noshot 7.0.0__py3-none-any.whl → 8.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +201 -0
- noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +201 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +274 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +170 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +1087 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +178 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +185 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +106 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +177 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +195 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +267 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +104 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +109 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +220 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +99 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +211 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +99 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +118 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +603 -0
- {noshot-7.0.0.dist-info → noshot-8.0.0.dist-info}/METADATA +1 -1
- noshot-8.0.0.dist-info/RECORD +60 -0
- noshot-7.0.0.dist-info/RECORD +0 -41
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/1. EDA-PCA (Rice Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/10. HMM Veterbi.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/2. KNN (Balance Scale Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/2. KNN (Iris Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/2. KNN (Sobar-72 Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/3. LDA (Balance Scale Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/4. Linear Regression (Machine Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/4. Linear Regression (Real Estate Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/5. Logistic Regression (Magic04 Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/5. Logistic Regression (Wine Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/7. SVM (Rice Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/9. CNN (Cifar10 Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/1. PCA.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/10. CNN.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/11. HMM.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/2. KNN.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/3. LDA.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/4. Linear Regression.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/5. Logistic Regression.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/6. Naive Bayes (Titanic).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/6. Naive Bayes (Wine).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/7. SVM Linear.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/8. SVM Non-Linear.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/9. FNN With Regularization.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/9. FNN Without Regularization.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/All in One Lab CIA 1 Q.ipynb +0 -0
- {noshot-7.0.0.dist-info → noshot-8.0.0.dist-info}/WHEEL +0 -0
- {noshot-7.0.0.dist-info → noshot-8.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-7.0.0.dist-info → noshot-8.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,118 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"id": "1543e45d-329e-424f-81fd-ac03a07933d2",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"import os, struct, gzip, numpy as np\n",
|
11
|
+
"\n",
|
12
|
+
"def _smart_open(path):\n",
|
13
|
+
" # transparently handle .gz files\n",
|
14
|
+
" return gzip.open(path, 'rb') if path.endswith('.gz') else open(path, 'rb')\n",
|
15
|
+
"\n",
|
16
|
+
"def find_file(base_path, fname):\n",
|
17
|
+
" \"\"\"Return the real file, no matter how Kaggle wrapped it.\"\"\"\n",
|
18
|
+
" direct = os.path.join(base_path, fname) # /…/fname\n",
|
19
|
+
" wrapped = os.path.join(base_path, fname, fname) # /…/fname/fname\n",
|
20
|
+
" for p in (direct, direct + '.gz', wrapped, wrapped + '.gz'):\n",
|
21
|
+
" if os.path.isfile(p):\n",
|
22
|
+
" return p\n",
|
23
|
+
" raise FileNotFoundError(f'{fname} not found under {base_path}')\n",
|
24
|
+
"\n",
|
25
|
+
"def load_images(path):\n",
|
26
|
+
" with _smart_open(path) as f:\n",
|
27
|
+
" magic, size = struct.unpack(\">II\", f.read(8))\n",
|
28
|
+
" rows, cols = struct.unpack(\">II\", f.read(8))\n",
|
29
|
+
" data = np.frombuffer(f.read(rows * cols * size), dtype=np.uint8)\n",
|
30
|
+
" return data.reshape(size, rows * cols)\n",
|
31
|
+
"\n",
|
32
|
+
"def load_labels(path):\n",
|
33
|
+
" with _smart_open(path) as f:\n",
|
34
|
+
" _, size = struct.unpack(\">II\", f.read(8))\n",
|
35
|
+
" return np.frombuffer(f.read(size), dtype=np.uint8)\n",
|
36
|
+
"\n",
|
37
|
+
"def load_mnist_data(base_path):\n",
|
38
|
+
" X_train = load_images(find_file(base_path, 'train-images-idx3-ubyte'))\n",
|
39
|
+
" y_train = load_labels(find_file(base_path, 'train-labels-idx1-ubyte'))\n",
|
40
|
+
" X_test = load_images(find_file(base_path, 't10k-images-idx3-ubyte'))\n",
|
41
|
+
" y_test = load_labels(find_file(base_path, 't10k-labels-idx1-ubyte'))\n",
|
42
|
+
" return X_train, y_train, X_test, y_test\n",
|
43
|
+
"\n",
|
44
|
+
"X_train, y_train, X_test, y_test = load_mnist_data(mnist_dataset_path)\n",
|
45
|
+
"print(X_train.shape, y_train.shape) # (60000, 784) (60000,)\n",
|
46
|
+
"\n",
|
47
|
+
"import os\n",
|
48
|
+
"import numpy as np\n",
|
49
|
+
"from sklearn.model_selection import train_test_split\n",
|
50
|
+
"from tensorflow.keras.preprocessing import image\n",
|
51
|
+
"from tensorflow.keras.preprocessing.image import img_to_array, load_img\n",
|
52
|
+
"\n",
|
53
|
+
"def load_images_from_folder(folder_path, img_size=(128, 128)):\n",
|
54
|
+
" images = []\n",
|
55
|
+
" labels = []\n",
|
56
|
+
" class_names = sorted(os.listdir(folder_path)) # Assuming one folder per class\n",
|
57
|
+
"\n",
|
58
|
+
" for label_idx, class_name in enumerate(class_names):\n",
|
59
|
+
" class_folder = os.path.join(folder_path, class_name)\n",
|
60
|
+
" if not os.path.isdir(class_folder):\n",
|
61
|
+
" continue\n",
|
62
|
+
"\n",
|
63
|
+
" for filename in os.listdir(class_folder):\n",
|
64
|
+
" img_path = os.path.join(class_folder, filename)\n",
|
65
|
+
" try:\n",
|
66
|
+
" img = load_img(img_path, target_size=img_size)\n",
|
67
|
+
" img_array = img_to_array(img)\n",
|
68
|
+
" images.append(img_array)\n",
|
69
|
+
" labels.append(label_idx)\n",
|
70
|
+
" except Exception as e:\n",
|
71
|
+
" print(f\"Error loading {img_path}: {e}\")\n",
|
72
|
+
"\n",
|
73
|
+
" images = np.array(images, dtype=\"float32\") / 255.0 # Normalize to [0,1]\n",
|
74
|
+
" labels = np.array(labels)\n",
|
75
|
+
" return images, labels, class_names\n",
|
76
|
+
"\n",
|
77
|
+
"def split_data(images, labels, test_size=0.2, random_state=42):\n",
|
78
|
+
" X_train, X_test, y_train, y_test = train_test_split(\n",
|
79
|
+
" images, labels, test_size=test_size, random_state=random_state, stratify=labels\n",
|
80
|
+
" )\n",
|
81
|
+
" return X_train, X_test, y_train, y_test\n",
|
82
|
+
"\n",
|
83
|
+
"# Example usage:\n",
|
84
|
+
"folder_path = 'your/folder/path' # 🔥 Example: './dataset/'\n",
|
85
|
+
"img_size = (128, 128) # 🔥 Resize images to 128x128\n",
|
86
|
+
"\n",
|
87
|
+
"images, labels, class_names = load_images_from_folder(folder_path, img_size)\n",
|
88
|
+
"X_train, X_test, y_train, y_test = split_data(images, labels)\n",
|
89
|
+
"\n",
|
90
|
+
"print(f\"Train set size: {X_train.shape[0]}\")\n",
|
91
|
+
"print(f\"Test set size: {X_test.shape[0]}\")\n",
|
92
|
+
"print(f\"Number of classes: {len(class_names)}\")\n",
|
93
|
+
"print(f\"Class names: {class_names}\")\n"
|
94
|
+
]
|
95
|
+
}
|
96
|
+
],
|
97
|
+
"metadata": {
|
98
|
+
"kernelspec": {
|
99
|
+
"display_name": "Python 3 (ipykernel)",
|
100
|
+
"language": "python",
|
101
|
+
"name": "python3"
|
102
|
+
},
|
103
|
+
"language_info": {
|
104
|
+
"codemirror_mode": {
|
105
|
+
"name": "ipython",
|
106
|
+
"version": 3
|
107
|
+
},
|
108
|
+
"file_extension": ".py",
|
109
|
+
"mimetype": "text/x-python",
|
110
|
+
"name": "python",
|
111
|
+
"nbconvert_exporter": "python",
|
112
|
+
"pygments_lexer": "ipython3",
|
113
|
+
"version": "3.12.4"
|
114
|
+
}
|
115
|
+
},
|
116
|
+
"nbformat": 4,
|
117
|
+
"nbformat_minor": 5
|
118
|
+
}
|