noshot 6.0.0__py3-none-any.whl → 7.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +691 -0
  2. noshot/data/ML TS XAI/ML/Tamilan Code/1. EDA-PCA (Balance Scale Dataset).ipynb +147 -0
  3. noshot/data/ML TS XAI/ML/Tamilan Code/1. EDA-PCA (Rice Dataset).ipynb +181 -0
  4. noshot/data/ML TS XAI/ML/Tamilan Code/10. HMM Veterbi.ipynb +152 -0
  5. noshot/data/ML TS XAI/ML/Tamilan Code/2. KNN (Balance Scale Dataset).ipynb +117 -0
  6. noshot/data/ML TS XAI/ML/Tamilan Code/2. KNN (Iris Dataset).ipynb +156 -0
  7. noshot/data/ML TS XAI/ML/Tamilan Code/2. KNN (Sobar-72 Dataset).ipynb +215 -0
  8. noshot/data/ML TS XAI/ML/Tamilan Code/3. LDA (Balance Scale Dataset).ipynb +78 -0
  9. noshot/data/ML TS XAI/ML/Tamilan Code/3. LDA (NPHA Doctor Visits Dataset).ipynb +114 -0
  10. noshot/data/ML TS XAI/ML/Tamilan Code/4. Linear Regression (Machine Dataset).ipynb +115 -0
  11. noshot/data/ML TS XAI/ML/Tamilan Code/4. Linear Regression (Real Estate Dataset).ipynb +146 -0
  12. noshot/data/ML TS XAI/ML/Tamilan Code/5. Logistic Regression (Magic04 Dataset).ipynb +130 -0
  13. noshot/data/ML TS XAI/ML/Tamilan Code/5. Logistic Regression (Wine Dataset).ipynb +112 -0
  14. noshot/data/ML TS XAI/ML/Tamilan Code/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +118 -0
  15. noshot/data/ML TS XAI/ML/Tamilan Code/6. Naive Bayes Classifier (Wine Dataset).ipynb +89 -0
  16. noshot/data/ML TS XAI/ML/Tamilan Code/7. SVM (Rice Dataset).ipynb +120 -0
  17. noshot/data/ML TS XAI/ML/Tamilan Code/8. FeedForward NN (Sobar72 Dataset).ipynb +262 -0
  18. noshot/data/ML TS XAI/ML/Tamilan Code/9. CNN (Cifar10 Dataset).ipynb +156 -0
  19. noshot/data/ML TS XAI/ML/Whitefang Code/1. PCA.ipynb +162 -0
  20. noshot/data/ML TS XAI/ML/Whitefang Code/10. CNN.ipynb +100 -0
  21. noshot/data/ML TS XAI/ML/Whitefang Code/11. HMM.ipynb +336 -0
  22. noshot/data/ML TS XAI/ML/Whitefang Code/2. KNN.ipynb +149 -0
  23. noshot/data/ML TS XAI/ML/Whitefang Code/3. LDA.ipynb +132 -0
  24. noshot/data/ML TS XAI/ML/Whitefang Code/4. Linear Regression.ipynb +86 -0
  25. noshot/data/ML TS XAI/ML/Whitefang Code/5. Logistic Regression.ipynb +115 -0
  26. noshot/data/ML TS XAI/ML/Whitefang Code/6. Naive Bayes (Titanic).ipynb +196 -0
  27. noshot/data/ML TS XAI/ML/Whitefang Code/6. Naive Bayes (Wine).ipynb +98 -0
  28. noshot/data/ML TS XAI/ML/Whitefang Code/7. SVM Linear.ipynb +109 -0
  29. noshot/data/ML TS XAI/ML/Whitefang Code/8. SVM Non-Linear.ipynb +195 -0
  30. noshot/data/ML TS XAI/ML/Whitefang Code/9. FNN With Regularization.ipynb +189 -0
  31. noshot/data/ML TS XAI/ML/Whitefang Code/9. FNN Without Regularization.ipynb +197 -0
  32. noshot/data/ML TS XAI/ML/Whitefang Code/All in One Lab CIA 1 Q.ipynb +1087 -0
  33. {noshot-6.0.0.dist-info → noshot-7.0.0.dist-info}/METADATA +1 -1
  34. noshot-7.0.0.dist-info/RECORD +41 -0
  35. {noshot-6.0.0.dist-info → noshot-7.0.0.dist-info}/WHEEL +1 -1
  36. noshot/data/ML TS XAI/XAI/Q1.ipynb +0 -377
  37. noshot/data/ML TS XAI/XAI/Q2.ipynb +0 -362
  38. noshot/data/ML TS XAI/XAI/Q3.ipynb +0 -637
  39. noshot/data/ML TS XAI/XAI/Q4.ipynb +0 -206
  40. noshot/data/ML TS XAI/XAI/Q5.ipynb +0 -1018
  41. noshot-6.0.0.dist-info/RECORD +0 -14
  42. {noshot-6.0.0.dist-info → noshot-7.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  43. {noshot-6.0.0.dist-info → noshot-7.0.0.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: noshot
3
- Version: 6.0.0
3
+ Version: 7.0.0
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -0,0 +1,41 @@
1
+ noshot/__init__.py,sha256=000R40tii8lDFU8C1fBaD3SOnxD0PWRNWZU-km49YrU,21
2
+ noshot/main.py,sha256=zXegIqjJPARlPnQMS-B2dAENcvyaZkNwmue63Gm8lHU,663
3
+ noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb,sha256=dQ3HgLix6HLqPltFiPrElmEdYAsvR6flDpHEIjcngp4,24774
4
+ noshot/data/ML TS XAI/ML/Tamilan Code/1. EDA-PCA (Balance Scale Dataset).ipynb,sha256=1QYmUb1QZ4FtmdwoWhTbF9divKNMOxS8AMOy56At0xg,3625
5
+ noshot/data/ML TS XAI/ML/Tamilan Code/1. EDA-PCA (Rice Dataset).ipynb,sha256=1rp60fJyQl0bxzFWeJb6XR8VRtlQeonv9Yw5_9pvIH8,4133
6
+ noshot/data/ML TS XAI/ML/Tamilan Code/10. HMM Veterbi.ipynb,sha256=0ESvYG9FT7wgcL2JUzMH2ChpSzevz2eez0X53a9wK20,4986
7
+ noshot/data/ML TS XAI/ML/Tamilan Code/2. KNN (Balance Scale Dataset).ipynb,sha256=tbkkRm6xHnmM-K8cRpnK8LH1pUmQl30bdyo0dFSNFcw,2988
8
+ noshot/data/ML TS XAI/ML/Tamilan Code/2. KNN (Iris Dataset).ipynb,sha256=9vxuGgpq2poMGb_AOJY_rpvUCzHwd-iCVYSXxseYVRs,4287
9
+ noshot/data/ML TS XAI/ML/Tamilan Code/2. KNN (Sobar-72 Dataset).ipynb,sha256=oEHLzQlc0aD1HiardgHPbTL2F-uXcm2_htA_dSmM68M,5840
10
+ noshot/data/ML TS XAI/ML/Tamilan Code/3. LDA (Balance Scale Dataset).ipynb,sha256=Z3zwZQKJmvCEgzTWN1OqgiOAF9Lw5oLIY1A63SRJ5tg,2101
11
+ noshot/data/ML TS XAI/ML/Tamilan Code/3. LDA (NPHA Doctor Visits Dataset).ipynb,sha256=N_IFGBAckF8vJI0lPPbZ1soG50B1_IVyACCyU7jvo3U,2651
12
+ noshot/data/ML TS XAI/ML/Tamilan Code/4. Linear Regression (Machine Dataset).ipynb,sha256=PxFEgyFi6n5nURhtjeT__OP5T-UsggOI9RfBKfpDNBo,3081
13
+ noshot/data/ML TS XAI/ML/Tamilan Code/4. Linear Regression (Real Estate Dataset).ipynb,sha256=avtEqkS38VccYJrQa91kjpmYG43dsDYiMcYtp70SbpA,3895
14
+ noshot/data/ML TS XAI/ML/Tamilan Code/5. Logistic Regression (Magic04 Dataset).ipynb,sha256=sSujtrR8C9GGjpIR4v6YN6gTF1cYMIxz5Ufnv_Fp5-I,3376
15
+ noshot/data/ML TS XAI/ML/Tamilan Code/5. Logistic Regression (Wine Dataset).ipynb,sha256=YphX35eCBBWu5sCSLS6bw__Em4gbwAzOW49z_Zv-tRs,2668
16
+ noshot/data/ML TS XAI/ML/Tamilan Code/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb,sha256=gHvmS1w__3JxhdsxjcSstgrCfoBWfxp8e738O1rVlew,3077
17
+ noshot/data/ML TS XAI/ML/Tamilan Code/6. Naive Bayes Classifier (Wine Dataset).ipynb,sha256=Ile_WuRAt8Is1HbKdDXu-ogHvQRNBGyxpd8OWauEEek,2058
18
+ noshot/data/ML TS XAI/ML/Tamilan Code/7. SVM (Rice Dataset).ipynb,sha256=zJ4GGRSwNY73DQCEeAP8ladl6H_WB54B1C_nSyKb9q8,3762
19
+ noshot/data/ML TS XAI/ML/Tamilan Code/8. FeedForward NN (Sobar72 Dataset).ipynb,sha256=JaXAnYDa1AViE2WErFX8QzExbNyGvDYTsf3Vdlie8rs,7122
20
+ noshot/data/ML TS XAI/ML/Tamilan Code/9. CNN (Cifar10 Dataset).ipynb,sha256=Jt_x0JTXNM1KqbYQ8afLtj0qIHysN63UUzFnmZfCE3c,3996
21
+ noshot/data/ML TS XAI/ML/Whitefang Code/1. PCA.ipynb,sha256=QiJKjyYDWetwngiOwTi4fzuDIorkNLilAFV47V56kO4,3907
22
+ noshot/data/ML TS XAI/ML/Whitefang Code/10. CNN.ipynb,sha256=zraQfH-LW-CYMMawfVX--jaejlcTB2SE92wscb_eb50,3329
23
+ noshot/data/ML TS XAI/ML/Whitefang Code/11. HMM.ipynb,sha256=RvE_6vM5OWlFKVvGG9-K9sQfz9AtC_fRP5lgRgQrndo,11203
24
+ noshot/data/ML TS XAI/ML/Whitefang Code/2. KNN.ipynb,sha256=CP1tuMZoL6MyMIZXn7PL_Epof_0l5EWhKz6ySg3u_W4,4049
25
+ noshot/data/ML TS XAI/ML/Whitefang Code/3. LDA.ipynb,sha256=-VyjQ_i6r-1KaGagT3Aoq8UQ_1xYxcDPhmORxuu5eBg,3183
26
+ noshot/data/ML TS XAI/ML/Whitefang Code/4. Linear Regression.ipynb,sha256=e6qdlsdkQn-2D8s55C5ekZrd8oClxIglwsJoyW624GQ,2630
27
+ noshot/data/ML TS XAI/ML/Whitefang Code/5. Logistic Regression.ipynb,sha256=yC-rMnCgSjKyY7iVeuoIVlXq6ge8xYLKUijL2gAMuMo,3074
28
+ noshot/data/ML TS XAI/ML/Whitefang Code/6. Naive Bayes (Titanic).ipynb,sha256=EItNyvs2EHMY42SBEHlKxJ8_y6Oi4qlJOjsEMcOGCWg,4572
29
+ noshot/data/ML TS XAI/ML/Whitefang Code/6. Naive Bayes (Wine).ipynb,sha256=iW3yRzgGRgkhG-VkIGNU5LJuk-ef4ZlxmPx4Vl_PCSQ,2278
30
+ noshot/data/ML TS XAI/ML/Whitefang Code/7. SVM Linear.ipynb,sha256=ZUd1r_W94BdAOMhpXfL6gCylrAgU7E2NOI3xkW4vnHM,3526
31
+ noshot/data/ML TS XAI/ML/Whitefang Code/8. SVM Non-Linear.ipynb,sha256=E4psLvzD8XzKGTFyd2759CRjhUa-7WO8Ow577nDLIWo,6351
32
+ noshot/data/ML TS XAI/ML/Whitefang Code/9. FNN With Regularization.ipynb,sha256=SKdyms9nCdr3e0O3Os6Om3kFz9ebahv0OueqhJ4Psc4,6980
33
+ noshot/data/ML TS XAI/ML/Whitefang Code/9. FNN Without Regularization.ipynb,sha256=ZsdOcoPzaXM8bQV2ct5uOjRj6wF9Km0cc9iR1zRdXXQ,7520
34
+ noshot/data/ML TS XAI/ML/Whitefang Code/All in One Lab CIA 1 Q.ipynb,sha256=wJLu6e0vgrXxH_J1pVM8wB6Wg-o3lPcuzZ45hId1g2o,27364
35
+ noshot/utils/__init__.py,sha256=QVrN1ZpzPXxZqDOqot5-t_ulFjZXVx7Cvr-Is9AK0po,110
36
+ noshot/utils/shell_utils.py,sha256=-XfgYlNQlULa_rRJ3vsfTns4m_jiueGEj396J_y0Gus,2611
37
+ noshot-7.0.0.dist-info/licenses/LICENSE.txt,sha256=fgCruaVm5cUjFGOeEoGIimT6nnUunBqcNZHpGzK8TSw,1086
38
+ noshot-7.0.0.dist-info/METADATA,sha256=Z32kxd-l1ofmEoeEHljTLGJlzZrGDU5E1TE-C4nl8ac,2573
39
+ noshot-7.0.0.dist-info/WHEEL,sha256=ck4Vq1_RXyvS4Jt6SI0Vz6fyVs4GWg7AINwpsaGEgPE,91
40
+ noshot-7.0.0.dist-info/top_level.txt,sha256=UL-c0HffdRwohz-y9icY_rnY48pQDdxGcBsgyCKh2Q8,7
41
+ noshot-7.0.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (79.0.1)
2
+ Generator: setuptools (80.0.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,377 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "id": "b4680af5-77e8-4743-8acb-b60446e0a4d4",
6
- "metadata": {},
7
- "source": [
8
- "<h1>Download the Credit Card Fraud Detection dataset. Use the SMOTE (Synthetic\n",
9
- "Minority Oversampling Technique) algorithm to balance the dataset. Then, train\n",
10
- "and evaluate a Logistic Regression model on the data before and after applying\n",
11
- "SMOTE. Compare the models performance in both cases.</h1>"
12
- ]
13
- },
14
- {
15
- "cell_type": "markdown",
16
- "id": "ac8b845d-dc46-426d-a390-a7361b68685c",
17
- "metadata": {},
18
- "source": [
19
- "<h1>dataset link</h1>"
20
- ]
21
- },
22
- {
23
- "cell_type": "markdown",
24
- "id": "16013e87-7144-4430-8f08-306d0a4ba365",
25
- "metadata": {},
26
- "source": [
27
- "<h1>https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud</h1>"
28
- ]
29
- },
30
- {
31
- "cell_type": "code",
32
- "execution_count": null,
33
- "id": "25445452",
34
- "metadata": {},
35
- "outputs": [],
36
- "source": [
37
- "#!pip install pandas matplotlib seaborn scikit-learn imbalanced-learn --quiet\n"
38
- ]
39
- },
40
- {
41
- "cell_type": "code",
42
- "execution_count": null,
43
- "id": "e7899e39",
44
- "metadata": {},
45
- "outputs": [],
46
- "source": [
47
- "#pip install -U scikit-learn imbalanced-learn\n"
48
- ]
49
- },
50
- {
51
- "cell_type": "code",
52
- "execution_count": null,
53
- "id": "e1255b28-ef76-4019-80c6-8f8d57b142d0",
54
- "metadata": {},
55
- "outputs": [],
56
- "source": [
57
- "import pandas as pd\n",
58
- "import matplotlib.pyplot as plt\n",
59
- "import seaborn as sns\n",
60
- "from sklearn.model_selection import train_test_split\n",
61
- "from sklearn.linear_model import LogisticRegression\n",
62
- "from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc\n",
63
- "from imblearn.over_sampling import SMOTE\n",
64
- "import warnings\n",
65
- "warnings.filterwarnings('ignore')\n",
66
- "# Load dataset\n",
67
- "df = pd.read_csv(\"creditcard.csv\")\n",
68
- "\n",
69
- "# Features and target\n",
70
- "X = df.drop(columns=[\"Class\"])\n",
71
- "y = df[\"Class\"]\n",
72
- "\n",
73
- "# Train-test split\n",
74
- "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)\n",
75
- "\n",
76
- "# Class distribution before SMOTE\n",
77
- "plt.figure(figsize=(5, 4))\n",
78
- "sns.countplot(x=y)\n",
79
- "plt.title(\"Class Distribution Before SMOTE\")\n",
80
- "plt.xlabel(\"Class\")\n",
81
- "plt.ylabel(\"Count\")\n",
82
- "plt.show()\n",
83
- "\n"
84
- ]
85
- },
86
- {
87
- "cell_type": "code",
88
- "execution_count": null,
89
- "id": "83bd4937",
90
- "metadata": {},
91
- "outputs": [],
92
- "source": [
93
- "df['Class'].value_counts()"
94
- ]
95
- },
96
- {
97
- "cell_type": "code",
98
- "execution_count": null,
99
- "id": "03293d81-832c-40ce-bfa8-9b83183aeaa0",
100
- "metadata": {},
101
- "outputs": [],
102
- "source": [
103
- "# Logistic Regression without SMOTE\n",
104
- "model = LogisticRegression(max_iter=1000)\n",
105
- "model.fit(X_train, y_train)\n",
106
- "y_pred = model.predict(X_test)\n"
107
- ]
108
- },
109
- {
110
- "cell_type": "code",
111
- "execution_count": null,
112
- "id": "8d13d00e-4b51-4984-aa8a-bed9bdb28d9a",
113
- "metadata": {},
114
- "outputs": [],
115
- "source": [
116
- "plt.title(\"Confusion Matrix Before SMOTE\")\n",
117
- "sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt=\"d\")\n",
118
- "plt.show()"
119
- ]
120
- },
121
- {
122
- "cell_type": "code",
123
- "execution_count": null,
124
- "id": "3bdc518e-3080-4866-a26f-b20b7411f3c3",
125
- "metadata": {},
126
- "outputs": [],
127
- "source": [
128
- "# Apply SMOTE\n",
129
- "smote = SMOTE(random_state=42)\n",
130
- "X_train_smote, y_train_smote = smote.fit_resample(X_train, y_train)\n",
131
- "\n",
132
- "# Class distribution after SMOTE\n",
133
- "plt.figure(figsize=(5, 4))\n",
134
- "sns.countplot(x=y_train_smote)\n",
135
- "plt.title(\"Class Distribution After SMOTE\")\n",
136
- "plt.xlabel(\"Class\")\n",
137
- "plt.ylabel(\"Count\")\n",
138
- "plt.show()\n",
139
- "\n",
140
- "# Logistic Regression with SMOTE\n",
141
- "model_smote = LogisticRegression(max_iter=1000)\n",
142
- "model_smote.fit(X_train_smote, y_train_smote)\n",
143
- "y_pred_smote = model_smote.predict(X_test)\n"
144
- ]
145
- },
146
- {
147
- "cell_type": "code",
148
- "execution_count": null,
149
- "id": "43dd7ca8-d47f-4695-b67a-5759f08245ef",
150
- "metadata": {},
151
- "outputs": [],
152
- "source": [
153
- "plt.title(\"Confusion Matrix After SMOTE\")\n",
154
- "sns.heatmap(confusion_matrix(y_test, y_pred_smote), annot=True, fmt=\"d\")\n",
155
- "plt.show()"
156
- ]
157
- },
158
- {
159
- "cell_type": "code",
160
- "execution_count": null,
161
- "id": "b362b271-4469-4da2-a692-9961234f0024",
162
- "metadata": {},
163
- "outputs": [],
164
- "source": [
165
- "\n",
166
- "fpr1, tpr1, _ = roc_curve(y_test, model.predict_proba(X_test)[:, 1])\n",
167
- "fpr2, tpr2, _ = roc_curve(y_test, model_smote.predict_proba(X_test)[:, 1])\n",
168
- "plt.figure(figsize=(6, 4))\n",
169
- "plt.plot(fpr1, tpr1, label=f\"Before SMOTE (AUC = {auc(fpr1, tpr1):.2f})\")\n",
170
- "plt.plot(fpr2, tpr2, label=f\"After SMOTE (AUC = {auc(fpr2, tpr2):.2f})\")\n",
171
- "plt.plot([0, 1], [0, 1], 'k--')\n",
172
- "plt.xlabel(\"False Positive Rate\")\n",
173
- "plt.ylabel(\"True Positive Rate\")\n",
174
- "plt.title(\"ROC Curve Comparison\")\n",
175
- "plt.legend()\n",
176
- "plt.show()\n",
177
- "\n",
178
- "# Classification reports\n",
179
- "print(\"Before SMOTE:\\n\", classification_report(y_test, y_pred))\n",
180
- "print(\"After SMOTE:\\n\", classification_report(y_test, y_pred_smote))\n"
181
- ]
182
- },
183
- {
184
- "cell_type": "markdown",
185
- "id": "00d7baa5-b1a1-4bb5-b8c3-2552f5572af1",
186
- "metadata": {},
187
- "source": [
188
- "<h1>Load minist data set using the following code:\n",
189
- "from tensorflow.keras.datasets import mnist\n",
190
- "# Loads the MNIST dataset\n",
191
- "(x_train, y_train), (x_test, y_test) = mnist.load_data()\n",
192
- "Perform minimum of five EDA on the above mentioned data set.</h1>"
193
- ]
194
- },
195
- {
196
- "cell_type": "code",
197
- "execution_count": null,
198
- "id": "6860aef9-f583-44d1-a538-b8f8adc3026f",
199
- "metadata": {},
200
- "outputs": [],
201
- "source": [
202
- "import numpy as np\n",
203
- "import matplotlib.pyplot as plt\n",
204
- "import seaborn as sns\n",
205
- "from tensorflow.keras.datasets import mnist\n",
206
- "from tensorflow.image import flip_left_right, rot90"
207
- ]
208
- },
209
- {
210
- "cell_type": "code",
211
- "execution_count": null,
212
- "id": "17ce9851-25fb-40e7-ac3b-27c3f386fe49",
213
- "metadata": {},
214
- "outputs": [],
215
- "source": [
216
- "(x_train, y_train), (x_test, y_test) = mnist.load_data()"
217
- ]
218
- },
219
- {
220
- "cell_type": "code",
221
- "execution_count": null,
222
- "id": "a48e2cfb-5f35-4350-b62b-3e63a446c646",
223
- "metadata": {},
224
- "outputs": [],
225
- "source": [
226
- "# 1. Function to plot images from the dataset\n",
227
- "def plot_sample_images(images, labels, count=10):\n",
228
- " plt.figure(figsize=(15, 2))\n",
229
- " for i in range(count):\n",
230
- " plt.subplot(1, count, i+1)\n",
231
- " plt.imshow(images[i], cmap='gray')\n",
232
- " plt.title(f\"Label: {labels[i]}\")\n",
233
- " plt.axis('off')\n",
234
- " plt.show()\n",
235
- "\n",
236
- "plot_sample_images(x_train, y_train)"
237
- ]
238
- },
239
- {
240
- "cell_type": "code",
241
- "execution_count": null,
242
- "id": "0f97abbe-26ce-421f-9dc4-e3c86a6deb45",
243
- "metadata": {},
244
- "outputs": [],
245
- "source": [
246
- "# 2.Visualize class distribution\n",
247
- "sns.countplot(x=y_train)\n",
248
- "plt.title(\"Class Distribution\")\n",
249
- "plt.xlabel(\"Digit\")\n",
250
- "plt.ylabel(\"Count\")\n",
251
- "plt.show()\n"
252
- ]
253
- },
254
- {
255
- "cell_type": "code",
256
- "execution_count": null,
257
- "id": "686a47bc-374b-4a92-a3b3-53455700643d",
258
- "metadata": {},
259
- "outputs": [],
260
- "source": [
261
- "# 3.Plot the distribution of image sizes\n",
262
- "sizes = [(img.shape[0], img.shape[1]) for img in x_train]\n",
263
- "sns.histplot(sizes)\n",
264
- "plt.title(\"Image Size Distribution\")\n",
265
- "plt.xlabel(\"Size\")\n",
266
- "plt.ylabel(\"Frequency\")\n",
267
- "plt.show()"
268
- ]
269
- },
270
- {
271
- "cell_type": "code",
272
- "execution_count": null,
273
- "id": "afe4ceee-437a-40ca-ba7b-79dab6f8e668",
274
- "metadata": {},
275
- "outputs": [],
276
- "source": [
277
- "# 4.Plot the distribution of pixel values (RGB channels) for a sample image\n",
278
- "sample_img = x_train[0]\n",
279
- "plt.hist(sample_img.ravel(), bins=50, color='blue', alpha=0.7)\n",
280
- "plt.title(\"Pixel Value Distribution\")\n",
281
- "plt.xlabel(\"Pixel Intensity\")\n",
282
- "plt.ylabel(\"Count\")\n",
283
- "plt.show()\n"
284
- ]
285
- },
286
- {
287
- "cell_type": "code",
288
- "execution_count": null,
289
- "id": "492d7e9f-a98e-43f0-9a08-c2bed7fec88f",
290
- "metadata": {},
291
- "outputs": [],
292
- "source": [
293
- "#5. Function to apply basic augmentation techniques\n",
294
- "def augment_image(img):\n",
295
- " flipped = flip_left_right(img[..., np.newaxis])\n",
296
- " rotated = rot90(img[..., np.newaxis])\n",
297
- " return flipped.numpy().squeeze(), rotated.numpy().squeeze()\n",
298
- "\n",
299
- "flip, rot = augment_image(x_train[0])\n",
300
- "plt.subplot(1, 3, 1)\n",
301
- "plt.imshow(x_train[0], cmap='gray')\n",
302
- "plt.title(\"Original\")\n",
303
- "plt.axis('off')\n",
304
- "plt.subplot(1, 3, 2)\n",
305
- "plt.imshow(flip, cmap='gray')\n",
306
- "plt.title(\"Flipped\")\n",
307
- "plt.axis('off')\n",
308
- "plt.subplot(1, 3, 3)\n",
309
- "plt.imshow(rot, cmap='gray')\n",
310
- "plt.title(\"Rotated\")\n",
311
- "plt.axis('off')\n",
312
- "plt.show()"
313
- ]
314
- },
315
- {
316
- "cell_type": "code",
317
- "execution_count": null,
318
- "id": "cbb73cd8-3006-4962-bb82-da6cb38aed10",
319
- "metadata": {},
320
- "outputs": [],
321
- "source": [
322
- "# 6.Calculate mean and standard deviation of pixel values\n",
323
- "mean = np.mean(x_train)\n",
324
- "std = np.std(x_train)\n",
325
- "print(f\"Mean pixel value: {mean:.2f}, Standard deviation: {std:.2f}\")\n"
326
- ]
327
- },
328
- {
329
- "cell_type": "code",
330
- "execution_count": null,
331
- "id": "881c91f4-5d2b-4538-85d4-9607ee130c85",
332
- "metadata": {},
333
- "outputs": [],
334
- "source": [
335
- "#7. Display one image from each class\n",
336
- "plt.figure(figsize=(12, 4))\n",
337
- "for digit in range(10):\n",
338
- " idx = np.where(y_train == digit)[0][0]\n",
339
- " plt.subplot(2, 5, digit+1)\n",
340
- " plt.imshow(x_train[idx], cmap='gray')\n",
341
- " plt.title(f\"Digit: {digit}\")\n",
342
- " plt.axis('off')\n",
343
- "plt.tight_layout()\n",
344
- "plt.show()\n"
345
- ]
346
- },
347
- {
348
- "cell_type": "code",
349
- "execution_count": null,
350
- "id": "14cfcbec-306a-4996-9cb7-d73d32fb2d54",
351
- "metadata": {},
352
- "outputs": [],
353
- "source": []
354
- }
355
- ],
356
- "metadata": {
357
- "kernelspec": {
358
- "display_name": "Python 3 (ipykernel)",
359
- "language": "python",
360
- "name": "python3"
361
- },
362
- "language_info": {
363
- "codemirror_mode": {
364
- "name": "ipython",
365
- "version": 3
366
- },
367
- "file_extension": ".py",
368
- "mimetype": "text/x-python",
369
- "name": "python",
370
- "nbconvert_exporter": "python",
371
- "pygments_lexer": "ipython3",
372
- "version": "3.12.4"
373
- }
374
- },
375
- "nbformat": 4,
376
- "nbformat_minor": 5
377
- }