noshot 10.0.0__py3-none-any.whl → 12.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (74) hide show
  1. noshot/data/DLE FSD BDA/DLE/1. DNN (Image Classification).ipynb +389 -0
  2. noshot/data/DLE FSD BDA/DLE/2. DNN vs CNN.ipynb +516 -0
  3. noshot/data/DLE FSD BDA/DLE/3. CNN (Object Detecrion).ipynb +259 -0
  4. noshot/data/DLE FSD BDA/DLE/4. FCN (Image Segmentaion).ipynb +274 -0
  5. noshot/main.py +3 -3
  6. {noshot-10.0.0.dist-info → noshot-12.0.0.dist-info}/METADATA +1 -1
  7. noshot-12.0.0.dist-info/RECORD +13 -0
  8. {noshot-10.0.0.dist-info → noshot-12.0.0.dist-info}/WHEEL +1 -1
  9. noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +0 -201
  10. noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +0 -201
  11. noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb +0 -409
  12. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -147
  13. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb +0 -181
  14. noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb +0 -152
  15. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb +0 -117
  16. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb +0 -156
  17. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb +0 -215
  18. noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb +0 -78
  19. noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -114
  20. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb +0 -115
  21. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb +0 -146
  22. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb +0 -130
  23. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb +0 -112
  24. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -118
  25. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -89
  26. noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb +0 -120
  27. noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -262
  28. noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb +0 -156
  29. noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb +0 -162
  30. noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb +0 -100
  31. noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb +0 -336
  32. noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb +0 -149
  33. noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb +0 -132
  34. noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb +0 -86
  35. noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb +0 -115
  36. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb +0 -196
  37. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb +0 -98
  38. noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb +0 -109
  39. noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb +0 -195
  40. noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb +0 -189
  41. noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb +0 -197
  42. noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb +0 -1087
  43. noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +0 -274
  44. noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +0 -170
  45. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +0 -1087
  46. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +0 -178
  47. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +0 -185
  48. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +0 -106
  49. noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +0 -177
  50. noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +0 -195
  51. noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +0 -267
  52. noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +0 -104
  53. noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +0 -109
  54. noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +0 -220
  55. noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +0 -99
  56. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +0 -211
  57. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +0 -99
  58. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +0 -118
  59. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +0 -603
  60. noshot/data/ML TS XAI/ML/ML Lab AllinOne.ipynb +0 -961
  61. noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb +0 -231
  62. noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb +0 -269
  63. noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb +0 -274
  64. noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb +0 -263
  65. noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb +0 -198
  66. noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb +0 -201
  67. noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv +0 -1339
  68. noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data +0 -151
  69. noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv +0 -396
  70. noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv +0 -650
  71. noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -691
  72. noshot-10.0.0.dist-info/RECORD +0 -72
  73. {noshot-10.0.0.dist-info → noshot-12.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  74. {noshot-10.0.0.dist-info → noshot-12.0.0.dist-info}/top_level.txt +0 -0
@@ -1,409 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {
6
- "id": "L1Yh9i9SlaTq"
7
- },
8
- "source": [
9
- "***ML LAB CIA 2***"
10
- ]
11
- },
12
- {
13
- "cell_type": "markdown",
14
- "metadata": {
15
- "id": "oEflBCT-lgmq"
16
- },
17
- "source": [
18
- "**Q1**"
19
- ]
20
- },
21
- {
22
- "cell_type": "code",
23
- "execution_count": null,
24
- "metadata": {
25
- "colab": {
26
- "base_uri": "https://localhost:8080/"
27
- },
28
- "id": "vjDqH0JGlZlk",
29
- "outputId": "b476e41f-2c27-413b-a6f9-a118f9bc0b05"
30
- },
31
- "outputs": [],
32
- "source": [
33
- "import numpy as np\n",
34
- "import pandas as pd\n",
35
- "from sklearn.model_selection import train_test_split\n",
36
- "from sklearn.preprocessing import LabelEncoder, StandardScaler\n",
37
- "from tensorflow.keras.models import Sequential\n",
38
- "from tensorflow.keras.layers import Dense\n",
39
- "from tensorflow.keras.utils import to_categorical\n",
40
- "\n",
41
- "# Load the Iris dataset\n",
42
- "from sklearn.datasets import load_iris\n",
43
- "iris = load_iris()\n",
44
- "X = iris.data # Features (sepal/petal dimensions)\n",
45
- "y = iris.target # Labels (species: 0, 1, 2)\n",
46
- "\n",
47
- "# Preprocess data\n",
48
- "scaler = StandardScaler()\n",
49
- "X = scaler.fit_transform(X)\n",
50
- "y = to_categorical(y) # One-hot encode labels for SoftMax\n",
51
- "\n",
52
- "# Split data into train/test sets\n",
53
- "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
54
- "\n",
55
- "# Function to build and evaluate the model\n",
56
- "def train_model(activation='softmax'):\n",
57
- " model = Sequential([\n",
58
- " Dense(16, activation='relu', input_shape=(4,)), # Hidden layer\n",
59
- " Dense(3, activation=activation) # Output layer (SoftMax or Sigmoid)\n",
60
- " ])\n",
61
- "\n",
62
- " # Compile with categorical crossentropy for SoftMax, binary for Sigmoid\n",
63
- " loss = 'categorical_crossentropy' if activation == 'softmax' else 'binary_crossentropy'\n",
64
- " model.compile(optimizer='adam', loss=loss, metrics=['accuracy'])\n",
65
- "\n",
66
- " # Train\n",
67
- " history = model.fit(X_train, y_train, epochs=50, validation_split=0.2, verbose=0)\n",
68
- "\n",
69
- " # Evaluate\n",
70
- " _, accuracy = model.evaluate(X_test, y_test, verbose=0)\n",
71
- " print(f\"Activation: {activation}, Test Accuracy: {accuracy:.4f}\")\n",
72
- "\n",
73
- "# Compare SoftMax vs. Sigmoid\n",
74
- "train_model(activation='softmax') # Use this for multi-class (correct)\n",
75
- "train_model(activation='sigmoid') # Incorrect for multi-class (for comparison)"
76
- ]
77
- },
78
- {
79
- "cell_type": "markdown",
80
- "metadata": {
81
- "id": "SEFVF5sllivC"
82
- },
83
- "source": [
84
- "**Q2**"
85
- ]
86
- },
87
- {
88
- "cell_type": "code",
89
- "execution_count": null,
90
- "metadata": {
91
- "colab": {
92
- "base_uri": "https://localhost:8080/",
93
- "height": 522
94
- },
95
- "id": "pQrKim1ylkGy",
96
- "outputId": "e2c55935-21c9-402a-aa00-03cbcffec7d3"
97
- },
98
- "outputs": [],
99
- "source": [
100
- "import numpy as np\n",
101
- "from sklearn.model_selection import train_test_split\n",
102
- "from sklearn.preprocessing import StandardScaler\n",
103
- "from tensorflow.keras.models import Sequential\n",
104
- "from tensorflow.keras.layers import Dense, Dropout, Input\n",
105
- "from tensorflow.keras.regularizers import l2\n",
106
- "import matplotlib.pyplot as plt\n",
107
- "\n",
108
- "# Generate synthetic data\n",
109
- "np.random.seed(42)\n",
110
- "X = np.random.rand(1000, 5) # 5 socio-economic features\n",
111
- "y = X.dot(np.random.rand(5)) + np.random.rand(1000) * 0.1 # Grades (0-1 scale)\n",
112
- "\n",
113
- "# Split data\n",
114
- "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
115
- "\n",
116
- "# Standardize\n",
117
- "scaler = StandardScaler()\n",
118
- "X_train = scaler.fit_transform(X_train)\n",
119
- "X_test = scaler.transform(X_test)\n",
120
- "\n",
121
- "# Build model (with optional regularization)\n",
122
- "def build_model(use_regularization=False):\n",
123
- " model = Sequential()\n",
124
- " model.add(Input(shape=(5,))) # Explicit input layer\n",
125
- "\n",
126
- " # Hidden layers with conditional L2/dropout\n",
127
- " reg = l2(0.01) if use_regularization else None\n",
128
- " model.add(Dense(128, activation='relu', kernel_regularizer=reg))\n",
129
- " model.add(Dense(128, activation='relu', kernel_regularizer=reg))\n",
130
- " if use_regularization:\n",
131
- " model.add(Dropout(0.5)) # Only add dropout if regularization is enabled\n",
132
- "\n",
133
- " model.add(Dense(1)) # Output layer (linear for regression)\n",
134
- " model.compile(optimizer='adam', loss='mse', metrics=['mae'])\n",
135
- " return model\n",
136
- "\n",
137
- "# Train without regularization (overfit)\n",
138
- "model_no_reg = build_model(use_regularization=False)\n",
139
- "history_no_reg = model_no_reg.fit(X_train, y_train, epochs=100,\n",
140
- " validation_split=0.2, verbose=0)\n",
141
- "\n",
142
- "# Train with dropout + L2 (regularized)\n",
143
- "model_with_reg = build_model(use_regularization=True)\n",
144
- "history_with_reg = model_with_reg.fit(X_train, y_train, epochs=100,\n",
145
- " validation_split=0.2, verbose=0)\n",
146
- "\n",
147
- "# Plot results\n",
148
- "plt.figure(figsize=(10, 5))\n",
149
- "plt.plot(history_no_reg.history['val_loss'], label='No Regularization', linestyle='--')\n",
150
- "plt.plot(history_with_reg.history['val_loss'], label='With Dropout + L2', linestyle='--')\n",
151
- "plt.xlabel('Epochs')\n",
152
- "plt.ylabel('Validation Loss (MSE)')\n",
153
- "plt.legend()\n",
154
- "plt.title('Overfitting Mitigation with Regularization')\n",
155
- "plt.show()\n",
156
- "\n",
157
- "# Test performance\n",
158
- "print(\"Test MAE (No Regularization):\", model_no_reg.evaluate(X_test, y_test, verbose=0)[1])\n",
159
- "print(\"Test MAE (With Regularization):\", model_with_reg.evaluate(X_test, y_test, verbose=0)[1])"
160
- ]
161
- },
162
- {
163
- "cell_type": "markdown",
164
- "metadata": {
165
- "id": "nd5WFd9TloOS"
166
- },
167
- "source": [
168
- "**Q3**"
169
- ]
170
- },
171
- {
172
- "cell_type": "code",
173
- "execution_count": null,
174
- "metadata": {
175
- "colab": {
176
- "base_uri": "https://localhost:8080/",
177
- "height": 576
178
- },
179
- "id": "vx4k9Z8-lprC",
180
- "outputId": "6de49e13-d025-453c-f84c-f316bea51680"
181
- },
182
- "outputs": [],
183
- "source": [
184
- "import numpy as np\n",
185
- "import pandas as pd\n",
186
- "from sklearn.model_selection import train_test_split\n",
187
- "from sklearn.preprocessing import StandardScaler\n",
188
- "from tensorflow.keras.models import Sequential\n",
189
- "from tensorflow.keras.layers import Dense, Dropout\n",
190
- "from tensorflow.keras.regularizers import l2\n",
191
- "import matplotlib.pyplot as plt\n",
192
- "\n",
193
- "# Generate synthetic insurance claim data\n",
194
- "np.random.seed(42)\n",
195
- "n_samples = 1000\n",
196
- "X = np.random.rand(n_samples, 10) # 10 features (e.g., age, BMI, medical history)\n",
197
- "y = X.dot(np.random.rand(10)) * 10000 + np.random.randn(n_samples) * 500 # Claim amounts ($)\n",
198
- "\n",
199
- "# Split into train/test\n",
200
- "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
201
- "\n",
202
- "# Standardize features\n",
203
- "scaler = StandardScaler()\n",
204
- "X_train = scaler.fit_transform(X_train)\n",
205
- "X_test = scaler.transform(X_test)\n",
206
- "\n",
207
- "# Function to build and train the model\n",
208
- "def train_model(use_regularization=False):\n",
209
- " model = Sequential()\n",
210
- " model.add(Dense(256, activation='relu', input_shape=(X_train.shape[1],)))\n",
211
- " model.add(Dense(256, activation='relu'))\n",
212
- " model.add(Dense(128, activation='relu'))\n",
213
- "\n",
214
- " if use_regularization:\n",
215
- " model.add(Dropout(0.5))\n",
216
- " model.add(Dense(64, activation='relu', kernel_regularizer=l2(0.01)))\n",
217
- " else:\n",
218
- " model.add(Dense(64, activation='relu'))\n",
219
- "\n",
220
- " model.add(Dense(1)) # Output layer for regression\n",
221
- "\n",
222
- " model.compile(optimizer='adam', loss='mse', metrics=['mae'])\n",
223
- "\n",
224
- " history = model.fit(X_train, y_train, epochs=100,\n",
225
- " validation_split=0.2, verbose=0)\n",
226
- " return model, history\n",
227
- "\n",
228
- "# Intentionally overfit (no regularization)\n",
229
- "model_overfit, history_overfit = train_model(use_regularization=False)\n",
230
- "\n",
231
- "# Apply regularization (dropout + L2)\n",
232
- "model_reg, history_reg = train_model(use_regularization=True)\n",
233
- "\n",
234
- "# Plot training vs validation loss\n",
235
- "plt.figure(figsize=(10, 5))\n",
236
- "plt.plot(history_overfit.history['loss'], label='Train (Overfit)')\n",
237
- "plt.plot(history_overfit.history['val_loss'], label='Validation (Overfit)', linestyle='--')\n",
238
- "plt.plot(history_reg.history['val_loss'], label='Validation (Regularized)', linestyle='--')\n",
239
- "plt.xlabel('Epochs')\n",
240
- "plt.ylabel('Loss (MSE)')\n",
241
- "plt.legend()\n",
242
- "plt.title('Overfitting vs. Regularization')\n",
243
- "plt.show()\n",
244
- "\n",
245
- "# Evaluate on test data\n",
246
- "print(\"Test MAE (Overfit Model): ${:,.2f}\".format(model_overfit.evaluate(X_test, y_test, verbose=0)[1]))\n",
247
- "print(\"Test MAE (Regularized Model): ${:,.2f}\".format(model_reg.evaluate(X_test, y_test, verbose=0)[1]))"
248
- ]
249
- },
250
- {
251
- "cell_type": "markdown",
252
- "metadata": {
253
- "id": "yNu_4025lsQZ"
254
- },
255
- "source": [
256
- "**Q4**"
257
- ]
258
- },
259
- {
260
- "cell_type": "code",
261
- "execution_count": null,
262
- "metadata": {
263
- "colab": {
264
- "base_uri": "https://localhost:8080/"
265
- },
266
- "id": "d0uyyJUlltZy",
267
- "outputId": "fa5a6938-fd8e-4873-b45c-974b776b3eaf"
268
- },
269
- "outputs": [],
270
- "source": [
271
- "import numpy as np\n",
272
- "from hmmlearn import hmm\n",
273
- "import matplotlib.pyplot as plt\n",
274
- "\n",
275
- "# Define the hidden states and observations\n",
276
- "states = [\"Cooking\", \"Sleeping\", \"Watching TV\"]\n",
277
- "observations = [\"kitchen\", \"bedroom\", \"living room\"]\n",
278
- "\n",
279
- "# Create simulated sensor data sequences\n",
280
- "# Each sequence is a day's worth of room observations\n",
281
- "room_sequences = [\n",
282
- " ['kitchen', 'bedroom', 'living room', 'kitchen', 'bedroom'],\n",
283
- " ['kitchen', 'living room', 'living room', 'bedroom', 'bedroom'],\n",
284
- " ['living room', 'kitchen', 'bedroom', 'kitchen', 'bedroom'],\n",
285
- " ['bedroom', 'bedroom', 'living room', 'kitchen', 'living room']\n",
286
- "]\n",
287
- "\n",
288
- "# Convert observations to numerical values\n",
289
- "obs_map = {obs: i for i, obs in enumerate(observations)}\n",
290
- "num_sequences = len(room_sequences)\n",
291
- "sequence_lengths = [len(seq) for seq in room_sequences]\n",
292
- "X = np.concatenate([[obs_map[obs] for obs in seq] for seq in room_sequences]).reshape(-1, 1)\n",
293
- "\n",
294
- "# Build and train the HMM\n",
295
- "model = hmm.CategoricalHMM(n_components=len(states), random_state=42)\n",
296
- "model.fit(X, lengths=sequence_lengths)\n",
297
- "\n",
298
- "# Print learned parameters\n",
299
- "print(\"Start Probabilities:\", model.startprob_)\n",
300
- "print(\"\\nTransition Matrix:\")\n",
301
- "print(model.transmat_)\n",
302
- "print(\"\\nEmission Probabilities:\")\n",
303
- "print(model.emissionprob_)\n",
304
- "\n",
305
- "# Predict activities for a new sequence\n",
306
- "new_sequence = ['kitchen', 'living room', 'bedroom', 'kitchen']\n",
307
- "numeric_seq = np.array([obs_map[obs] for obs in new_sequence]).reshape(-1, 1)\n",
308
- "predicted_states = model.predict(numeric_seq)\n",
309
- "\n",
310
- "print(\"\\nPredicted Activities:\")\n",
311
- "for obs, state in zip(new_sequence, predicted_states):\n",
312
- " print(f\"{obs} -> {states[state]}\")"
313
- ]
314
- },
315
- {
316
- "cell_type": "markdown",
317
- "metadata": {
318
- "id": "mbmjRZU6lvOB"
319
- },
320
- "source": [
321
- "**Q5**"
322
- ]
323
- },
324
- {
325
- "cell_type": "code",
326
- "execution_count": null,
327
- "metadata": {
328
- "colab": {
329
- "base_uri": "https://localhost:8080/"
330
- },
331
- "id": "c4WLDsM_lyk6",
332
- "outputId": "5c54c8ac-8e0b-4c81-c5a0-b77cdb01af4f"
333
- },
334
- "outputs": [],
335
- "source": [
336
- "import numpy as np\n",
337
- "from hmmlearn import hmm\n",
338
- "\n",
339
- "# Define states and observations\n",
340
- "states = [\"Genuine\", \"Intruder\"]\n",
341
- "observations = [\"early\", \"mid\", \"late\"] # Login times\n",
342
- "\n",
343
- "# Simulated login sequences (each sequence is a separate user's login pattern)\n",
344
- "sequences = [\n",
345
- " ['early', 'early', 'mid', 'early', 'mid'], # Genuine user 1\n",
346
- " ['late', 'late', 'early', 'late', 'late'], # Intruder 1\n",
347
- " ['early', 'mid', 'early', 'mid', 'early'], # Genuine user 2\n",
348
- " ['mid', 'late', 'late', 'mid', 'late'], # Intruder 2\n",
349
- " ['early', 'early', 'early', 'mid', 'early'], # Genuine user 3\n",
350
- " ['late', 'mid', 'late', 'late', 'mid'] # Intruder 3\n",
351
- "]\n",
352
- "\n",
353
- "# Convert to numerical values and proper format\n",
354
- "obs_map = {obs: i for i, obs in enumerate(observations)}\n",
355
- "X = np.concatenate([[[obs_map[obs]] for obs in seq] for seq in sequences])\n",
356
- "lengths = [len(seq) for seq in sequences] # All lengths are 5 in this case\n",
357
- "\n",
358
- "# Train HMM\n",
359
- "model = hmm.CategoricalHMM(\n",
360
- " n_components=len(states),\n",
361
- " random_state=42 # Increased iterations for better convergence\n",
362
- ")\n",
363
- "model.fit(X, lengths=lengths)\n",
364
- "\n",
365
- "# Print learned parameters\n",
366
- "print(\"Start Probabilities (Genuine vs Intruder):\\n\", model.startprob_)\n",
367
- "print(\"\\nTransition Matrix:\\n\", model.transmat_)\n",
368
- "print(\"\\nEmission Probabilities (Time of Day):\\n\", model.emissionprob_)\n",
369
- "\n",
370
- "# Predict on new sequences\n",
371
- "test_sequences = [\n",
372
- " ['early', 'mid', 'early', 'mid', 'early'], # Likely genuine\n",
373
- " ['late', 'late', 'mid', 'late', 'late'], # Likely intruder\n",
374
- "]\n",
375
- "\n",
376
- "for seq in test_sequences:\n",
377
- " numeric_seq = np.array([[obs_map[obs]] for obs in seq])\n",
378
- " logprob, state_sequence = model.decode(numeric_seq)\n",
379
- " print(f\"\\nSequence: {seq}\")\n",
380
- " print(\"Predicted States:\", [states[i] for i in state_sequence])\n",
381
- " print(\"Log Probability:\", logprob)"
382
- ]
383
- }
384
- ],
385
- "metadata": {
386
- "colab": {
387
- "provenance": []
388
- },
389
- "kernelspec": {
390
- "display_name": "Python 3 (ipykernel)",
391
- "language": "python",
392
- "name": "python3"
393
- },
394
- "language_info": {
395
- "codemirror_mode": {
396
- "name": "ipython",
397
- "version": 3
398
- },
399
- "file_extension": ".py",
400
- "mimetype": "text/x-python",
401
- "name": "python",
402
- "nbconvert_exporter": "python",
403
- "pygments_lexer": "ipython3",
404
- "version": "3.12.4"
405
- }
406
- },
407
- "nbformat": 4,
408
- "nbformat_minor": 4
409
- }
@@ -1,147 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "b96a1a1c-b14e-409e-ab95-075ba7b80df3",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import seaborn as sns\n",
13
- "import matplotlib.pyplot as plt\n",
14
- "from sklearn.preprocessing import StandardScaler\n",
15
- "from sklearn.decomposition import PCA\n",
16
- "\n",
17
- "import warnings\n",
18
- "warnings.filterwarnings('ignore')"
19
- ]
20
- },
21
- {
22
- "cell_type": "code",
23
- "execution_count": null,
24
- "id": "a27b3cce-5a43-4443-a2c0-964a15d4d5fc",
25
- "metadata": {},
26
- "outputs": [],
27
- "source": [
28
- "cols = ['class name', 'left-weight', 'left-distance', 'right-weight', 'right-distance']\n",
29
- "df = pd.read_table('data/balance-scale.txt', delimiter=',', names=cols)\n",
30
- "print(\"Shape:\", df.shape)\n",
31
- "df.head()"
32
- ]
33
- },
34
- {
35
- "cell_type": "code",
36
- "execution_count": null,
37
- "id": "b9f866da-69f2-44d9-a628-431cdb81d41e",
38
- "metadata": {},
39
- "outputs": [],
40
- "source": [
41
- "df.describe()"
42
- ]
43
- },
44
- {
45
- "cell_type": "code",
46
- "execution_count": null,
47
- "id": "f23c78cb-422f-492d-ab8c-00ba1ac8a4b2",
48
- "metadata": {},
49
- "outputs": [],
50
- "source": [
51
- "df.info()"
52
- ]
53
- },
54
- {
55
- "cell_type": "code",
56
- "execution_count": null,
57
- "id": "d2a5b059-df8f-4495-bee8-57031cce0a78",
58
- "metadata": {},
59
- "outputs": [],
60
- "source": [
61
- "sns.countplot(df, x='class name', hue='class name')\n",
62
- "plt.title(\"Count Plot ['B', 'R', 'L']\")\n",
63
- "plt.show()"
64
- ]
65
- },
66
- {
67
- "cell_type": "code",
68
- "execution_count": null,
69
- "id": "5da4b529-7f9f-4fa4-b251-7daf2a285c15",
70
- "metadata": {},
71
- "outputs": [],
72
- "source": [
73
- "features = ['left-weight', 'left-distance', 'right-weight', 'right-distance']\n",
74
- "x = df.loc[:, features]\n",
75
- "y = df.loc[:, 'class name']"
76
- ]
77
- },
78
- {
79
- "cell_type": "code",
80
- "execution_count": null,
81
- "id": "bacac77a-5b5f-480c-8e4d-8172980baea7",
82
- "metadata": {},
83
- "outputs": [],
84
- "source": [
85
- "x = StandardScaler().fit_transform(x)\n",
86
- "pca = PCA(n_components=2)\n",
87
- "pct = pca.fit_transform(x)"
88
- ]
89
- },
90
- {
91
- "cell_type": "code",
92
- "execution_count": null,
93
- "id": "ffdcdf85-56c8-4b02-bad8-05f9654805ef",
94
- "metadata": {},
95
- "outputs": [],
96
- "source": [
97
- "principal_df = pd.DataFrame(pct, columns=['pc1', 'pc2'])\n",
98
- "principal_df['class name'] = df['class name']\n",
99
- "principal_df.head()"
100
- ]
101
- },
102
- {
103
- "cell_type": "code",
104
- "execution_count": null,
105
- "id": "db3dae54-3134-4d41-998e-0cf46ae16714",
106
- "metadata": {},
107
- "outputs": [],
108
- "source": [
109
- "fig = plt.figure(figsize=(8,8))\n",
110
- "ax = fig.add_subplot(1, 1, 1)\n",
111
- "\n",
112
- "targets = ['L','B','R']\n",
113
- "colors = ['r', 'g','b']\n",
114
- "for target, color in zip(targets, colors):\n",
115
- " selected = principal_df[principal_df['class name'] == target]\n",
116
- " ax.scatter(selected['pc1'], selected['pc2'], c=color, s=50)\n",
117
- "\n",
118
- "ax.set_xlabel('Principal Component 1')\n",
119
- "ax.set_ylabel('Principal Component 2')\n",
120
- "ax.set_title('2 component PCA')\n",
121
- "ax.legend(targets)\n",
122
- "ax.grid()"
123
- ]
124
- }
125
- ],
126
- "metadata": {
127
- "kernelspec": {
128
- "display_name": "Python 3 (ipykernel)",
129
- "language": "python",
130
- "name": "python3"
131
- },
132
- "language_info": {
133
- "codemirror_mode": {
134
- "name": "ipython",
135
- "version": 3
136
- },
137
- "file_extension": ".py",
138
- "mimetype": "text/x-python",
139
- "name": "python",
140
- "nbconvert_exporter": "python",
141
- "pygments_lexer": "ipython3",
142
- "version": "3.12.4"
143
- }
144
- },
145
- "nbformat": 4,
146
- "nbformat_minor": 5
147
- }