noshot 10.0.0__py3-none-any.whl → 12.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/DLE FSD BDA/DLE/1. DNN (Image Classification).ipynb +389 -0
- noshot/data/DLE FSD BDA/DLE/2. DNN vs CNN.ipynb +516 -0
- noshot/data/DLE FSD BDA/DLE/3. CNN (Object Detecrion).ipynb +259 -0
- noshot/data/DLE FSD BDA/DLE/4. FCN (Image Segmentaion).ipynb +274 -0
- noshot/main.py +3 -3
- {noshot-10.0.0.dist-info → noshot-12.0.0.dist-info}/METADATA +1 -1
- noshot-12.0.0.dist-info/RECORD +13 -0
- {noshot-10.0.0.dist-info → noshot-12.0.0.dist-info}/WHEEL +1 -1
- noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +0 -201
- noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +0 -201
- noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb +0 -409
- noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -147
- noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb +0 -181
- noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb +0 -152
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb +0 -117
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb +0 -156
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb +0 -215
- noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb +0 -78
- noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -114
- noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb +0 -115
- noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb +0 -146
- noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb +0 -130
- noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb +0 -112
- noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -118
- noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -89
- noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb +0 -120
- noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -262
- noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb +0 -156
- noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb +0 -162
- noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb +0 -100
- noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb +0 -336
- noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb +0 -149
- noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb +0 -132
- noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb +0 -86
- noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb +0 -115
- noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb +0 -196
- noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb +0 -98
- noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb +0 -109
- noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb +0 -195
- noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb +0 -189
- noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb +0 -197
- noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb +0 -1087
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +0 -274
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +0 -170
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +0 -1087
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +0 -178
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +0 -185
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +0 -106
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +0 -177
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +0 -195
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +0 -267
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +0 -104
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +0 -109
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +0 -220
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +0 -99
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +0 -211
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +0 -99
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +0 -118
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +0 -603
- noshot/data/ML TS XAI/ML/ML Lab AllinOne.ipynb +0 -961
- noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb +0 -231
- noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb +0 -269
- noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb +0 -274
- noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb +0 -263
- noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb +0 -198
- noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb +0 -201
- noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv +0 -1339
- noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data +0 -151
- noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv +0 -396
- noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv +0 -650
- noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -691
- noshot-10.0.0.dist-info/RECORD +0 -72
- {noshot-10.0.0.dist-info → noshot-12.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-10.0.0.dist-info → noshot-12.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,516 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"metadata": {
|
7
|
+
"colab": {
|
8
|
+
"base_uri": "https://localhost:8080/"
|
9
|
+
},
|
10
|
+
"id": "d1-Arg7UL-nD",
|
11
|
+
"outputId": "78548f80-8e83-4f06-a8bf-32faa2537e11"
|
12
|
+
},
|
13
|
+
"outputs": [],
|
14
|
+
"source": [
|
15
|
+
"from google.colab import drive\n",
|
16
|
+
"drive.mount('/content/drive')"
|
17
|
+
]
|
18
|
+
},
|
19
|
+
{
|
20
|
+
"cell_type": "markdown",
|
21
|
+
"metadata": {
|
22
|
+
"id": "Bk41--jYMGZc"
|
23
|
+
},
|
24
|
+
"source": [
|
25
|
+
"Packages"
|
26
|
+
]
|
27
|
+
},
|
28
|
+
{
|
29
|
+
"cell_type": "code",
|
30
|
+
"execution_count": null,
|
31
|
+
"metadata": {
|
32
|
+
"id": "h7cJDYIHMHWp"
|
33
|
+
},
|
34
|
+
"outputs": [],
|
35
|
+
"source": [
|
36
|
+
"import os\n",
|
37
|
+
"import pandas as pd\n",
|
38
|
+
"import numpy as np\n",
|
39
|
+
"import matplotlib.pyplot as plt\n",
|
40
|
+
"import tensorflow as tf\n",
|
41
|
+
"from tensorflow.keras.preprocessing.image import load_img,img_to_array\n",
|
42
|
+
"from tensorflow.keras.utils import to_categorical\n",
|
43
|
+
"from sklearn.model_selection import train_test_split\n",
|
44
|
+
"from sklearn.preprocessing import LabelEncoder\n",
|
45
|
+
"from sklearn.metrics import classification_report,confusion_matrix\n",
|
46
|
+
"from tensorflow.keras.models import Sequential\n",
|
47
|
+
"from tensorflow.keras.layers import Dense,Conv2D,MaxPooling2D,Dropout,Flatten"
|
48
|
+
]
|
49
|
+
},
|
50
|
+
{
|
51
|
+
"cell_type": "markdown",
|
52
|
+
"metadata": {
|
53
|
+
"id": "9kJuyVCiMKen"
|
54
|
+
},
|
55
|
+
"source": [
|
56
|
+
"Dataset"
|
57
|
+
]
|
58
|
+
},
|
59
|
+
{
|
60
|
+
"cell_type": "code",
|
61
|
+
"execution_count": null,
|
62
|
+
"metadata": {
|
63
|
+
"id": "2g6EPCH4MJ0M"
|
64
|
+
},
|
65
|
+
"outputs": [],
|
66
|
+
"source": [
|
67
|
+
"dataset_path='/content/drive/MyDrive/sem 7/Lab/DL_Lab/Bean_Dataset'"
|
68
|
+
]
|
69
|
+
},
|
70
|
+
{
|
71
|
+
"cell_type": "code",
|
72
|
+
"execution_count": null,
|
73
|
+
"metadata": {
|
74
|
+
"id": "o66ozfBwMNAU"
|
75
|
+
},
|
76
|
+
"outputs": [],
|
77
|
+
"source": [
|
78
|
+
"def load_images(file_path,img_size):\n",
|
79
|
+
" images=[]\n",
|
80
|
+
" labels=[]\n",
|
81
|
+
"\n",
|
82
|
+
" class_names=os.listdir(file_path)\n",
|
83
|
+
"\n",
|
84
|
+
" valid_extensions = (\".jpg\", \".jpeg\", \".png\", \".bmp\")\n",
|
85
|
+
"\n",
|
86
|
+
" for cls in class_names:\n",
|
87
|
+
"\n",
|
88
|
+
" class_path=os.path.join(file_path,cls)\n",
|
89
|
+
"\n",
|
90
|
+
" for file_name in os.listdir(class_path):\n",
|
91
|
+
"\n",
|
92
|
+
" if file_name.lower().endswith(valid_extensions):\n",
|
93
|
+
"\n",
|
94
|
+
" img=load_img(os.path.join(class_path,file_name),target_size=img_size)\n",
|
95
|
+
" img_array=img_to_array(img)/255.0\n",
|
96
|
+
" images.append(img_array)\n",
|
97
|
+
" labels.append(cls)\n",
|
98
|
+
"\n",
|
99
|
+
"\n",
|
100
|
+
" return np.array(images),np.array(labels),class_names\n",
|
101
|
+
"\n",
|
102
|
+
"\n",
|
103
|
+
"images,labels,cls_names=load_images(dataset_path,(128,128))"
|
104
|
+
]
|
105
|
+
},
|
106
|
+
{
|
107
|
+
"cell_type": "code",
|
108
|
+
"execution_count": null,
|
109
|
+
"metadata": {
|
110
|
+
"id": "6iUS3pY9MgR1"
|
111
|
+
},
|
112
|
+
"outputs": [],
|
113
|
+
"source": [
|
114
|
+
"X=images.copy()\n",
|
115
|
+
"y=labels.copy()\n",
|
116
|
+
"\n",
|
117
|
+
"X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)"
|
118
|
+
]
|
119
|
+
},
|
120
|
+
{
|
121
|
+
"cell_type": "markdown",
|
122
|
+
"metadata": {
|
123
|
+
"id": "0n5aTiDaMXNI"
|
124
|
+
},
|
125
|
+
"source": [
|
126
|
+
"#### **DNN**"
|
127
|
+
]
|
128
|
+
},
|
129
|
+
{
|
130
|
+
"cell_type": "code",
|
131
|
+
"execution_count": null,
|
132
|
+
"metadata": {
|
133
|
+
"id": "OjYNez19MQ00"
|
134
|
+
},
|
135
|
+
"outputs": [],
|
136
|
+
"source": [
|
137
|
+
"X_train_flat=X_train.reshape(X_train.shape[0],-1)\n",
|
138
|
+
"X_test_flat=X_test.reshape(X_test.shape[0],-1)"
|
139
|
+
]
|
140
|
+
},
|
141
|
+
{
|
142
|
+
"cell_type": "code",
|
143
|
+
"execution_count": null,
|
144
|
+
"metadata": {
|
145
|
+
"colab": {
|
146
|
+
"base_uri": "https://localhost:8080/"
|
147
|
+
},
|
148
|
+
"id": "wr3G4CYbMj8N",
|
149
|
+
"outputId": "924fe453-4f34-40a1-e8b3-822c0b5629c9"
|
150
|
+
},
|
151
|
+
"outputs": [],
|
152
|
+
"source": [
|
153
|
+
"le=LabelEncoder()\n",
|
154
|
+
"y_train=le.fit_transform(y_train)\n",
|
155
|
+
"y_test=le.transform(y_test)\n",
|
156
|
+
"\n",
|
157
|
+
"enc_cls=le.classes_\n",
|
158
|
+
"print(enc_cls)\n",
|
159
|
+
"\n",
|
160
|
+
"num_classes=len(enc_cls)\n",
|
161
|
+
"y_train = to_categorical(y_train, num_classes)\n",
|
162
|
+
"y_test = to_categorical(y_test, num_classes)"
|
163
|
+
]
|
164
|
+
},
|
165
|
+
{
|
166
|
+
"cell_type": "code",
|
167
|
+
"execution_count": null,
|
168
|
+
"metadata": {
|
169
|
+
"colab": {
|
170
|
+
"base_uri": "https://localhost:8080/"
|
171
|
+
},
|
172
|
+
"id": "tx9q6JnJM4Ah",
|
173
|
+
"outputId": "9650d086-a8a9-4085-ee24-599d94474b1f"
|
174
|
+
},
|
175
|
+
"outputs": [],
|
176
|
+
"source": [
|
177
|
+
"model=Sequential([\n",
|
178
|
+
" Dense(128,activation='relu',input_shape=(X_train_flat.shape[1],)),\n",
|
179
|
+
" Dense(64,activation='relu'),\n",
|
180
|
+
" Dense(len(enc_cls),activation='softmax')\n",
|
181
|
+
"])"
|
182
|
+
]
|
183
|
+
},
|
184
|
+
{
|
185
|
+
"cell_type": "code",
|
186
|
+
"execution_count": null,
|
187
|
+
"metadata": {
|
188
|
+
"colab": {
|
189
|
+
"base_uri": "https://localhost:8080/"
|
190
|
+
},
|
191
|
+
"id": "XH9TjQ2AM8ye",
|
192
|
+
"outputId": "8ffa837b-7267-4390-dc98-572f69b7de12"
|
193
|
+
},
|
194
|
+
"outputs": [],
|
195
|
+
"source": [
|
196
|
+
"model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=[\"accuracy\"])\n",
|
197
|
+
"history1=model.fit(X_train_flat,y_train,epochs=5,validation_split=0.2)"
|
198
|
+
]
|
199
|
+
},
|
200
|
+
{
|
201
|
+
"cell_type": "code",
|
202
|
+
"execution_count": null,
|
203
|
+
"metadata": {
|
204
|
+
"colab": {
|
205
|
+
"base_uri": "https://localhost:8080/"
|
206
|
+
},
|
207
|
+
"id": "5jO_15PwNFIl",
|
208
|
+
"outputId": "e6ffa460-d5a2-410d-e6a8-e7ca3ba2e136"
|
209
|
+
},
|
210
|
+
"outputs": [],
|
211
|
+
"source": [
|
212
|
+
"loss,acc=model.evaluate(X_test_flat,y_test)\n",
|
213
|
+
"print(f'Test Accuracy : {acc*100:.2f}%')\n",
|
214
|
+
"print(f'Test Loss : {loss:.2f}')"
|
215
|
+
]
|
216
|
+
},
|
217
|
+
{
|
218
|
+
"cell_type": "code",
|
219
|
+
"execution_count": null,
|
220
|
+
"metadata": {
|
221
|
+
"colab": {
|
222
|
+
"base_uri": "https://localhost:8080/"
|
223
|
+
},
|
224
|
+
"id": "6cBSj9z-NG_1",
|
225
|
+
"outputId": "c619d9a4-6031-4158-d514-445b7a6475e7"
|
226
|
+
},
|
227
|
+
"outputs": [],
|
228
|
+
"source": [
|
229
|
+
"y_pred=np.argmax(model.predict(X_test_flat),axis=-1)\n",
|
230
|
+
"y_true=np.argmax(y_test,axis=-1)"
|
231
|
+
]
|
232
|
+
},
|
233
|
+
{
|
234
|
+
"cell_type": "code",
|
235
|
+
"execution_count": null,
|
236
|
+
"metadata": {
|
237
|
+
"colab": {
|
238
|
+
"base_uri": "https://localhost:8080/"
|
239
|
+
},
|
240
|
+
"id": "1nbx4PYuNZ-W",
|
241
|
+
"outputId": "5b88f136-c73d-4970-b371-e63dd2e31253"
|
242
|
+
},
|
243
|
+
"outputs": [],
|
244
|
+
"source": [
|
245
|
+
"print(enc_cls)"
|
246
|
+
]
|
247
|
+
},
|
248
|
+
{
|
249
|
+
"cell_type": "code",
|
250
|
+
"execution_count": null,
|
251
|
+
"metadata": {
|
252
|
+
"colab": {
|
253
|
+
"base_uri": "https://localhost:8080/"
|
254
|
+
},
|
255
|
+
"id": "gnRVdjyDNJOi",
|
256
|
+
"outputId": "1e1d5111-835f-4845-f685-0de232a84fa7"
|
257
|
+
},
|
258
|
+
"outputs": [],
|
259
|
+
"source": [
|
260
|
+
"print('Classfication Report')\n",
|
261
|
+
"print(classification_report(y_true,y_pred,target_names=enc_cls))"
|
262
|
+
]
|
263
|
+
},
|
264
|
+
{
|
265
|
+
"cell_type": "code",
|
266
|
+
"execution_count": null,
|
267
|
+
"metadata": {
|
268
|
+
"colab": {
|
269
|
+
"base_uri": "https://localhost:8080/"
|
270
|
+
},
|
271
|
+
"id": "oecJC_etOFzJ",
|
272
|
+
"outputId": "c50119db-bbc4-48df-dbf9-279d82150042"
|
273
|
+
},
|
274
|
+
"outputs": [],
|
275
|
+
"source": [
|
276
|
+
"print('Confusion Matrix')\n",
|
277
|
+
"print(confusion_matrix(y_true,y_pred))"
|
278
|
+
]
|
279
|
+
},
|
280
|
+
{
|
281
|
+
"cell_type": "markdown",
|
282
|
+
"metadata": {
|
283
|
+
"id": "f2jBb3C3MZNz"
|
284
|
+
},
|
285
|
+
"source": [
|
286
|
+
"#### **CNN**"
|
287
|
+
]
|
288
|
+
},
|
289
|
+
{
|
290
|
+
"cell_type": "code",
|
291
|
+
"execution_count": null,
|
292
|
+
"metadata": {
|
293
|
+
"colab": {
|
294
|
+
"base_uri": "https://localhost:8080/"
|
295
|
+
},
|
296
|
+
"id": "wBaxM8YdMcgs",
|
297
|
+
"outputId": "dcf2ce9a-2e0b-4a71-89c3-3e9e7df2d3e1"
|
298
|
+
},
|
299
|
+
"outputs": [],
|
300
|
+
"source": [
|
301
|
+
"model=Sequential([\n",
|
302
|
+
" Conv2D(32,(3,3),activation='relu',input_shape=(128,128,3)),\n",
|
303
|
+
" MaxPooling2D((2,2)),\n",
|
304
|
+
" Conv2D(64,(3,3),activation='relu'),\n",
|
305
|
+
" MaxPooling2D((2,2)),\n",
|
306
|
+
" Flatten(),\n",
|
307
|
+
" Dense(128,activation='relu'),\n",
|
308
|
+
" Dropout(0.5),\n",
|
309
|
+
" Dense(len(cls_names),activation='softmax')\n",
|
310
|
+
"])"
|
311
|
+
]
|
312
|
+
},
|
313
|
+
{
|
314
|
+
"cell_type": "code",
|
315
|
+
"execution_count": null,
|
316
|
+
"metadata": {
|
317
|
+
"colab": {
|
318
|
+
"base_uri": "https://localhost:8080/"
|
319
|
+
},
|
320
|
+
"id": "kW1_9HT5PCVJ",
|
321
|
+
"outputId": "72e45505-aab3-4ef5-951b-0c73d7cb516d"
|
322
|
+
},
|
323
|
+
"outputs": [],
|
324
|
+
"source": [
|
325
|
+
"model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])\n",
|
326
|
+
"history2=model.fit(X_train,y_train,epochs=5,validation_split=0.2)"
|
327
|
+
]
|
328
|
+
},
|
329
|
+
{
|
330
|
+
"cell_type": "code",
|
331
|
+
"execution_count": null,
|
332
|
+
"metadata": {
|
333
|
+
"colab": {
|
334
|
+
"base_uri": "https://localhost:8080/"
|
335
|
+
},
|
336
|
+
"id": "FzKRiAgwQdaw",
|
337
|
+
"outputId": "31938d09-b35c-4768-a677-afc9a6c04625"
|
338
|
+
},
|
339
|
+
"outputs": [],
|
340
|
+
"source": [
|
341
|
+
"loss,acc=model.evaluate(X_test,y_test)\n",
|
342
|
+
"print(f'Test Accuracy : {acc*100:.2f}%')\n",
|
343
|
+
"print(f'Test Loss : {loss:.2f}')"
|
344
|
+
]
|
345
|
+
},
|
346
|
+
{
|
347
|
+
"cell_type": "code",
|
348
|
+
"execution_count": null,
|
349
|
+
"metadata": {
|
350
|
+
"colab": {
|
351
|
+
"base_uri": "https://localhost:8080/"
|
352
|
+
},
|
353
|
+
"id": "XPg932SqQr2p",
|
354
|
+
"outputId": "4a420b6d-3821-4bc7-9d12-eaad4fccf67c"
|
355
|
+
},
|
356
|
+
"outputs": [],
|
357
|
+
"source": [
|
358
|
+
"y_pred=np.argmax(model.predict(X_test),axis=-1)\n",
|
359
|
+
"y_true=np.argmax(y_test,axis=-1)"
|
360
|
+
]
|
361
|
+
},
|
362
|
+
{
|
363
|
+
"cell_type": "code",
|
364
|
+
"execution_count": null,
|
365
|
+
"metadata": {
|
366
|
+
"colab": {
|
367
|
+
"base_uri": "https://localhost:8080/"
|
368
|
+
},
|
369
|
+
"id": "fD9HE2lyQt4F",
|
370
|
+
"outputId": "3b46eed1-f8d7-45b9-ffe5-94e56535e206"
|
371
|
+
},
|
372
|
+
"outputs": [],
|
373
|
+
"source": [
|
374
|
+
"print('Classfication Report')\n",
|
375
|
+
"print(classification_report(y_true,y_pred,target_names=enc_cls))"
|
376
|
+
]
|
377
|
+
},
|
378
|
+
{
|
379
|
+
"cell_type": "code",
|
380
|
+
"execution_count": null,
|
381
|
+
"metadata": {
|
382
|
+
"colab": {
|
383
|
+
"base_uri": "https://localhost:8080/"
|
384
|
+
},
|
385
|
+
"id": "gvGw6SDuQxiL",
|
386
|
+
"outputId": "a52de03d-2d2a-4fac-8cf3-22346c4b1929"
|
387
|
+
},
|
388
|
+
"outputs": [],
|
389
|
+
"source": [
|
390
|
+
"print('Confusion Matrix')\n",
|
391
|
+
"print(confusion_matrix(y_true,y_pred))"
|
392
|
+
]
|
393
|
+
},
|
394
|
+
{
|
395
|
+
"cell_type": "markdown",
|
396
|
+
"metadata": {
|
397
|
+
"id": "46TV5Ti5Q0Cm"
|
398
|
+
},
|
399
|
+
"source": [
|
400
|
+
"#### **Comparison**"
|
401
|
+
]
|
402
|
+
},
|
403
|
+
{
|
404
|
+
"cell_type": "code",
|
405
|
+
"execution_count": null,
|
406
|
+
"metadata": {
|
407
|
+
"colab": {
|
408
|
+
"base_uri": "https://localhost:8080/",
|
409
|
+
"height": 472
|
410
|
+
},
|
411
|
+
"id": "GUW5r0afQ2mF",
|
412
|
+
"outputId": "28ac9467-fe6b-481f-b30b-be2d01dd9929"
|
413
|
+
},
|
414
|
+
"outputs": [],
|
415
|
+
"source": [
|
416
|
+
"plt.plot(history1.history['accuracy'],label='train_accuracy')\n",
|
417
|
+
"plt.plot(history1.history['val_accuracy'],label='val_accuracy')\n",
|
418
|
+
"plt.title('Model Accuracy of DNN')\n",
|
419
|
+
"plt.xlabel('Epochs')\n",
|
420
|
+
"plt.ylabel('Accuracy')\n",
|
421
|
+
"plt.legend()\n",
|
422
|
+
"plt.show()"
|
423
|
+
]
|
424
|
+
},
|
425
|
+
{
|
426
|
+
"cell_type": "code",
|
427
|
+
"execution_count": null,
|
428
|
+
"metadata": {
|
429
|
+
"colab": {
|
430
|
+
"base_uri": "https://localhost:8080/",
|
431
|
+
"height": 472
|
432
|
+
},
|
433
|
+
"id": "Lfxe-GudRFIB",
|
434
|
+
"outputId": "176a332d-56f0-4c7f-9d0b-418dc82f894c"
|
435
|
+
},
|
436
|
+
"outputs": [],
|
437
|
+
"source": [
|
438
|
+
"plt.plot(history2.history['accuracy'],label='train_accuracy')\n",
|
439
|
+
"plt.plot(history2.history['val_accuracy'],label='val_accuracy')\n",
|
440
|
+
"plt.title('Model Accuracy of CNN')\n",
|
441
|
+
"plt.xlabel('Epochs')\n",
|
442
|
+
"plt.ylabel('Accuracy')\n",
|
443
|
+
"plt.legend()\n",
|
444
|
+
"plt.show()"
|
445
|
+
]
|
446
|
+
},
|
447
|
+
{
|
448
|
+
"cell_type": "code",
|
449
|
+
"execution_count": null,
|
450
|
+
"metadata": {
|
451
|
+
"colab": {
|
452
|
+
"base_uri": "https://localhost:8080/",
|
453
|
+
"height": 472
|
454
|
+
},
|
455
|
+
"id": "B1hDFZg0RI0r",
|
456
|
+
"outputId": "e1e9e652-7349-4aa4-bbcb-a50b69c0def9"
|
457
|
+
},
|
458
|
+
"outputs": [],
|
459
|
+
"source": [
|
460
|
+
"plt.plot(history1.history['loss'],label='train_loss')\n",
|
461
|
+
"plt.plot(history1.history['val_loss'],label='val_loss')\n",
|
462
|
+
"plt.title('Model loss')\n",
|
463
|
+
"plt.xlabel('Epochs')\n",
|
464
|
+
"plt.ylabel('loss')\n",
|
465
|
+
"plt.legend()\n",
|
466
|
+
"plt.show()"
|
467
|
+
]
|
468
|
+
},
|
469
|
+
{
|
470
|
+
"cell_type": "code",
|
471
|
+
"execution_count": null,
|
472
|
+
"metadata": {
|
473
|
+
"colab": {
|
474
|
+
"base_uri": "https://localhost:8080/",
|
475
|
+
"height": 472
|
476
|
+
},
|
477
|
+
"id": "wo7IfH95RL7W",
|
478
|
+
"outputId": "dce13968-1b41-4ae1-d127-665edf693165"
|
479
|
+
},
|
480
|
+
"outputs": [],
|
481
|
+
"source": [
|
482
|
+
"plt.plot(history2.history['loss'],label='train_loss')\n",
|
483
|
+
"plt.plot(history2.history['val_loss'],label='val_loss')\n",
|
484
|
+
"plt.title('Model loss')\n",
|
485
|
+
"plt.xlabel('Epochs')\n",
|
486
|
+
"plt.ylabel('loss')\n",
|
487
|
+
"plt.legend()\n",
|
488
|
+
"plt.show()"
|
489
|
+
]
|
490
|
+
}
|
491
|
+
],
|
492
|
+
"metadata": {
|
493
|
+
"colab": {
|
494
|
+
"provenance": []
|
495
|
+
},
|
496
|
+
"kernelspec": {
|
497
|
+
"display_name": "Python 3 (ipykernel)",
|
498
|
+
"language": "python",
|
499
|
+
"name": "python3"
|
500
|
+
},
|
501
|
+
"language_info": {
|
502
|
+
"codemirror_mode": {
|
503
|
+
"name": "ipython",
|
504
|
+
"version": 3
|
505
|
+
},
|
506
|
+
"file_extension": ".py",
|
507
|
+
"mimetype": "text/x-python",
|
508
|
+
"name": "python",
|
509
|
+
"nbconvert_exporter": "python",
|
510
|
+
"pygments_lexer": "ipython3",
|
511
|
+
"version": "3.12.4"
|
512
|
+
}
|
513
|
+
},
|
514
|
+
"nbformat": 4,
|
515
|
+
"nbformat_minor": 4
|
516
|
+
}
|