noshot 6.0.0__py3-none-any.whl → 7.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +691 -0
- noshot/data/ML TS XAI/ML/Tamilan Code/1. EDA-PCA (Balance Scale Dataset).ipynb +147 -0
- noshot/data/ML TS XAI/ML/Tamilan Code/1. EDA-PCA (Rice Dataset).ipynb +181 -0
- noshot/data/ML TS XAI/ML/Tamilan Code/10. HMM Veterbi.ipynb +152 -0
- noshot/data/ML TS XAI/ML/Tamilan Code/2. KNN (Balance Scale Dataset).ipynb +117 -0
- noshot/data/ML TS XAI/ML/Tamilan Code/2. KNN (Iris Dataset).ipynb +156 -0
- noshot/data/ML TS XAI/ML/Tamilan Code/2. KNN (Sobar-72 Dataset).ipynb +215 -0
- noshot/data/ML TS XAI/ML/Tamilan Code/3. LDA (Balance Scale Dataset).ipynb +78 -0
- noshot/data/ML TS XAI/ML/Tamilan Code/3. LDA (NPHA Doctor Visits Dataset).ipynb +114 -0
- noshot/data/ML TS XAI/ML/Tamilan Code/4. Linear Regression (Machine Dataset).ipynb +115 -0
- noshot/data/ML TS XAI/ML/Tamilan Code/4. Linear Regression (Real Estate Dataset).ipynb +146 -0
- noshot/data/ML TS XAI/ML/Tamilan Code/5. Logistic Regression (Magic04 Dataset).ipynb +130 -0
- noshot/data/ML TS XAI/ML/Tamilan Code/5. Logistic Regression (Wine Dataset).ipynb +112 -0
- noshot/data/ML TS XAI/ML/Tamilan Code/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +118 -0
- noshot/data/ML TS XAI/ML/Tamilan Code/6. Naive Bayes Classifier (Wine Dataset).ipynb +89 -0
- noshot/data/ML TS XAI/ML/Tamilan Code/7. SVM (Rice Dataset).ipynb +120 -0
- noshot/data/ML TS XAI/ML/Tamilan Code/8. FeedForward NN (Sobar72 Dataset).ipynb +262 -0
- noshot/data/ML TS XAI/ML/Tamilan Code/9. CNN (Cifar10 Dataset).ipynb +156 -0
- noshot/data/ML TS XAI/ML/Whitefang Code/1. PCA.ipynb +162 -0
- noshot/data/ML TS XAI/ML/Whitefang Code/10. CNN.ipynb +100 -0
- noshot/data/ML TS XAI/ML/Whitefang Code/11. HMM.ipynb +336 -0
- noshot/data/ML TS XAI/ML/Whitefang Code/2. KNN.ipynb +149 -0
- noshot/data/ML TS XAI/ML/Whitefang Code/3. LDA.ipynb +132 -0
- noshot/data/ML TS XAI/ML/Whitefang Code/4. Linear Regression.ipynb +86 -0
- noshot/data/ML TS XAI/ML/Whitefang Code/5. Logistic Regression.ipynb +115 -0
- noshot/data/ML TS XAI/ML/Whitefang Code/6. Naive Bayes (Titanic).ipynb +196 -0
- noshot/data/ML TS XAI/ML/Whitefang Code/6. Naive Bayes (Wine).ipynb +98 -0
- noshot/data/ML TS XAI/ML/Whitefang Code/7. SVM Linear.ipynb +109 -0
- noshot/data/ML TS XAI/ML/Whitefang Code/8. SVM Non-Linear.ipynb +195 -0
- noshot/data/ML TS XAI/ML/Whitefang Code/9. FNN With Regularization.ipynb +189 -0
- noshot/data/ML TS XAI/ML/Whitefang Code/9. FNN Without Regularization.ipynb +197 -0
- noshot/data/ML TS XAI/ML/Whitefang Code/All in One Lab CIA 1 Q.ipynb +1087 -0
- {noshot-6.0.0.dist-info → noshot-7.0.0.dist-info}/METADATA +1 -1
- noshot-7.0.0.dist-info/RECORD +41 -0
- {noshot-6.0.0.dist-info → noshot-7.0.0.dist-info}/WHEEL +1 -1
- noshot/data/ML TS XAI/XAI/Q1.ipynb +0 -377
- noshot/data/ML TS XAI/XAI/Q2.ipynb +0 -362
- noshot/data/ML TS XAI/XAI/Q3.ipynb +0 -637
- noshot/data/ML TS XAI/XAI/Q4.ipynb +0 -206
- noshot/data/ML TS XAI/XAI/Q5.ipynb +0 -1018
- noshot-6.0.0.dist-info/RECORD +0 -14
- {noshot-6.0.0.dist-info → noshot-7.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-6.0.0.dist-info → noshot-7.0.0.dist-info}/top_level.txt +0 -0
@@ -1,637 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "raw",
|
5
|
-
"metadata": {},
|
6
|
-
"source": [
|
7
|
-
"1.\tExplore result visualization of post-hoc analysis methods:- \n",
|
8
|
-
"Perform Partial dependence plot (PDP) on the fetch_california_housing data set and use the following code.\n",
|
9
|
-
"from sklearn.datasets import fetch_california_housing\n",
|
10
|
-
"data = fetch_california_housing(as_frame=True)\n",
|
11
|
-
"df = data.frame\n",
|
12
|
-
"\n",
|
13
|
-
"2.\tPerform a LIME-based explanation for a image classification model using the LIME Text Explainer. \n",
|
14
|
-
"Use the following dataset\n",
|
15
|
-
"from tensorflow.keras.datasets import mnist\n",
|
16
|
-
"# Loads the MNIST dataset\n",
|
17
|
-
"(x_train, y_train), (x_test, y_test) = mnist.load_data()\n",
|
18
|
-
"Perform minimum of five EDA on the above mentioned data set.\n"
|
19
|
-
]
|
20
|
-
},
|
21
|
-
{
|
22
|
-
"cell_type": "markdown",
|
23
|
-
"metadata": {
|
24
|
-
"id": "0cPxrLdh65Uq"
|
25
|
-
},
|
26
|
-
"source": [
|
27
|
-
"**Perform Partial dependence plot (PDP)**"
|
28
|
-
]
|
29
|
-
},
|
30
|
-
{
|
31
|
-
"cell_type": "code",
|
32
|
-
"execution_count": null,
|
33
|
-
"metadata": {
|
34
|
-
"id": "kUCRkjNG6mLx"
|
35
|
-
},
|
36
|
-
"outputs": [],
|
37
|
-
"source": [
|
38
|
-
"from sklearn.datasets import fetch_california_housing\n",
|
39
|
-
"from sklearn.ensemble import RandomForestRegressor\n",
|
40
|
-
"from sklearn.inspection import PartialDependenceDisplay\n",
|
41
|
-
"from sklearn.model_selection import train_test_split\n",
|
42
|
-
"import matplotlib.pyplot as plt\n",
|
43
|
-
"import pandas as pd\n",
|
44
|
-
"import numpy as np"
|
45
|
-
]
|
46
|
-
},
|
47
|
-
{
|
48
|
-
"cell_type": "code",
|
49
|
-
"execution_count": null,
|
50
|
-
"metadata": {
|
51
|
-
"colab": {
|
52
|
-
"base_uri": "https://localhost:8080/",
|
53
|
-
"height": 223
|
54
|
-
},
|
55
|
-
"id": "Q7p6o9_z6qhJ",
|
56
|
-
"outputId": "c04efdf3-948e-42e0-a31c-d6fee03a6d7f",
|
57
|
-
"scrolled": true
|
58
|
-
},
|
59
|
-
"outputs": [],
|
60
|
-
"source": [
|
61
|
-
"df=pd.read_csv('cali.csv')\n",
|
62
|
-
"df.head()"
|
63
|
-
]
|
64
|
-
},
|
65
|
-
{
|
66
|
-
"cell_type": "code",
|
67
|
-
"execution_count": null,
|
68
|
-
"metadata": {},
|
69
|
-
"outputs": [],
|
70
|
-
"source": [
|
71
|
-
"X=df.drop(columns='target')\n",
|
72
|
-
"y=df['target']"
|
73
|
-
]
|
74
|
-
},
|
75
|
-
{
|
76
|
-
"cell_type": "code",
|
77
|
-
"execution_count": null,
|
78
|
-
"metadata": {
|
79
|
-
"colab": {
|
80
|
-
"base_uri": "https://localhost:8080/",
|
81
|
-
"height": 80
|
82
|
-
},
|
83
|
-
"id": "auzRXSjU6tR8",
|
84
|
-
"outputId": "77452de0-80b8-495a-a3a5-b3a94e1bc17c"
|
85
|
-
},
|
86
|
-
"outputs": [],
|
87
|
-
"source": [
|
88
|
-
"X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)\n",
|
89
|
-
"\n",
|
90
|
-
"model=RandomForestRegressor(n_estimators=100,random_state=42)\n",
|
91
|
-
"model.fit(X_train,y_train)"
|
92
|
-
]
|
93
|
-
},
|
94
|
-
{
|
95
|
-
"cell_type": "code",
|
96
|
-
"execution_count": null,
|
97
|
-
"metadata": {
|
98
|
-
"colab": {
|
99
|
-
"base_uri": "https://localhost:8080/",
|
100
|
-
"height": 449
|
101
|
-
},
|
102
|
-
"id": "a4_Knmz76uyv",
|
103
|
-
"outputId": "801f0a25-c327-4f1f-8825-afdd408e1be9"
|
104
|
-
},
|
105
|
-
"outputs": [],
|
106
|
-
"source": [
|
107
|
-
"PartialDependenceDisplay.from_estimator(model,X_train,features=['MedInc'],feature_names=df.columns)\n",
|
108
|
-
"plt.show()"
|
109
|
-
]
|
110
|
-
},
|
111
|
-
{
|
112
|
-
"cell_type": "code",
|
113
|
-
"execution_count": null,
|
114
|
-
"metadata": {
|
115
|
-
"colab": {
|
116
|
-
"base_uri": "https://localhost:8080/",
|
117
|
-
"height": 449
|
118
|
-
},
|
119
|
-
"id": "OHZdRGxM6w3F",
|
120
|
-
"outputId": "9e8afefc-b1f7-4fe4-82ee-09c62f8eb8f0",
|
121
|
-
"scrolled": true
|
122
|
-
},
|
123
|
-
"outputs": [],
|
124
|
-
"source": [
|
125
|
-
"PartialDependenceDisplay.from_estimator(model,X_train,[('MedInc','HouseAge')],feature_names=df.columns)\n",
|
126
|
-
"plt.show()"
|
127
|
-
]
|
128
|
-
},
|
129
|
-
{
|
130
|
-
"cell_type": "markdown",
|
131
|
-
"metadata": {
|
132
|
-
"id": "GmCsO0lP6-td"
|
133
|
-
},
|
134
|
-
"source": [
|
135
|
-
"**LIME FOR IMAGE**"
|
136
|
-
]
|
137
|
-
},
|
138
|
-
{
|
139
|
-
"cell_type": "code",
|
140
|
-
"execution_count": null,
|
141
|
-
"metadata": {
|
142
|
-
"id": "kKkCLaMW7ANg"
|
143
|
-
},
|
144
|
-
"outputs": [],
|
145
|
-
"source": [
|
146
|
-
"from tensorflow.keras.applications.xception import Xception,decode_predictions\n",
|
147
|
-
"from tensorflow.keras.datasets import mnist\n",
|
148
|
-
"from tensorflow.keras.models import Sequential\n",
|
149
|
-
"from tensorflow.keras.layers import Conv2D,MaxPooling2D,Flatten,Dense\n",
|
150
|
-
"from tensorflow.keras.utils import to_categorical\n",
|
151
|
-
"from lime import lime_image\n",
|
152
|
-
"import seaborn as sns\n",
|
153
|
-
"from skimage.color import label2rgb\n",
|
154
|
-
"import warnings\n",
|
155
|
-
"warnings.filterwarnings('ignore')"
|
156
|
-
]
|
157
|
-
},
|
158
|
-
{
|
159
|
-
"cell_type": "code",
|
160
|
-
"execution_count": null,
|
161
|
-
"metadata": {
|
162
|
-
"id": "GgZ51IgYBnP2"
|
163
|
-
},
|
164
|
-
"outputs": [],
|
165
|
-
"source": [
|
166
|
-
"(x_train,y_train),(x_test,y_test)=mnist.load_data()\n",
|
167
|
-
"\n",
|
168
|
-
"x_train=x_train.astype('float32')/255.0\n",
|
169
|
-
"x_test=x_test.astype('float32')/255.0\n",
|
170
|
-
"\n",
|
171
|
-
"y_train_cat=to_categorical(y_train,10)\n",
|
172
|
-
"y_test_cat=to_categorical(y_test,10)"
|
173
|
-
]
|
174
|
-
},
|
175
|
-
{
|
176
|
-
"cell_type": "code",
|
177
|
-
"execution_count": null,
|
178
|
-
"metadata": {
|
179
|
-
"colab": {
|
180
|
-
"base_uri": "https://localhost:8080/"
|
181
|
-
},
|
182
|
-
"id": "rABd-7nYENlT",
|
183
|
-
"outputId": "9441cc1d-b3a0-4f1b-eaec-fd73b26171e3"
|
184
|
-
},
|
185
|
-
"outputs": [],
|
186
|
-
"source": [
|
187
|
-
"model = Sequential([\n",
|
188
|
-
" Conv2D(16, (3, 3), activation='relu', input_shape=(28, 28, 1)),\n",
|
189
|
-
" MaxPooling2D((2, 2)),\n",
|
190
|
-
" Flatten(),\n",
|
191
|
-
" Dense(64, activation='relu'),\n",
|
192
|
-
" Dense(10, activation='softmax')\n",
|
193
|
-
"])\n",
|
194
|
-
"\n",
|
195
|
-
"model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n",
|
196
|
-
"model.fit(x_train, y_train_cat, epochs=2, batch_size=64, validation_split=0.1)\n"
|
197
|
-
]
|
198
|
-
},
|
199
|
-
{
|
200
|
-
"cell_type": "code",
|
201
|
-
"execution_count": null,
|
202
|
-
"metadata": {
|
203
|
-
"colab": {
|
204
|
-
"base_uri": "https://localhost:8080/",
|
205
|
-
"height": 1000,
|
206
|
-
"referenced_widgets": [
|
207
|
-
"af45ee093e934a629a993fba7fe2c10f",
|
208
|
-
"a332c8bbfb0b4fb18133490edd5000cb",
|
209
|
-
"f626defc1d4544b3a8a67c2c792d8c94",
|
210
|
-
"465d9a8a9edd4fccb5f7f88d32b7af3f",
|
211
|
-
"08e685b6dec343808ab7a34a444f049e",
|
212
|
-
"da56cd3d10b741d5a0b383934153357b",
|
213
|
-
"4af04f4f3e24470f93f593f71717ccc1",
|
214
|
-
"69f13969e1e34139aef8c39f40524d64",
|
215
|
-
"9e7e9389e5ff4e2cad706bda44010e1a",
|
216
|
-
"57c6b335e2e942f2b4796548d40aefea",
|
217
|
-
"79fceb113bc045dd81cbd0861750aa80"
|
218
|
-
]
|
219
|
-
},
|
220
|
-
"id": "WN1BnA68FZ3S",
|
221
|
-
"outputId": "5b39ffef-b4d9-41e1-844c-8445d152d736"
|
222
|
-
},
|
223
|
-
"outputs": [],
|
224
|
-
"source": [
|
225
|
-
"from lime import lime_image\n",
|
226
|
-
"from skimage.color import label2rgb\n",
|
227
|
-
"import cv2\n",
|
228
|
-
"import numpy as np\n",
|
229
|
-
"import matplotlib.pyplot as plt\n",
|
230
|
-
"explainer = lime_image.LimeImageExplainer()\n",
|
231
|
-
"idx = 25\n",
|
232
|
-
"test_image = x_test[idx]\n",
|
233
|
-
"\n",
|
234
|
-
"# Convert LIME's RGB input back to grayscale\n",
|
235
|
-
"predict_fn = lambda x: model.predict(\n",
|
236
|
-
" np.array([cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) for img in x])[..., np.newaxis]\n",
|
237
|
-
")\n",
|
238
|
-
"\n",
|
239
|
-
"explanation = explainer.explain_instance(\n",
|
240
|
-
" image=test_image.squeeze(), # shape: (28, 28)\n",
|
241
|
-
" classifier_fn=predict_fn,\n",
|
242
|
-
" top_labels=1,\n",
|
243
|
-
" hide_color=0,\n",
|
244
|
-
" num_samples=1000\n",
|
245
|
-
")\n",
|
246
|
-
"\n",
|
247
|
-
"temp, mask = explanation.get_image_and_mask(\n",
|
248
|
-
" label=explanation.top_labels[0],\n",
|
249
|
-
" positive_only=True,\n",
|
250
|
-
" hide_rest=False\n",
|
251
|
-
")\n",
|
252
|
-
"\n",
|
253
|
-
"plt.imshow(label2rgb(mask, temp, bg_label=0))\n",
|
254
|
-
"plt.title(f\"LIME for label: {y_test[idx]}\")\n",
|
255
|
-
"plt.axis('off')\n",
|
256
|
-
"plt.show()\n"
|
257
|
-
]
|
258
|
-
},
|
259
|
-
{
|
260
|
-
"cell_type": "code",
|
261
|
-
"execution_count": null,
|
262
|
-
"metadata": {},
|
263
|
-
"outputs": [],
|
264
|
-
"source": []
|
265
|
-
}
|
266
|
-
],
|
267
|
-
"metadata": {
|
268
|
-
"colab": {
|
269
|
-
"provenance": []
|
270
|
-
},
|
271
|
-
"kernelspec": {
|
272
|
-
"display_name": "Python 3 (ipykernel)",
|
273
|
-
"language": "python",
|
274
|
-
"name": "python3"
|
275
|
-
},
|
276
|
-
"language_info": {
|
277
|
-
"codemirror_mode": {
|
278
|
-
"name": "ipython",
|
279
|
-
"version": 3
|
280
|
-
},
|
281
|
-
"file_extension": ".py",
|
282
|
-
"mimetype": "text/x-python",
|
283
|
-
"name": "python",
|
284
|
-
"nbconvert_exporter": "python",
|
285
|
-
"pygments_lexer": "ipython3",
|
286
|
-
"version": "3.12.4"
|
287
|
-
},
|
288
|
-
"widgets": {
|
289
|
-
"application/vnd.jupyter.widget-state+json": {
|
290
|
-
"08e685b6dec343808ab7a34a444f049e": {
|
291
|
-
"model_module": "@jupyter-widgets/base",
|
292
|
-
"model_module_version": "1.2.0",
|
293
|
-
"model_name": "LayoutModel",
|
294
|
-
"state": {
|
295
|
-
"_model_module": "@jupyter-widgets/base",
|
296
|
-
"_model_module_version": "1.2.0",
|
297
|
-
"_model_name": "LayoutModel",
|
298
|
-
"_view_count": null,
|
299
|
-
"_view_module": "@jupyter-widgets/base",
|
300
|
-
"_view_module_version": "1.2.0",
|
301
|
-
"_view_name": "LayoutView",
|
302
|
-
"align_content": null,
|
303
|
-
"align_items": null,
|
304
|
-
"align_self": null,
|
305
|
-
"border": null,
|
306
|
-
"bottom": null,
|
307
|
-
"display": null,
|
308
|
-
"flex": null,
|
309
|
-
"flex_flow": null,
|
310
|
-
"grid_area": null,
|
311
|
-
"grid_auto_columns": null,
|
312
|
-
"grid_auto_flow": null,
|
313
|
-
"grid_auto_rows": null,
|
314
|
-
"grid_column": null,
|
315
|
-
"grid_gap": null,
|
316
|
-
"grid_row": null,
|
317
|
-
"grid_template_areas": null,
|
318
|
-
"grid_template_columns": null,
|
319
|
-
"grid_template_rows": null,
|
320
|
-
"height": null,
|
321
|
-
"justify_content": null,
|
322
|
-
"justify_items": null,
|
323
|
-
"left": null,
|
324
|
-
"margin": null,
|
325
|
-
"max_height": null,
|
326
|
-
"max_width": null,
|
327
|
-
"min_height": null,
|
328
|
-
"min_width": null,
|
329
|
-
"object_fit": null,
|
330
|
-
"object_position": null,
|
331
|
-
"order": null,
|
332
|
-
"overflow": null,
|
333
|
-
"overflow_x": null,
|
334
|
-
"overflow_y": null,
|
335
|
-
"padding": null,
|
336
|
-
"right": null,
|
337
|
-
"top": null,
|
338
|
-
"visibility": null,
|
339
|
-
"width": null
|
340
|
-
}
|
341
|
-
},
|
342
|
-
"465d9a8a9edd4fccb5f7f88d32b7af3f": {
|
343
|
-
"model_module": "@jupyter-widgets/controls",
|
344
|
-
"model_module_version": "1.5.0",
|
345
|
-
"model_name": "HTMLModel",
|
346
|
-
"state": {
|
347
|
-
"_dom_classes": [],
|
348
|
-
"_model_module": "@jupyter-widgets/controls",
|
349
|
-
"_model_module_version": "1.5.0",
|
350
|
-
"_model_name": "HTMLModel",
|
351
|
-
"_view_count": null,
|
352
|
-
"_view_module": "@jupyter-widgets/controls",
|
353
|
-
"_view_module_version": "1.5.0",
|
354
|
-
"_view_name": "HTMLView",
|
355
|
-
"description": "",
|
356
|
-
"description_tooltip": null,
|
357
|
-
"layout": "IPY_MODEL_57c6b335e2e942f2b4796548d40aefea",
|
358
|
-
"placeholder": "",
|
359
|
-
"style": "IPY_MODEL_79fceb113bc045dd81cbd0861750aa80",
|
360
|
-
"value": " 1000/1000 [00:16<00:00, 64.22it/s]"
|
361
|
-
}
|
362
|
-
},
|
363
|
-
"4af04f4f3e24470f93f593f71717ccc1": {
|
364
|
-
"model_module": "@jupyter-widgets/controls",
|
365
|
-
"model_module_version": "1.5.0",
|
366
|
-
"model_name": "DescriptionStyleModel",
|
367
|
-
"state": {
|
368
|
-
"_model_module": "@jupyter-widgets/controls",
|
369
|
-
"_model_module_version": "1.5.0",
|
370
|
-
"_model_name": "DescriptionStyleModel",
|
371
|
-
"_view_count": null,
|
372
|
-
"_view_module": "@jupyter-widgets/base",
|
373
|
-
"_view_module_version": "1.2.0",
|
374
|
-
"_view_name": "StyleView",
|
375
|
-
"description_width": ""
|
376
|
-
}
|
377
|
-
},
|
378
|
-
"57c6b335e2e942f2b4796548d40aefea": {
|
379
|
-
"model_module": "@jupyter-widgets/base",
|
380
|
-
"model_module_version": "1.2.0",
|
381
|
-
"model_name": "LayoutModel",
|
382
|
-
"state": {
|
383
|
-
"_model_module": "@jupyter-widgets/base",
|
384
|
-
"_model_module_version": "1.2.0",
|
385
|
-
"_model_name": "LayoutModel",
|
386
|
-
"_view_count": null,
|
387
|
-
"_view_module": "@jupyter-widgets/base",
|
388
|
-
"_view_module_version": "1.2.0",
|
389
|
-
"_view_name": "LayoutView",
|
390
|
-
"align_content": null,
|
391
|
-
"align_items": null,
|
392
|
-
"align_self": null,
|
393
|
-
"border": null,
|
394
|
-
"bottom": null,
|
395
|
-
"display": null,
|
396
|
-
"flex": null,
|
397
|
-
"flex_flow": null,
|
398
|
-
"grid_area": null,
|
399
|
-
"grid_auto_columns": null,
|
400
|
-
"grid_auto_flow": null,
|
401
|
-
"grid_auto_rows": null,
|
402
|
-
"grid_column": null,
|
403
|
-
"grid_gap": null,
|
404
|
-
"grid_row": null,
|
405
|
-
"grid_template_areas": null,
|
406
|
-
"grid_template_columns": null,
|
407
|
-
"grid_template_rows": null,
|
408
|
-
"height": null,
|
409
|
-
"justify_content": null,
|
410
|
-
"justify_items": null,
|
411
|
-
"left": null,
|
412
|
-
"margin": null,
|
413
|
-
"max_height": null,
|
414
|
-
"max_width": null,
|
415
|
-
"min_height": null,
|
416
|
-
"min_width": null,
|
417
|
-
"object_fit": null,
|
418
|
-
"object_position": null,
|
419
|
-
"order": null,
|
420
|
-
"overflow": null,
|
421
|
-
"overflow_x": null,
|
422
|
-
"overflow_y": null,
|
423
|
-
"padding": null,
|
424
|
-
"right": null,
|
425
|
-
"top": null,
|
426
|
-
"visibility": null,
|
427
|
-
"width": null
|
428
|
-
}
|
429
|
-
},
|
430
|
-
"69f13969e1e34139aef8c39f40524d64": {
|
431
|
-
"model_module": "@jupyter-widgets/base",
|
432
|
-
"model_module_version": "1.2.0",
|
433
|
-
"model_name": "LayoutModel",
|
434
|
-
"state": {
|
435
|
-
"_model_module": "@jupyter-widgets/base",
|
436
|
-
"_model_module_version": "1.2.0",
|
437
|
-
"_model_name": "LayoutModel",
|
438
|
-
"_view_count": null,
|
439
|
-
"_view_module": "@jupyter-widgets/base",
|
440
|
-
"_view_module_version": "1.2.0",
|
441
|
-
"_view_name": "LayoutView",
|
442
|
-
"align_content": null,
|
443
|
-
"align_items": null,
|
444
|
-
"align_self": null,
|
445
|
-
"border": null,
|
446
|
-
"bottom": null,
|
447
|
-
"display": null,
|
448
|
-
"flex": null,
|
449
|
-
"flex_flow": null,
|
450
|
-
"grid_area": null,
|
451
|
-
"grid_auto_columns": null,
|
452
|
-
"grid_auto_flow": null,
|
453
|
-
"grid_auto_rows": null,
|
454
|
-
"grid_column": null,
|
455
|
-
"grid_gap": null,
|
456
|
-
"grid_row": null,
|
457
|
-
"grid_template_areas": null,
|
458
|
-
"grid_template_columns": null,
|
459
|
-
"grid_template_rows": null,
|
460
|
-
"height": null,
|
461
|
-
"justify_content": null,
|
462
|
-
"justify_items": null,
|
463
|
-
"left": null,
|
464
|
-
"margin": null,
|
465
|
-
"max_height": null,
|
466
|
-
"max_width": null,
|
467
|
-
"min_height": null,
|
468
|
-
"min_width": null,
|
469
|
-
"object_fit": null,
|
470
|
-
"object_position": null,
|
471
|
-
"order": null,
|
472
|
-
"overflow": null,
|
473
|
-
"overflow_x": null,
|
474
|
-
"overflow_y": null,
|
475
|
-
"padding": null,
|
476
|
-
"right": null,
|
477
|
-
"top": null,
|
478
|
-
"visibility": null,
|
479
|
-
"width": null
|
480
|
-
}
|
481
|
-
},
|
482
|
-
"79fceb113bc045dd81cbd0861750aa80": {
|
483
|
-
"model_module": "@jupyter-widgets/controls",
|
484
|
-
"model_module_version": "1.5.0",
|
485
|
-
"model_name": "DescriptionStyleModel",
|
486
|
-
"state": {
|
487
|
-
"_model_module": "@jupyter-widgets/controls",
|
488
|
-
"_model_module_version": "1.5.0",
|
489
|
-
"_model_name": "DescriptionStyleModel",
|
490
|
-
"_view_count": null,
|
491
|
-
"_view_module": "@jupyter-widgets/base",
|
492
|
-
"_view_module_version": "1.2.0",
|
493
|
-
"_view_name": "StyleView",
|
494
|
-
"description_width": ""
|
495
|
-
}
|
496
|
-
},
|
497
|
-
"9e7e9389e5ff4e2cad706bda44010e1a": {
|
498
|
-
"model_module": "@jupyter-widgets/controls",
|
499
|
-
"model_module_version": "1.5.0",
|
500
|
-
"model_name": "ProgressStyleModel",
|
501
|
-
"state": {
|
502
|
-
"_model_module": "@jupyter-widgets/controls",
|
503
|
-
"_model_module_version": "1.5.0",
|
504
|
-
"_model_name": "ProgressStyleModel",
|
505
|
-
"_view_count": null,
|
506
|
-
"_view_module": "@jupyter-widgets/base",
|
507
|
-
"_view_module_version": "1.2.0",
|
508
|
-
"_view_name": "StyleView",
|
509
|
-
"bar_color": null,
|
510
|
-
"description_width": ""
|
511
|
-
}
|
512
|
-
},
|
513
|
-
"a332c8bbfb0b4fb18133490edd5000cb": {
|
514
|
-
"model_module": "@jupyter-widgets/controls",
|
515
|
-
"model_module_version": "1.5.0",
|
516
|
-
"model_name": "HTMLModel",
|
517
|
-
"state": {
|
518
|
-
"_dom_classes": [],
|
519
|
-
"_model_module": "@jupyter-widgets/controls",
|
520
|
-
"_model_module_version": "1.5.0",
|
521
|
-
"_model_name": "HTMLModel",
|
522
|
-
"_view_count": null,
|
523
|
-
"_view_module": "@jupyter-widgets/controls",
|
524
|
-
"_view_module_version": "1.5.0",
|
525
|
-
"_view_name": "HTMLView",
|
526
|
-
"description": "",
|
527
|
-
"description_tooltip": null,
|
528
|
-
"layout": "IPY_MODEL_da56cd3d10b741d5a0b383934153357b",
|
529
|
-
"placeholder": "",
|
530
|
-
"style": "IPY_MODEL_4af04f4f3e24470f93f593f71717ccc1",
|
531
|
-
"value": "100%"
|
532
|
-
}
|
533
|
-
},
|
534
|
-
"af45ee093e934a629a993fba7fe2c10f": {
|
535
|
-
"model_module": "@jupyter-widgets/controls",
|
536
|
-
"model_module_version": "1.5.0",
|
537
|
-
"model_name": "HBoxModel",
|
538
|
-
"state": {
|
539
|
-
"_dom_classes": [],
|
540
|
-
"_model_module": "@jupyter-widgets/controls",
|
541
|
-
"_model_module_version": "1.5.0",
|
542
|
-
"_model_name": "HBoxModel",
|
543
|
-
"_view_count": null,
|
544
|
-
"_view_module": "@jupyter-widgets/controls",
|
545
|
-
"_view_module_version": "1.5.0",
|
546
|
-
"_view_name": "HBoxView",
|
547
|
-
"box_style": "",
|
548
|
-
"children": [
|
549
|
-
"IPY_MODEL_a332c8bbfb0b4fb18133490edd5000cb",
|
550
|
-
"IPY_MODEL_f626defc1d4544b3a8a67c2c792d8c94",
|
551
|
-
"IPY_MODEL_465d9a8a9edd4fccb5f7f88d32b7af3f"
|
552
|
-
],
|
553
|
-
"layout": "IPY_MODEL_08e685b6dec343808ab7a34a444f049e"
|
554
|
-
}
|
555
|
-
},
|
556
|
-
"da56cd3d10b741d5a0b383934153357b": {
|
557
|
-
"model_module": "@jupyter-widgets/base",
|
558
|
-
"model_module_version": "1.2.0",
|
559
|
-
"model_name": "LayoutModel",
|
560
|
-
"state": {
|
561
|
-
"_model_module": "@jupyter-widgets/base",
|
562
|
-
"_model_module_version": "1.2.0",
|
563
|
-
"_model_name": "LayoutModel",
|
564
|
-
"_view_count": null,
|
565
|
-
"_view_module": "@jupyter-widgets/base",
|
566
|
-
"_view_module_version": "1.2.0",
|
567
|
-
"_view_name": "LayoutView",
|
568
|
-
"align_content": null,
|
569
|
-
"align_items": null,
|
570
|
-
"align_self": null,
|
571
|
-
"border": null,
|
572
|
-
"bottom": null,
|
573
|
-
"display": null,
|
574
|
-
"flex": null,
|
575
|
-
"flex_flow": null,
|
576
|
-
"grid_area": null,
|
577
|
-
"grid_auto_columns": null,
|
578
|
-
"grid_auto_flow": null,
|
579
|
-
"grid_auto_rows": null,
|
580
|
-
"grid_column": null,
|
581
|
-
"grid_gap": null,
|
582
|
-
"grid_row": null,
|
583
|
-
"grid_template_areas": null,
|
584
|
-
"grid_template_columns": null,
|
585
|
-
"grid_template_rows": null,
|
586
|
-
"height": null,
|
587
|
-
"justify_content": null,
|
588
|
-
"justify_items": null,
|
589
|
-
"left": null,
|
590
|
-
"margin": null,
|
591
|
-
"max_height": null,
|
592
|
-
"max_width": null,
|
593
|
-
"min_height": null,
|
594
|
-
"min_width": null,
|
595
|
-
"object_fit": null,
|
596
|
-
"object_position": null,
|
597
|
-
"order": null,
|
598
|
-
"overflow": null,
|
599
|
-
"overflow_x": null,
|
600
|
-
"overflow_y": null,
|
601
|
-
"padding": null,
|
602
|
-
"right": null,
|
603
|
-
"top": null,
|
604
|
-
"visibility": null,
|
605
|
-
"width": null
|
606
|
-
}
|
607
|
-
},
|
608
|
-
"f626defc1d4544b3a8a67c2c792d8c94": {
|
609
|
-
"model_module": "@jupyter-widgets/controls",
|
610
|
-
"model_module_version": "1.5.0",
|
611
|
-
"model_name": "FloatProgressModel",
|
612
|
-
"state": {
|
613
|
-
"_dom_classes": [],
|
614
|
-
"_model_module": "@jupyter-widgets/controls",
|
615
|
-
"_model_module_version": "1.5.0",
|
616
|
-
"_model_name": "FloatProgressModel",
|
617
|
-
"_view_count": null,
|
618
|
-
"_view_module": "@jupyter-widgets/controls",
|
619
|
-
"_view_module_version": "1.5.0",
|
620
|
-
"_view_name": "ProgressView",
|
621
|
-
"bar_style": "success",
|
622
|
-
"description": "",
|
623
|
-
"description_tooltip": null,
|
624
|
-
"layout": "IPY_MODEL_69f13969e1e34139aef8c39f40524d64",
|
625
|
-
"max": 1000,
|
626
|
-
"min": 0,
|
627
|
-
"orientation": "horizontal",
|
628
|
-
"style": "IPY_MODEL_9e7e9389e5ff4e2cad706bda44010e1a",
|
629
|
-
"value": 1000
|
630
|
-
}
|
631
|
-
}
|
632
|
-
}
|
633
|
-
}
|
634
|
-
},
|
635
|
-
"nbformat": 4,
|
636
|
-
"nbformat_minor": 4
|
637
|
-
}
|