noshot 1.0.0__py3-none-any.whl → 2.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (34) hide show
  1. noshot/data/ML TS XAI/TS/bill-charge.ipynb +239 -0
  2. noshot/data/ML TS XAI/{XAI/XAI 2/Exp-3 (EDA-loan).ipynb → TS/daily-min-temperatures.ipynb } +68 -50
  3. noshot/data/ML TS XAI/TS/data/bill-data.csv +21 -0
  4. noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +3651 -0
  5. noshot/data/ML TS XAI/TS/data/monthly-sunspots.csv +2821 -0
  6. noshot/data/ML TS XAI/TS/monthly-sunspots.ipynb +241 -0
  7. {noshot-1.0.0.dist-info → noshot-2.0.0.dist-info}/METADATA +1 -1
  8. noshot-2.0.0.dist-info/RECORD +15 -0
  9. {noshot-1.0.0.dist-info → noshot-2.0.0.dist-info}/WHEEL +1 -1
  10. noshot/data/ML TS XAI/TS/10. Seasonal ARIMA Forecasting.ipynb +0 -246
  11. noshot/data/ML TS XAI/TS/11. Multivariate ARIMA Forecasting.ipynb +0 -228
  12. noshot/data/ML TS XAI/TS/6. ACF PACF.ipynb +0 -77
  13. noshot/data/ML TS XAI/TS/7. Differencing.ipynb +0 -167
  14. noshot/data/ML TS XAI/TS/8. ARMA Forecasting.ipynb +0 -197
  15. noshot/data/ML TS XAI/TS/9. ARIMA Forecasting.ipynb +0 -220
  16. noshot/data/ML TS XAI/XAI/XAI 1/EDA2_chipsdatset.ipynb +0 -633
  17. noshot/data/ML TS XAI/XAI/XAI 1/EDA_IRISH_8thjan.ipynb +0 -326
  18. noshot/data/ML TS XAI/XAI/XAI 1/XAI_EX1 MODEL BIAS (FINAL).ipynb +0 -487
  19. noshot/data/ML TS XAI/XAI/XAI 1/complete_guide_to_eda_on_text_data.ipynb +0 -845
  20. noshot/data/ML TS XAI/XAI/XAI 1/deepchecksframeworks.ipynb +0 -100
  21. noshot/data/ML TS XAI/XAI/XAI 1/deepexplainers (mnist).ipynb +0 -90
  22. noshot/data/ML TS XAI/XAI/XAI 1/guidedbackpropagation.ipynb +0 -203
  23. noshot/data/ML TS XAI/XAI/XAI 1/updated_image_EDA1_with_LRP.ipynb +0 -3998
  24. noshot/data/ML TS XAI/XAI/XAI 1/zebrastripes.ipynb +0 -271
  25. noshot/data/ML TS XAI/XAI/XAI 2/EXP_5.ipynb +0 -1545
  26. noshot/data/ML TS XAI/XAI/XAI 2/Exp-3 (EDA-movie).ipynb +0 -229
  27. noshot/data/ML TS XAI/XAI/XAI 2/Exp-4(Flower dataset).ipynb +0 -237
  28. noshot/data/ML TS XAI/XAI/XAI 2/Exp-4.ipynb +0 -241
  29. noshot/data/ML TS XAI/XAI/XAI 2/Exp_2.ipynb +0 -352
  30. noshot/data/ML TS XAI/XAI/XAI 2/Exp_7.ipynb +0 -110
  31. noshot/data/ML TS XAI/XAI/XAI 2/FeatureImportance_SensitivityAnalysis.ipynb +0 -708
  32. noshot-1.0.0.dist-info/RECORD +0 -32
  33. {noshot-1.0.0.dist-info → noshot-2.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  34. {noshot-1.0.0.dist-info → noshot-2.0.0.dist-info}/top_level.txt +0 -0
@@ -1,326 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "metadata": {
7
- "id": "dGFvje0Qt50J"
8
- },
9
- "outputs": [],
10
- "source": [
11
- "import pandas as pd\n",
12
- "D1=pd.read_csv(\"IRIS1.csv\")\n",
13
- "#the csv file is read in to D1 dataframe\n",
14
- "#pandas package deals with reading csv files"
15
- ]
16
- },
17
- {
18
- "cell_type": "code",
19
- "execution_count": null,
20
- "metadata": {
21
- "id": "_duANehevpqe"
22
- },
23
- "outputs": [],
24
- "source": []
25
- },
26
- {
27
- "cell_type": "markdown",
28
- "metadata": {
29
- "id": "TX8AY1zlubhL"
30
- },
31
- "source": [
32
- "Exploratory Data analytics-ipynb file-EDA_IRISH_8thjan"
33
- ]
34
- },
35
- {
36
- "cell_type": "code",
37
- "execution_count": null,
38
- "metadata": {
39
- "colab": {
40
- "base_uri": "https://localhost:8080/",
41
- "height": 206
42
- },
43
- "id": "ZvaWBKnIuj1Q",
44
- "outputId": "696f6903-d0d9-49b2-90f5-923430b5a5c2"
45
- },
46
- "outputs": [],
47
- "source": [
48
- "D1.head(5) # by deafult D1(the dataframe) head gives me 5 rows, here the rows are observations and the columns are attributes"
49
- ]
50
- },
51
- {
52
- "cell_type": "markdown",
53
- "metadata": {
54
- "id": "AxaJqvgTvXxo"
55
- },
56
- "source": [
57
- "by deafult D1(the dataframe) head gives me 5 rows, here the rows are observations and the columns are attributes"
58
- ]
59
- },
60
- {
61
- "cell_type": "code",
62
- "execution_count": null,
63
- "metadata": {
64
- "colab": {
65
- "base_uri": "https://localhost:8080/",
66
- "height": 206
67
- },
68
- "id": "3Qw4Ty6xvZCn",
69
- "outputId": "570b0b6e-b81a-434a-d014-fbbcf7a78800"
70
- },
71
- "outputs": [],
72
- "source": [
73
- "D1.tail()"
74
- ]
75
- },
76
- {
77
- "cell_type": "markdown",
78
- "metadata": {
79
- "id": "hHARmuAZwDrB"
80
- },
81
- "source": [
82
- "CSV -comma seperated value"
83
- ]
84
- },
85
- {
86
- "cell_type": "code",
87
- "execution_count": null,
88
- "metadata": {
89
- "colab": {
90
- "base_uri": "https://localhost:8080/"
91
- },
92
- "id": "7FVrFLqTwPuI",
93
- "outputId": "f1f08824-bc21-452d-f56c-01f50c9eb7c7"
94
- },
95
- "outputs": [],
96
- "source": [
97
- "D1.shape"
98
- ]
99
- },
100
- {
101
- "cell_type": "code",
102
- "execution_count": null,
103
- "metadata": {
104
- "colab": {
105
- "base_uri": "https://localhost:8080/"
106
- },
107
- "id": "N7RyCNqtwkRv",
108
- "outputId": "c2412510-4382-4657-ac57-851bd765b3cf"
109
- },
110
- "outputs": [],
111
- "source": [
112
- "D1.info()"
113
- ]
114
- },
115
- {
116
- "cell_type": "code",
117
- "execution_count": null,
118
- "metadata": {
119
- "colab": {
120
- "base_uri": "https://localhost:8080/",
121
- "height": 300
122
- },
123
- "id": "tXpl-p-Jwz1I",
124
- "outputId": "40c3c71b-88c9-4c07-8d2e-0bea70efa741"
125
- },
126
- "outputs": [],
127
- "source": [
128
- "D1.describe()"
129
- ]
130
- },
131
- {
132
- "cell_type": "code",
133
- "execution_count": null,
134
- "metadata": {
135
- "colab": {
136
- "base_uri": "https://localhost:8080/"
137
- },
138
- "id": "oWMPra54xcDi",
139
- "outputId": "aa646590-d72e-4fd3-c54f-1fd5655793ef"
140
- },
141
- "outputs": [],
142
- "source": [
143
- "D1.columns"
144
- ]
145
- },
146
- {
147
- "cell_type": "code",
148
- "execution_count": null,
149
- "metadata": {
150
- "colab": {
151
- "base_uri": "https://localhost:8080/"
152
- },
153
- "id": "cnc85x6ExjKx",
154
- "outputId": "5f71dc96-7a27-41f7-e912-0bafaa520a96"
155
- },
156
- "outputs": [],
157
- "source": [
158
- "D1['Species'].value_counts()"
159
- ]
160
- },
161
- {
162
- "cell_type": "code",
163
- "execution_count": null,
164
- "metadata": {
165
- "colab": {
166
- "base_uri": "https://localhost:8080/",
167
- "height": 424
168
- },
169
- "id": "GU54vUy0yBog",
170
- "outputId": "0d670a11-5d79-41a7-8f60-f3dc68706d3d"
171
- },
172
- "outputs": [],
173
- "source": [
174
- "import seaborn as sns\n",
175
- "import matplotlib.pyplot as plt\n",
176
- "sns.set_style('whitegrid')\n",
177
- "sns.FacetGrid(D1,hue='Species',height=4).map(plt.scatter,'SepalLengthCm','SepalWidthCm').add_legend()"
178
- ]
179
- },
180
- {
181
- "cell_type": "code",
182
- "execution_count": null,
183
- "metadata": {
184
- "colab": {
185
- "base_uri": "https://localhost:8080/",
186
- "height": 261
187
- },
188
- "id": "2ealmeYm1BV_",
189
- "outputId": "292a8c1d-bee9-4005-b1e1-f478459f245b"
190
- },
191
- "outputs": [],
192
- "source": [
193
- "D1.corr()"
194
- ]
195
- },
196
- {
197
- "cell_type": "markdown",
198
- "metadata": {
199
- "id": "WLTiQEH71Zg_"
200
- },
201
- "source": [
202
- "correlation matrix gives the correlation between each column and other columns"
203
- ]
204
- },
205
- {
206
- "cell_type": "code",
207
- "execution_count": null,
208
- "metadata": {
209
- "colab": {
210
- "base_uri": "https://localhost:8080/",
211
- "height": 206
212
- },
213
- "id": "wOUhW4Ee1ksw",
214
- "outputId": "18ab735e-1cd3-45a0-a852-ee8181c1b9d4"
215
- },
216
- "outputs": [],
217
- "source": [
218
- "D1=D1.drop(['Id'],axis=1)\n",
219
- "D1.head()"
220
- ]
221
- },
222
- {
223
- "cell_type": "code",
224
- "execution_count": null,
225
- "metadata": {
226
- "colab": {
227
- "base_uri": "https://localhost:8080/",
228
- "height": 229
229
- },
230
- "id": "MVnmVZcg2F1_",
231
- "outputId": "de271d34-3ad1-4b0d-949f-dcce336f8b0d"
232
- },
233
- "outputs": [],
234
- "source": [
235
- "D1.corr()"
236
- ]
237
- },
238
- {
239
- "cell_type": "code",
240
- "execution_count": null,
241
- "metadata": {
242
- "colab": {
243
- "base_uri": "https://localhost:8080/",
244
- "height": 821
245
- },
246
- "id": "NQ3tMO9U27DP",
247
- "outputId": "5a2b45e6-adc8-4451-9e00-7f3490f659c8"
248
- },
249
- "outputs": [],
250
- "source": [
251
- "#pairplot to be drawn\n",
252
- "sns.pairplot(D1)"
253
- ]
254
- },
255
- {
256
- "cell_type": "code",
257
- "execution_count": null,
258
- "metadata": {
259
- "colab": {
260
- "base_uri": "https://localhost:8080/",
261
- "height": 603
262
- },
263
- "id": "evijQMEh3bZG",
264
- "outputId": "b6615629-f159-49f5-c378-817ddc2383f0"
265
- },
266
- "outputs": [],
267
- "source": [
268
- "H=D1.corr()\n",
269
- "sns.heatmap(H)"
270
- ]
271
- },
272
- {
273
- "cell_type": "code",
274
- "execution_count": null,
275
- "metadata": {
276
- "id": "d_w0Ofuu0U2k"
277
- },
278
- "outputs": [],
279
- "source": [
280
- "D1['Species'].replace(0, 'Iris-setosa',inplace=True)\n",
281
- "D1['Species'].replace(1, 'Iris-versicolor',inplace=True)\n",
282
- "D1['Species'].replace(2, 'Iris-virginica',inplace=True)"
283
- ]
284
- },
285
- {
286
- "cell_type": "code",
287
- "execution_count": null,
288
- "metadata": {
289
- "colab": {
290
- "base_uri": "https://localhost:8080/",
291
- "height": 158
292
- },
293
- "id": "2iJiG_Xt0coi",
294
- "outputId": "c317f036-d1d5-449d-c6c4-738d4c7da57b"
295
- },
296
- "outputs": [],
297
- "source": [
298
- "D1.head(1)"
299
- ]
300
- }
301
- ],
302
- "metadata": {
303
- "colab": {
304
- "provenance": []
305
- },
306
- "kernelspec": {
307
- "display_name": "Python 3 (ipykernel)",
308
- "language": "python",
309
- "name": "python3"
310
- },
311
- "language_info": {
312
- "codemirror_mode": {
313
- "name": "ipython",
314
- "version": 3
315
- },
316
- "file_extension": ".py",
317
- "mimetype": "text/x-python",
318
- "name": "python",
319
- "nbconvert_exporter": "python",
320
- "pygments_lexer": "ipython3",
321
- "version": "3.12.4"
322
- }
323
- },
324
- "nbformat": 4,
325
- "nbformat_minor": 4
326
- }