).ipynb,sha256=N_IFGBAckF8vJI0lPPbZ1soG50B1_IVyACCyU7jvo3U,2651
12
- noshot/data/ML TS XAI/ML/Tamilan Code/4. Linear Regression (Machine Dataset).ipynb,sha256=PxFEgyFi6n5nURhtjeT__OP5T-UsggOI9RfBKfpDNBo,3081
13
- noshot/data/ML TS XAI/ML/Tamilan Code/4. Linear Regression (Real Estate Dataset).ipynb,sha256=avtEqkS38VccYJrQa91kjpmYG43dsDYiMcYtp70SbpA,3895
14
- noshot/data/ML TS XAI/ML/Tamilan Code/5. Logistic Regression (Magic04 Dataset).ipynb,sha256=sSujtrR8C9GGjpIR4v6YN6gTF1cYMIxz5Ufnv_Fp5-I,3376
15
- noshot/data/ML TS XAI/ML/Tamilan Code/5. Logistic Regression (Wine Dataset).ipynb,sha256=YphX35eCBBWu5sCSLS6bw__Em4gbwAzOW49z_Zv-tRs,2668
16
- noshot/data/ML TS XAI/ML/Tamilan Code/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb,sha256=gHvmS1w__3JxhdsxjcSstgrCfoBWfxp8e738O1rVlew,3077
17
- noshot/data/ML TS XAI/ML/Tamilan Code/6. Naive Bayes Classifier (Wine Dataset).ipynb,sha256=Ile_WuRAt8Is1HbKdDXu-ogHvQRNBGyxpd8OWauEEek,2058
18
- noshot/data/ML TS XAI/ML/Tamilan Code/7. SVM (Rice Dataset).ipynb,sha256=zJ4GGRSwNY73DQCEeAP8ladl6H_WB54B1C_nSyKb9q8,3762
19
- noshot/data/ML TS XAI/ML/Tamilan Code/8. FeedForward NN (Sobar72 Dataset).ipynb,sha256=JaXAnYDa1AViE2WErFX8QzExbNyGvDYTsf3Vdlie8rs,7122
20
- noshot/data/ML TS XAI/ML/Tamilan Code/9. CNN (Cifar10 Dataset).ipynb,sha256=Jt_x0JTXNM1KqbYQ8afLtj0qIHysN63UUzFnmZfCE3c,3996
21
- noshot/data/ML TS XAI/ML/Whitefang Code/1. PCA.ipynb,sha256=QiJKjyYDWetwngiOwTi4fzuDIorkNLilAFV47V56kO4,3907
22
- noshot/data/ML TS XAI/ML/Whitefang Code/10. CNN.ipynb,sha256=zraQfH-LW-CYMMawfVX--jaejlcTB2SE92wscb_eb50,3329
23
- noshot/data/ML TS XAI/ML/Whitefang Code/11. HMM.ipynb,sha256=RvE_6vM5OWlFKVvGG9-K9sQfz9AtC_fRP5lgRgQrndo,11203
24
- noshot/data/ML TS XAI/ML/Whitefang Code/2. KNN.ipynb,sha256=CP1tuMZoL6MyMIZXn7PL_Epof_0l5EWhKz6ySg3u_W4,4049
25
- noshot/data/ML TS XAI/ML/Whitefang Code/3. LDA.ipynb,sha256=-VyjQ_i6r-1KaGagT3Aoq8UQ_1xYxcDPhmORxuu5eBg,3183
26
- noshot/data/ML TS XAI/ML/Whitefang Code/4. Linear Regression.ipynb,sha256=e6qdlsdkQn-2D8s55C5ekZrd8oClxIglwsJoyW624GQ,2630
27
- noshot/data/ML TS XAI/ML/Whitefang Code/5. Logistic Regression.ipynb,sha256=yC-rMnCgSjKyY7iVeuoIVlXq6ge8xYLKUijL2gAMuMo,3074
28
- noshot/data/ML TS XAI/ML/Whitefang Code/6. Naive Bayes (Titanic).ipynb,sha256=EItNyvs2EHMY42SBEHlKxJ8_y6Oi4qlJOjsEMcOGCWg,4572
29
- noshot/data/ML TS XAI/ML/Whitefang Code/6. Naive Bayes (Wine).ipynb,sha256=iW3yRzgGRgkhG-VkIGNU5LJuk-ef4ZlxmPx4Vl_PCSQ,2278
30
- noshot/data/ML TS XAI/ML/Whitefang Code/7. SVM Linear.ipynb,sha256=ZUd1r_W94BdAOMhpXfL6gCylrAgU7E2NOI3xkW4vnHM,3526
31
- noshot/data/ML TS XAI/ML/Whitefang Code/8. SVM Non-Linear.ipynb,sha256=E4psLvzD8XzKGTFyd2759CRjhUa-7WO8Ow577nDLIWo,6351
32
- noshot/data/ML TS XAI/ML/Whitefang Code/9. FNN With Regularization.ipynb,sha256=SKdyms9nCdr3e0O3Os6Om3kFz9ebahv0OueqhJ4Psc4,6980
33
- noshot/data/ML TS XAI/ML/Whitefang Code/9. FNN Without Regularization.ipynb,sha256=ZsdOcoPzaXM8bQV2ct5uOjRj6wF9Km0cc9iR1zRdXXQ,7520
34
- noshot/data/ML TS XAI/ML/Whitefang Code/All in One Lab CIA 1 Q.ipynb,sha256=wJLu6e0vgrXxH_J1pVM8wB6Wg-o3lPcuzZ45hId1g2o,27364
35
- noshot/utils/__init__.py,sha256=QVrN1ZpzPXxZqDOqot5-t_ulFjZXVx7Cvr-Is9AK0po,110
36
- noshot/utils/shell_utils.py,sha256=-XfgYlNQlULa_rRJ3vsfTns4m_jiueGEj396J_y0Gus,2611
37
- noshot-7.0.0.dist-info/licenses/LICENSE.txt,sha256=fgCruaVm5cUjFGOeEoGIimT6nnUunBqcNZHpGzK8TSw,1086
38
- noshot-7.0.0.dist-info/METADATA,sha256=Z32kxd-l1ofmEoeEHljTLGJlzZrGDU5E1TE-C4nl8ac,2573
39
- noshot-7.0.0.dist-info/WHEEL,sha256=ck4Vq1_RXyvS4Jt6SI0Vz6fyVs4GWg7AINwpsaGEgPE,91
40
- noshot-7.0.0.dist-info/top_level.txt,sha256=UL-c0HffdRwohz-y9icY_rnY48pQDdxGcBsgyCKh2Q8,7
41
- noshot-7.0.0.dist-info/RECORD,,
File without changes