noshot 7.0.0__py3-none-any.whl → 8.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +201 -0
- noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +201 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +274 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +170 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +1087 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +178 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +185 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +106 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +177 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +195 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +267 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +104 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +109 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +220 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +99 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +211 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +99 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +118 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +603 -0
- {noshot-7.0.0.dist-info → noshot-8.0.0.dist-info}/METADATA +1 -1
- noshot-8.0.0.dist-info/RECORD +60 -0
- noshot-7.0.0.dist-info/RECORD +0 -41
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/1. EDA-PCA (Rice Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/10. HMM Veterbi.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/2. KNN (Balance Scale Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/2. KNN (Iris Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/2. KNN (Sobar-72 Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/3. LDA (Balance Scale Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/4. Linear Regression (Machine Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/4. Linear Regression (Real Estate Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/5. Logistic Regression (Magic04 Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/5. Logistic Regression (Wine Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/7. SVM (Rice Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Tamilan Code → ML 1}/9. CNN (Cifar10 Dataset).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/1. PCA.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/10. CNN.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/11. HMM.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/2. KNN.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/3. LDA.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/4. Linear Regression.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/5. Logistic Regression.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/6. Naive Bayes (Titanic).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/6. Naive Bayes (Wine).ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/7. SVM Linear.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/8. SVM Non-Linear.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/9. FNN With Regularization.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/9. FNN Without Regularization.ipynb +0 -0
- /noshot/data/ML TS XAI/ML/{Whitefang Code → ML 2}/All in One Lab CIA 1 Q.ipynb +0 -0
- {noshot-7.0.0.dist-info → noshot-8.0.0.dist-info}/WHEEL +0 -0
- {noshot-7.0.0.dist-info → noshot-8.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-7.0.0.dist-info → noshot-8.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,195 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"id": "4cb19356",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"import matplotlib.pyplot as plt\n",
|
11
|
+
"from sklearn import datasets\n",
|
12
|
+
"from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA\n",
|
13
|
+
"import pandas as pd\n",
|
14
|
+
"import matplotlib.pyplot as plt\n",
|
15
|
+
"from sklearn.preprocessing import StandardScaler\n",
|
16
|
+
"import seaborn as sns\n",
|
17
|
+
"from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay"
|
18
|
+
]
|
19
|
+
},
|
20
|
+
{
|
21
|
+
"cell_type": "code",
|
22
|
+
"execution_count": null,
|
23
|
+
"id": "4bfb20c1",
|
24
|
+
"metadata": {},
|
25
|
+
"outputs": [],
|
26
|
+
"source": [
|
27
|
+
"url = \"https://archive.ics.uci.edu/ml/machine-learning-databases/balance-scale/balance-scale.data\"\n",
|
28
|
+
"df = pd.read_csv(url, names=['class name','left-weight','left-distance','right-weight','right-distance'])"
|
29
|
+
]
|
30
|
+
},
|
31
|
+
{
|
32
|
+
"cell_type": "code",
|
33
|
+
"execution_count": null,
|
34
|
+
"id": "c52d5405-9da9-40a9-9116-afe433e93046",
|
35
|
+
"metadata": {},
|
36
|
+
"outputs": [],
|
37
|
+
"source": [
|
38
|
+
"df"
|
39
|
+
]
|
40
|
+
},
|
41
|
+
{
|
42
|
+
"cell_type": "code",
|
43
|
+
"execution_count": null,
|
44
|
+
"id": "1eaf20bd",
|
45
|
+
"metadata": {},
|
46
|
+
"outputs": [],
|
47
|
+
"source": [
|
48
|
+
"feature = ['left-weight','left-distance','right-weight','right-distance']\n",
|
49
|
+
"x = df.loc[:,feature]\n",
|
50
|
+
"y = df.loc[:,'class name']"
|
51
|
+
]
|
52
|
+
},
|
53
|
+
{
|
54
|
+
"cell_type": "code",
|
55
|
+
"execution_count": null,
|
56
|
+
"id": "73208c45",
|
57
|
+
"metadata": {},
|
58
|
+
"outputs": [],
|
59
|
+
"source": [
|
60
|
+
"x = StandardScaler().fit_transform(x)"
|
61
|
+
]
|
62
|
+
},
|
63
|
+
{
|
64
|
+
"cell_type": "code",
|
65
|
+
"execution_count": null,
|
66
|
+
"id": "0d5df04c",
|
67
|
+
"metadata": {},
|
68
|
+
"outputs": [],
|
69
|
+
"source": [
|
70
|
+
"lda = LDA(n_components=2)\n",
|
71
|
+
"x_lda = lda.fit_transform(x, y)"
|
72
|
+
]
|
73
|
+
},
|
74
|
+
{
|
75
|
+
"cell_type": "code",
|
76
|
+
"execution_count": null,
|
77
|
+
"id": "e262379f",
|
78
|
+
"metadata": {},
|
79
|
+
"outputs": [],
|
80
|
+
"source": [
|
81
|
+
"df_lda = pd.DataFrame(data = x_lda, columns = ['LDA1', 'LDA2'])\n",
|
82
|
+
"df_lda['class name'] = y"
|
83
|
+
]
|
84
|
+
},
|
85
|
+
{
|
86
|
+
"cell_type": "code",
|
87
|
+
"execution_count": null,
|
88
|
+
"id": "7e14b628",
|
89
|
+
"metadata": {},
|
90
|
+
"outputs": [],
|
91
|
+
"source": [
|
92
|
+
"plt.figure(figsize=(12, 6))\n",
|
93
|
+
"plt.subplot(1, 2, 1)\n",
|
94
|
+
"\n",
|
95
|
+
"for target, color, marker in zip(df['class name'].unique(), ['r', 'g', 'b'], ['o', 's', '^']):\n",
|
96
|
+
" plt.scatter(x[y == target, 0], x[y == target, 1], c=color, marker=marker, label=target)\n",
|
97
|
+
"\n",
|
98
|
+
"plt.xlabel('Feature 1')\n",
|
99
|
+
"plt.ylabel('Feature 2')\n",
|
100
|
+
"plt.title('Before LDA')\n",
|
101
|
+
"plt.legend()\n",
|
102
|
+
"\n",
|
103
|
+
"plt.subplot(1, 2, 2)\n",
|
104
|
+
"\n",
|
105
|
+
"for target, color, marker in zip(df_lda['class name'].unique(), ['r', 'g', 'b'], ['o', 's', '^']):\n",
|
106
|
+
" plt.scatter(df_lda[df_lda['class name'] == target]['LDA1'], \n",
|
107
|
+
" df_lda[df_lda['class name'] == target]['LDA2'], \n",
|
108
|
+
" c=color, marker=marker, label=target)\n",
|
109
|
+
"\n",
|
110
|
+
"plt.xlabel('LDA1')\n",
|
111
|
+
"plt.ylabel('LDA2')\n",
|
112
|
+
"plt.title('After LDA')\n",
|
113
|
+
"plt.legend()\n",
|
114
|
+
"\n",
|
115
|
+
"plt.show()"
|
116
|
+
]
|
117
|
+
},
|
118
|
+
{
|
119
|
+
"cell_type": "code",
|
120
|
+
"execution_count": null,
|
121
|
+
"id": "79b009f7",
|
122
|
+
"metadata": {},
|
123
|
+
"outputs": [],
|
124
|
+
"source": [
|
125
|
+
"plt.figure(figsize=(12, 6))\n",
|
126
|
+
"plt.subplot(1, 2, 1)\n",
|
127
|
+
"sns.heatmap(df.corr(numeric_only=True), annot=True, cmap='viridis')\n",
|
128
|
+
"plt.title('Before LDA')\n",
|
129
|
+
"\n",
|
130
|
+
"df_lda = pd.DataFrame(data=x_lda, columns=['LDA1', 'LDA2'])\n",
|
131
|
+
"#df_lda['class name'] = y\n",
|
132
|
+
"plt.subplot(1, 2, 2)\n",
|
133
|
+
"sns.heatmap(df_lda.corr(numeric_only=True), annot=True, cmap='viridis')\n",
|
134
|
+
"plt.title('After LDA')\n",
|
135
|
+
"\n",
|
136
|
+
"plt.show()"
|
137
|
+
]
|
138
|
+
},
|
139
|
+
{
|
140
|
+
"cell_type": "code",
|
141
|
+
"execution_count": null,
|
142
|
+
"id": "82622933",
|
143
|
+
"metadata": {},
|
144
|
+
"outputs": [],
|
145
|
+
"source": [
|
146
|
+
"y_pred = lda.predict(x) \n",
|
147
|
+
"\n",
|
148
|
+
"cm = confusion_matrix(y, y_pred)\n",
|
149
|
+
"\n",
|
150
|
+
"disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=lda.classes_)\n",
|
151
|
+
"disp.plot()\n",
|
152
|
+
"plt.show()"
|
153
|
+
]
|
154
|
+
},
|
155
|
+
{
|
156
|
+
"cell_type": "code",
|
157
|
+
"execution_count": null,
|
158
|
+
"id": "c5bbcdd2-9bbd-4bb2-91c8-62ed34f225cc",
|
159
|
+
"metadata": {},
|
160
|
+
"outputs": [],
|
161
|
+
"source": [
|
162
|
+
"sns.heatmap(cm,annot=True)"
|
163
|
+
]
|
164
|
+
},
|
165
|
+
{
|
166
|
+
"cell_type": "code",
|
167
|
+
"execution_count": null,
|
168
|
+
"id": "a0135321-d81c-48bc-9c83-8430a3662a0a",
|
169
|
+
"metadata": {},
|
170
|
+
"outputs": [],
|
171
|
+
"source": []
|
172
|
+
}
|
173
|
+
],
|
174
|
+
"metadata": {
|
175
|
+
"kernelspec": {
|
176
|
+
"display_name": "Python 3 (ipykernel)",
|
177
|
+
"language": "python",
|
178
|
+
"name": "python3"
|
179
|
+
},
|
180
|
+
"language_info": {
|
181
|
+
"codemirror_mode": {
|
182
|
+
"name": "ipython",
|
183
|
+
"version": 3
|
184
|
+
},
|
185
|
+
"file_extension": ".py",
|
186
|
+
"mimetype": "text/x-python",
|
187
|
+
"name": "python",
|
188
|
+
"nbconvert_exporter": "python",
|
189
|
+
"pygments_lexer": "ipython3",
|
190
|
+
"version": "3.12.4"
|
191
|
+
}
|
192
|
+
},
|
193
|
+
"nbformat": 4,
|
194
|
+
"nbformat_minor": 5
|
195
|
+
}
|
@@ -0,0 +1,267 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "markdown",
|
5
|
+
"id": "db8a58e5",
|
6
|
+
"metadata": {},
|
7
|
+
"source": [
|
8
|
+
"<h1>Linear Regression</h1>"
|
9
|
+
]
|
10
|
+
},
|
11
|
+
{
|
12
|
+
"cell_type": "code",
|
13
|
+
"execution_count": null,
|
14
|
+
"id": "de374599",
|
15
|
+
"metadata": {},
|
16
|
+
"outputs": [],
|
17
|
+
"source": [
|
18
|
+
"import pandas as pd\n",
|
19
|
+
"import matplotlib.pyplot as plt\n",
|
20
|
+
"import seaborn as sns\n",
|
21
|
+
"from sklearn.linear_model import LinearRegression\n",
|
22
|
+
"from sklearn.model_selection import train_test_split\n",
|
23
|
+
"import numpy as np"
|
24
|
+
]
|
25
|
+
},
|
26
|
+
{
|
27
|
+
"cell_type": "code",
|
28
|
+
"execution_count": null,
|
29
|
+
"id": "4dc9e310",
|
30
|
+
"metadata": {},
|
31
|
+
"outputs": [],
|
32
|
+
"source": [
|
33
|
+
"df = pd.read_csv('insurance.csv')\n",
|
34
|
+
"df = df[df['charges'] <= 12000]"
|
35
|
+
]
|
36
|
+
},
|
37
|
+
{
|
38
|
+
"cell_type": "code",
|
39
|
+
"execution_count": null,
|
40
|
+
"id": "7a7f33cd",
|
41
|
+
"metadata": {},
|
42
|
+
"outputs": [],
|
43
|
+
"source": [
|
44
|
+
"df"
|
45
|
+
]
|
46
|
+
},
|
47
|
+
{
|
48
|
+
"cell_type": "markdown",
|
49
|
+
"id": "a19e236b",
|
50
|
+
"metadata": {},
|
51
|
+
"source": [
|
52
|
+
"<h2>Linear Data</h2>"
|
53
|
+
]
|
54
|
+
},
|
55
|
+
{
|
56
|
+
"cell_type": "code",
|
57
|
+
"execution_count": null,
|
58
|
+
"id": "aef9d295",
|
59
|
+
"metadata": {},
|
60
|
+
"outputs": [],
|
61
|
+
"source": [
|
62
|
+
"X = np.array(df['age'].iloc[:200])\n",
|
63
|
+
"y = np.array(df['charges'].iloc[:200])"
|
64
|
+
]
|
65
|
+
},
|
66
|
+
{
|
67
|
+
"cell_type": "code",
|
68
|
+
"execution_count": null,
|
69
|
+
"id": "65c46210",
|
70
|
+
"metadata": {},
|
71
|
+
"outputs": [],
|
72
|
+
"source": [
|
73
|
+
"plt.figure(figsize = (12,6))\n",
|
74
|
+
"plt.title(\"Age vs Charges Scatterplot\")\n",
|
75
|
+
"plt.xlabel(\"Age\")\n",
|
76
|
+
"plt.ylabel(\"Charges\")\n",
|
77
|
+
"sns.scatterplot(x=X,y=y)"
|
78
|
+
]
|
79
|
+
},
|
80
|
+
{
|
81
|
+
"cell_type": "code",
|
82
|
+
"execution_count": null,
|
83
|
+
"id": "5be82cb7",
|
84
|
+
"metadata": {},
|
85
|
+
"outputs": [],
|
86
|
+
"source": [
|
87
|
+
"X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2, random_state = 0)"
|
88
|
+
]
|
89
|
+
},
|
90
|
+
{
|
91
|
+
"cell_type": "code",
|
92
|
+
"execution_count": null,
|
93
|
+
"id": "5d670ad4",
|
94
|
+
"metadata": {},
|
95
|
+
"outputs": [],
|
96
|
+
"source": [
|
97
|
+
"model = LinearRegression()"
|
98
|
+
]
|
99
|
+
},
|
100
|
+
{
|
101
|
+
"cell_type": "code",
|
102
|
+
"execution_count": null,
|
103
|
+
"id": "82ece089",
|
104
|
+
"metadata": {},
|
105
|
+
"outputs": [],
|
106
|
+
"source": [
|
107
|
+
"model.fit(X_train.reshape(-1,1),y_train)"
|
108
|
+
]
|
109
|
+
},
|
110
|
+
{
|
111
|
+
"cell_type": "code",
|
112
|
+
"execution_count": null,
|
113
|
+
"id": "ca34672b",
|
114
|
+
"metadata": {},
|
115
|
+
"outputs": [],
|
116
|
+
"source": [
|
117
|
+
"y_pred_train = model.predict(X_train.reshape(-1,1))\n",
|
118
|
+
"plt.figure(figsize=(12,6))\n",
|
119
|
+
"plt.title(\"Train Set\")\n",
|
120
|
+
"plt.xlabel(\"Age\")\n",
|
121
|
+
"plt.ylabel(\"Charges\")\n",
|
122
|
+
"sns.scatterplot(x=X_train,y=y_train)\n",
|
123
|
+
"sns.lineplot(x=X_train,y=y_pred_train)"
|
124
|
+
]
|
125
|
+
},
|
126
|
+
{
|
127
|
+
"cell_type": "code",
|
128
|
+
"execution_count": null,
|
129
|
+
"id": "b86971e5",
|
130
|
+
"metadata": {},
|
131
|
+
"outputs": [],
|
132
|
+
"source": [
|
133
|
+
"y_pred = model.predict(X_test.reshape(-1,1))\n",
|
134
|
+
"plt.figure(figsize=(12,6))\n",
|
135
|
+
"plt.title(\"Test Set\")\n",
|
136
|
+
"plt.xlabel(\"Age\")\n",
|
137
|
+
"plt.ylabel(\"Charges\")\n",
|
138
|
+
"sns.scatterplot(x=X_test,y=y_test)\n",
|
139
|
+
"sns.lineplot(x=X_test,y=y_pred)"
|
140
|
+
]
|
141
|
+
},
|
142
|
+
{
|
143
|
+
"cell_type": "markdown",
|
144
|
+
"id": "07b0706a",
|
145
|
+
"metadata": {},
|
146
|
+
"source": [
|
147
|
+
"<h2>Non Linear Data</h2>"
|
148
|
+
]
|
149
|
+
},
|
150
|
+
{
|
151
|
+
"cell_type": "code",
|
152
|
+
"execution_count": null,
|
153
|
+
"id": "ea4698f7",
|
154
|
+
"metadata": {},
|
155
|
+
"outputs": [],
|
156
|
+
"source": [
|
157
|
+
"X=np.array(df['bmi'].iloc[100:300])\n",
|
158
|
+
"y=np.array(df['charges'].iloc[100:300])"
|
159
|
+
]
|
160
|
+
},
|
161
|
+
{
|
162
|
+
"cell_type": "code",
|
163
|
+
"execution_count": null,
|
164
|
+
"id": "1e8db443",
|
165
|
+
"metadata": {},
|
166
|
+
"outputs": [],
|
167
|
+
"source": [
|
168
|
+
"plt.figure(figsize = (12,6))\n",
|
169
|
+
"plt.title('BMI vs Charges Scatterplot')\n",
|
170
|
+
"plt.xlabel(\"BMI\")\n",
|
171
|
+
"plt.ylabel(\"Charges\")\n",
|
172
|
+
"sns.scatterplot(x=X,y=y)"
|
173
|
+
]
|
174
|
+
},
|
175
|
+
{
|
176
|
+
"cell_type": "code",
|
177
|
+
"execution_count": null,
|
178
|
+
"id": "6b7bf657",
|
179
|
+
"metadata": {},
|
180
|
+
"outputs": [],
|
181
|
+
"source": [
|
182
|
+
"X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2, random_state = 0)"
|
183
|
+
]
|
184
|
+
},
|
185
|
+
{
|
186
|
+
"cell_type": "code",
|
187
|
+
"execution_count": null,
|
188
|
+
"id": "e2e4f730",
|
189
|
+
"metadata": {},
|
190
|
+
"outputs": [],
|
191
|
+
"source": [
|
192
|
+
"model = LinearRegression()"
|
193
|
+
]
|
194
|
+
},
|
195
|
+
{
|
196
|
+
"cell_type": "code",
|
197
|
+
"execution_count": null,
|
198
|
+
"id": "09b3f252",
|
199
|
+
"metadata": {},
|
200
|
+
"outputs": [],
|
201
|
+
"source": [
|
202
|
+
"model.fit(X_train.reshape(-1,1),y_train)"
|
203
|
+
]
|
204
|
+
},
|
205
|
+
{
|
206
|
+
"cell_type": "code",
|
207
|
+
"execution_count": null,
|
208
|
+
"id": "4d56b6ab",
|
209
|
+
"metadata": {},
|
210
|
+
"outputs": [],
|
211
|
+
"source": [
|
212
|
+
"y_pred_train = model.predict(X_train.reshape(-1,1))\n",
|
213
|
+
"plt.figure(figsize=(12,6))\n",
|
214
|
+
"plt.title(\"Train Set\")\n",
|
215
|
+
"plt.xlabel(\"BMI\")\n",
|
216
|
+
"plt.ylabel(\"Charges\")\n",
|
217
|
+
"sns.scatterplot(x=X_train,y=y_train)\n",
|
218
|
+
"sns.lineplot(x=X_train,y=y_pred_train)"
|
219
|
+
]
|
220
|
+
},
|
221
|
+
{
|
222
|
+
"cell_type": "code",
|
223
|
+
"execution_count": null,
|
224
|
+
"id": "9bff294b",
|
225
|
+
"metadata": {},
|
226
|
+
"outputs": [],
|
227
|
+
"source": [
|
228
|
+
"y_pred = model.predict(X_test.reshape(-1,1))\n",
|
229
|
+
"plt.figure(figsize=(12,6))\n",
|
230
|
+
"plt.title(\"Test Set\")\n",
|
231
|
+
"plt.xlabel(\"BMI\")\n",
|
232
|
+
"plt.ylabel(\"Charges\")\n",
|
233
|
+
"sns.scatterplot(x=X_test,y=y_test)\n",
|
234
|
+
"sns.lineplot(x=X_test,y=y_pred)"
|
235
|
+
]
|
236
|
+
},
|
237
|
+
{
|
238
|
+
"cell_type": "code",
|
239
|
+
"execution_count": null,
|
240
|
+
"id": "235253ca-31cb-4ecd-89a5-2f0d71f50d1f",
|
241
|
+
"metadata": {},
|
242
|
+
"outputs": [],
|
243
|
+
"source": []
|
244
|
+
}
|
245
|
+
],
|
246
|
+
"metadata": {
|
247
|
+
"kernelspec": {
|
248
|
+
"display_name": "Python 3 (ipykernel)",
|
249
|
+
"language": "python",
|
250
|
+
"name": "python3"
|
251
|
+
},
|
252
|
+
"language_info": {
|
253
|
+
"codemirror_mode": {
|
254
|
+
"name": "ipython",
|
255
|
+
"version": 3
|
256
|
+
},
|
257
|
+
"file_extension": ".py",
|
258
|
+
"mimetype": "text/x-python",
|
259
|
+
"name": "python",
|
260
|
+
"nbconvert_exporter": "python",
|
261
|
+
"pygments_lexer": "ipython3",
|
262
|
+
"version": "3.12.4"
|
263
|
+
}
|
264
|
+
},
|
265
|
+
"nbformat": 4,
|
266
|
+
"nbformat_minor": 5
|
267
|
+
}
|
@@ -0,0 +1,104 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"id": "cef03733-f76d-4c75-9570-43d8b4d946d8",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"import numpy as np\n",
|
11
|
+
"import matplotlib.pyplot as plt\n",
|
12
|
+
"from sklearn import linear_model, datasets\n",
|
13
|
+
"from sklearn.model_selection import train_test_split\n",
|
14
|
+
"from sklearn.metrics import confusion_matrix\n",
|
15
|
+
"\n",
|
16
|
+
"# Load the wine dataset\n",
|
17
|
+
"wine = datasets.load_wine()\n",
|
18
|
+
"\n",
|
19
|
+
"# Features and target\n",
|
20
|
+
"X = wine.data\n",
|
21
|
+
"Y = wine.target\n",
|
22
|
+
"\n",
|
23
|
+
"# Split the dataset\n",
|
24
|
+
"X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.30, random_state=7)\n",
|
25
|
+
"\n",
|
26
|
+
"# Initialize and train Logistic Regression model\n",
|
27
|
+
"log_reg_model = linear_model.LogisticRegression(max_iter=5000) # Increase max_iter to avoid convergence warning\n",
|
28
|
+
"log_reg_model.fit(X_train, y_train)\n",
|
29
|
+
"\n",
|
30
|
+
"# Model evaluation\n",
|
31
|
+
"score = log_reg_model.score(X_test, y_test)\n",
|
32
|
+
"print(\"The score for the Logistic Regression Model is:\", score)\n",
|
33
|
+
"\n",
|
34
|
+
"# Confusion Matrix\n",
|
35
|
+
"cm = confusion_matrix(y_test, log_reg_model.predict(X_test))\n",
|
36
|
+
"print(\"Confusion Matrix:\\n\", cm)\n",
|
37
|
+
"\n",
|
38
|
+
"# ------------------------------\n",
|
39
|
+
"# Visualization with only 2 features\n",
|
40
|
+
"# ------------------------------\n",
|
41
|
+
"\n",
|
42
|
+
"# Use only the first two features for visualization\n",
|
43
|
+
"X_vis = X[:, :2]\n",
|
44
|
+
"\n",
|
45
|
+
"# Train again on 2 features\n",
|
46
|
+
"log_reg_model.fit(X_vis, Y)\n",
|
47
|
+
"\n",
|
48
|
+
"# Set mesh grid limits\n",
|
49
|
+
"x_min, x_max = X_vis[:, 0].min() - 0.5, X_vis[:, 0].max() + 0.5\n",
|
50
|
+
"y_min, y_max = X_vis[:, 1].min() - 0.5, X_vis[:, 1].max() + 0.5\n",
|
51
|
+
"xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01),\n",
|
52
|
+
" np.arange(y_min, y_max, 0.01))\n",
|
53
|
+
"\n",
|
54
|
+
"# Predict over mesh\n",
|
55
|
+
"Z = log_reg_model.predict(np.c_[xx.ravel(), yy.ravel()])\n",
|
56
|
+
"Z = Z.reshape(xx.shape)\n",
|
57
|
+
"\n",
|
58
|
+
"# Plot\n",
|
59
|
+
"plt.figure(figsize=(8, 6))\n",
|
60
|
+
"plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired, shading='auto')\n",
|
61
|
+
"\n",
|
62
|
+
"# Scatter plot\n",
|
63
|
+
"plt.scatter(X_vis[:, 0], X_vis[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired)\n",
|
64
|
+
"plt.xlabel(wine.feature_names[0])\n",
|
65
|
+
"plt.ylabel(wine.feature_names[1])\n",
|
66
|
+
"plt.title('Logistic Regression Decision Boundary (Wine Dataset)')\n",
|
67
|
+
"plt.xlim(xx.min(), xx.max())\n",
|
68
|
+
"plt.ylim(yy.min(), yy.max())\n",
|
69
|
+
"plt.xticks(())\n",
|
70
|
+
"plt.yticks(())\n",
|
71
|
+
"plt.show()\n"
|
72
|
+
]
|
73
|
+
},
|
74
|
+
{
|
75
|
+
"cell_type": "code",
|
76
|
+
"execution_count": null,
|
77
|
+
"id": "9b026574-d96c-455d-af8f-8fa02e942a85",
|
78
|
+
"metadata": {},
|
79
|
+
"outputs": [],
|
80
|
+
"source": []
|
81
|
+
}
|
82
|
+
],
|
83
|
+
"metadata": {
|
84
|
+
"kernelspec": {
|
85
|
+
"display_name": "Python 3 (ipykernel)",
|
86
|
+
"language": "python",
|
87
|
+
"name": "python3"
|
88
|
+
},
|
89
|
+
"language_info": {
|
90
|
+
"codemirror_mode": {
|
91
|
+
"name": "ipython",
|
92
|
+
"version": 3
|
93
|
+
},
|
94
|
+
"file_extension": ".py",
|
95
|
+
"mimetype": "text/x-python",
|
96
|
+
"name": "python",
|
97
|
+
"nbconvert_exporter": "python",
|
98
|
+
"pygments_lexer": "ipython3",
|
99
|
+
"version": "3.12.4"
|
100
|
+
}
|
101
|
+
},
|
102
|
+
"nbformat": 4,
|
103
|
+
"nbformat_minor": 5
|
104
|
+
}
|
@@ -0,0 +1,109 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"id": "f7327c24-ed64-4b50-9eb9-42f1ca544cd6",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"import matplotlib.pyplot as plt\n",
|
11
|
+
"import seaborn as sns\n",
|
12
|
+
"from sklearn import datasets\n",
|
13
|
+
"from sklearn.metrics import confusion_matrix\n",
|
14
|
+
"from sklearn.model_selection import train_test_split\n",
|
15
|
+
"from sklearn.naive_bayes import GaussianNB\n",
|
16
|
+
"\n",
|
17
|
+
"# Load dataset\n",
|
18
|
+
"win = datasets.load_wine()\n",
|
19
|
+
"X = win.data\n",
|
20
|
+
"y = win.target\n",
|
21
|
+
"\n",
|
22
|
+
"# Train-test split\n",
|
23
|
+
"X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)\n",
|
24
|
+
"\n",
|
25
|
+
"# Train model\n",
|
26
|
+
"gnb = GaussianNB().fit(X_train, y_train)\n",
|
27
|
+
"gnb_predictions = gnb.predict(X_test)\n",
|
28
|
+
"\n",
|
29
|
+
"# Confusion matrix\n",
|
30
|
+
"cm = confusion_matrix(y_test, gnb_predictions)\n",
|
31
|
+
"#labels = win.target_names\n",
|
32
|
+
"\n",
|
33
|
+
"# Plot\n",
|
34
|
+
"plt.figure(figsize=(8, 6))\n",
|
35
|
+
"sns.heatmap(cm, annot=True, fmt=\"d\", cmap=\"Blues\",\n",
|
36
|
+
" xticklabels=[0,1,2], yticklabels=[0,1,2])\n",
|
37
|
+
"plt.xlabel(\"Predicted Label\")\n",
|
38
|
+
"plt.ylabel(\"True Label\")\n",
|
39
|
+
"plt.title(\"Confusion Matrix for Gaussian Naive Bayes (Wine Dataset)\")\n",
|
40
|
+
"plt.tight_layout()\n",
|
41
|
+
"plt.show()\n"
|
42
|
+
]
|
43
|
+
},
|
44
|
+
{
|
45
|
+
"cell_type": "code",
|
46
|
+
"execution_count": null,
|
47
|
+
"id": "219554ad-622f-4428-aa10-35f5b6bbafcb",
|
48
|
+
"metadata": {
|
49
|
+
"scrolled": true
|
50
|
+
},
|
51
|
+
"outputs": [],
|
52
|
+
"source": [
|
53
|
+
"import sklearn.naive_bayes\n",
|
54
|
+
"help(sklearn.naive_bayes)"
|
55
|
+
]
|
56
|
+
},
|
57
|
+
{
|
58
|
+
"cell_type": "code",
|
59
|
+
"execution_count": null,
|
60
|
+
"id": "abdd3ed0-02f1-4d10-b280-563984c82cab",
|
61
|
+
"metadata": {},
|
62
|
+
"outputs": [],
|
63
|
+
"source": [
|
64
|
+
"import sklearn.naive_bayes\n",
|
65
|
+
"print(dir(sklearn.naive_bayes))\n"
|
66
|
+
]
|
67
|
+
},
|
68
|
+
{
|
69
|
+
"cell_type": "code",
|
70
|
+
"execution_count": null,
|
71
|
+
"id": "f5f672f9-a0f5-4fe0-8a79-c6368858311a",
|
72
|
+
"metadata": {},
|
73
|
+
"outputs": [],
|
74
|
+
"source": [
|
75
|
+
"import inspect\n",
|
76
|
+
"inspect.getmembers(sklearn.naive_bayes, inspect.isclass) "
|
77
|
+
]
|
78
|
+
},
|
79
|
+
{
|
80
|
+
"cell_type": "code",
|
81
|
+
"execution_count": null,
|
82
|
+
"id": "28f73c18-b901-405e-88c7-9a7c606b6633",
|
83
|
+
"metadata": {},
|
84
|
+
"outputs": [],
|
85
|
+
"source": []
|
86
|
+
}
|
87
|
+
],
|
88
|
+
"metadata": {
|
89
|
+
"kernelspec": {
|
90
|
+
"display_name": "Python 3 (ipykernel)",
|
91
|
+
"language": "python",
|
92
|
+
"name": "python3"
|
93
|
+
},
|
94
|
+
"language_info": {
|
95
|
+
"codemirror_mode": {
|
96
|
+
"name": "ipython",
|
97
|
+
"version": 3
|
98
|
+
},
|
99
|
+
"file_extension": ".py",
|
100
|
+
"mimetype": "text/x-python",
|
101
|
+
"name": "python",
|
102
|
+
"nbconvert_exporter": "python",
|
103
|
+
"pygments_lexer": "ipython3",
|
104
|
+
"version": "3.12.4"
|
105
|
+
}
|
106
|
+
},
|
107
|
+
"nbformat": 4,
|
108
|
+
"nbformat_minor": 5
|
109
|
+
}
|