noshot 1.0.0__py3-none-any.whl → 2.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/TS/bill-charge.ipynb +239 -0
- noshot/data/ML TS XAI/{XAI/XAI 2/Exp-3 (EDA-loan).ipynb → TS/daily-min-temperatures.ipynb } +68 -50
- noshot/data/ML TS XAI/TS/data/bill-data.csv +21 -0
- noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +3651 -0
- noshot/data/ML TS XAI/TS/data/monthly-sunspots.csv +2821 -0
- noshot/data/ML TS XAI/TS/monthly-sunspots.ipynb +241 -0
- {noshot-1.0.0.dist-info → noshot-2.0.0.dist-info}/METADATA +1 -1
- noshot-2.0.0.dist-info/RECORD +15 -0
- {noshot-1.0.0.dist-info → noshot-2.0.0.dist-info}/WHEEL +1 -1
- noshot/data/ML TS XAI/TS/10. Seasonal ARIMA Forecasting.ipynb +0 -246
- noshot/data/ML TS XAI/TS/11. Multivariate ARIMA Forecasting.ipynb +0 -228
- noshot/data/ML TS XAI/TS/6. ACF PACF.ipynb +0 -77
- noshot/data/ML TS XAI/TS/7. Differencing.ipynb +0 -167
- noshot/data/ML TS XAI/TS/8. ARMA Forecasting.ipynb +0 -197
- noshot/data/ML TS XAI/TS/9. ARIMA Forecasting.ipynb +0 -220
- noshot/data/ML TS XAI/XAI/XAI 1/EDA2_chipsdatset.ipynb +0 -633
- noshot/data/ML TS XAI/XAI/XAI 1/EDA_IRISH_8thjan.ipynb +0 -326
- noshot/data/ML TS XAI/XAI/XAI 1/XAI_EX1 MODEL BIAS (FINAL).ipynb +0 -487
- noshot/data/ML TS XAI/XAI/XAI 1/complete_guide_to_eda_on_text_data.ipynb +0 -845
- noshot/data/ML TS XAI/XAI/XAI 1/deepchecksframeworks.ipynb +0 -100
- noshot/data/ML TS XAI/XAI/XAI 1/deepexplainers (mnist).ipynb +0 -90
- noshot/data/ML TS XAI/XAI/XAI 1/guidedbackpropagation.ipynb +0 -203
- noshot/data/ML TS XAI/XAI/XAI 1/updated_image_EDA1_with_LRP.ipynb +0 -3998
- noshot/data/ML TS XAI/XAI/XAI 1/zebrastripes.ipynb +0 -271
- noshot/data/ML TS XAI/XAI/XAI 2/EXP_5.ipynb +0 -1545
- noshot/data/ML TS XAI/XAI/XAI 2/Exp-3 (EDA-movie).ipynb +0 -229
- noshot/data/ML TS XAI/XAI/XAI 2/Exp-4(Flower dataset).ipynb +0 -237
- noshot/data/ML TS XAI/XAI/XAI 2/Exp-4.ipynb +0 -241
- noshot/data/ML TS XAI/XAI/XAI 2/Exp_2.ipynb +0 -352
- noshot/data/ML TS XAI/XAI/XAI 2/Exp_7.ipynb +0 -110
- noshot/data/ML TS XAI/XAI/XAI 2/FeatureImportance_SensitivityAnalysis.ipynb +0 -708
- noshot-1.0.0.dist-info/RECORD +0 -32
- {noshot-1.0.0.dist-info → noshot-2.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-1.0.0.dist-info → noshot-2.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,239 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"id": "3d63e9c0",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"import pandas as pd\n",
|
11
|
+
"import numpy as np\n",
|
12
|
+
"import matplotlib.pyplot as plt\n",
|
13
|
+
"import seaborn as sns\n",
|
14
|
+
"from statsmodels.graphics.tsaplots import plot_acf,plot_pacf\n",
|
15
|
+
"from statsmodels.tsa.stattools import adfuller\n",
|
16
|
+
"from statsmodels.tsa.arima.model import ARIMA\n",
|
17
|
+
"from statsmodels.tsa.statespace import sarimax\n",
|
18
|
+
"from sklearn.metrics import r2_score,mean_squared_error"
|
19
|
+
]
|
20
|
+
},
|
21
|
+
{
|
22
|
+
"cell_type": "code",
|
23
|
+
"execution_count": null,
|
24
|
+
"id": "411787bc",
|
25
|
+
"metadata": {},
|
26
|
+
"outputs": [],
|
27
|
+
"source": [
|
28
|
+
"df=pd.read_csv('data/bill-data.csv')\n",
|
29
|
+
"display(df.head())"
|
30
|
+
]
|
31
|
+
},
|
32
|
+
{
|
33
|
+
"cell_type": "code",
|
34
|
+
"execution_count": null,
|
35
|
+
"id": "af7abd2d",
|
36
|
+
"metadata": {},
|
37
|
+
"outputs": [],
|
38
|
+
"source": [
|
39
|
+
"df['Date']=pd.to_datetime(df['Date'])\n",
|
40
|
+
"df"
|
41
|
+
]
|
42
|
+
},
|
43
|
+
{
|
44
|
+
"cell_type": "code",
|
45
|
+
"execution_count": null,
|
46
|
+
"id": "10b20a75",
|
47
|
+
"metadata": {},
|
48
|
+
"outputs": [],
|
49
|
+
"source": [
|
50
|
+
"print(df.isnull().sum())"
|
51
|
+
]
|
52
|
+
},
|
53
|
+
{
|
54
|
+
"cell_type": "code",
|
55
|
+
"execution_count": null,
|
56
|
+
"id": "d8a439ba",
|
57
|
+
"metadata": {},
|
58
|
+
"outputs": [],
|
59
|
+
"source": [
|
60
|
+
"display(df.describe())"
|
61
|
+
]
|
62
|
+
},
|
63
|
+
{
|
64
|
+
"cell_type": "code",
|
65
|
+
"execution_count": null,
|
66
|
+
"id": "d7ef84ea",
|
67
|
+
"metadata": {},
|
68
|
+
"outputs": [],
|
69
|
+
"source": [
|
70
|
+
"df.info()"
|
71
|
+
]
|
72
|
+
},
|
73
|
+
{
|
74
|
+
"cell_type": "code",
|
75
|
+
"execution_count": null,
|
76
|
+
"id": "f79409e8",
|
77
|
+
"metadata": {},
|
78
|
+
"outputs": [],
|
79
|
+
"source": [
|
80
|
+
"plt.plot(df['Bill Charge'],label='Bill Charge')\n",
|
81
|
+
"plt.xlabel('Date')\n",
|
82
|
+
"plt.ylabel(\"Bill Charge\")\n",
|
83
|
+
"plt.legend()\n",
|
84
|
+
"plt.title('Bill Charge By Date')\n",
|
85
|
+
"plt.show()"
|
86
|
+
]
|
87
|
+
},
|
88
|
+
{
|
89
|
+
"cell_type": "code",
|
90
|
+
"execution_count": null,
|
91
|
+
"id": "fbf0d907",
|
92
|
+
"metadata": {},
|
93
|
+
"outputs": [],
|
94
|
+
"source": [
|
95
|
+
"def stationarity_test(data):\n",
|
96
|
+
" data=adfuller(data)\n",
|
97
|
+
" print(f'Result : The Data is {\"not\" if data[1]<0.05 else \"\"} Stationary')\n",
|
98
|
+
"\n",
|
99
|
+
"stationarity_test(df['Bill Charge'])"
|
100
|
+
]
|
101
|
+
},
|
102
|
+
{
|
103
|
+
"cell_type": "code",
|
104
|
+
"execution_count": null,
|
105
|
+
"id": "7965415d",
|
106
|
+
"metadata": {},
|
107
|
+
"outputs": [],
|
108
|
+
"source": [
|
109
|
+
"plot_acf(df['Bill Charge'],lags=7)\n",
|
110
|
+
"plot_pacf(df['Bill Charge'],lags=7)\n",
|
111
|
+
"plt.show()"
|
112
|
+
]
|
113
|
+
},
|
114
|
+
{
|
115
|
+
"cell_type": "code",
|
116
|
+
"execution_count": null,
|
117
|
+
"id": "7c5c5023",
|
118
|
+
"metadata": {},
|
119
|
+
"outputs": [],
|
120
|
+
"source": [
|
121
|
+
"arma_model=ARIMA(df['Bill Charge'],order=(2,0,0))\n",
|
122
|
+
"arma_fit=arma_model.fit()\n",
|
123
|
+
"display(arma_fit.summary())"
|
124
|
+
]
|
125
|
+
},
|
126
|
+
{
|
127
|
+
"cell_type": "code",
|
128
|
+
"execution_count": null,
|
129
|
+
"id": "46da16b9",
|
130
|
+
"metadata": {},
|
131
|
+
"outputs": [],
|
132
|
+
"source": [
|
133
|
+
"arima_model=ARIMA(df['Bill Charge'],order=(2,1,0))\n",
|
134
|
+
"arima_fit=arima_model.fit()\n",
|
135
|
+
"display(arima_fit.summary())"
|
136
|
+
]
|
137
|
+
},
|
138
|
+
{
|
139
|
+
"cell_type": "code",
|
140
|
+
"execution_count": null,
|
141
|
+
"id": "1e629e66",
|
142
|
+
"metadata": {},
|
143
|
+
"outputs": [],
|
144
|
+
"source": [
|
145
|
+
"sarima_model=sarimax.SARIMAX(df['Bill Charge'],order=(1,1,0),seasonal_order=(1,2,0,4))\n",
|
146
|
+
"sarima_fit=sarima_model.fit()\n",
|
147
|
+
"display(sarima_fit.summary())"
|
148
|
+
]
|
149
|
+
},
|
150
|
+
{
|
151
|
+
"cell_type": "code",
|
152
|
+
"execution_count": null,
|
153
|
+
"id": "e3ae7519",
|
154
|
+
"metadata": {},
|
155
|
+
"outputs": [],
|
156
|
+
"source": [
|
157
|
+
"display(arma_fit.aic,arima_fit.aic,sarima_fit.aic)"
|
158
|
+
]
|
159
|
+
},
|
160
|
+
{
|
161
|
+
"cell_type": "code",
|
162
|
+
"execution_count": null,
|
163
|
+
"id": "e9e40bbd",
|
164
|
+
"metadata": {},
|
165
|
+
"outputs": [],
|
166
|
+
"source": [
|
167
|
+
"display(arma_fit.bic,arima_fit.bic,sarima_fit.bic)"
|
168
|
+
]
|
169
|
+
},
|
170
|
+
{
|
171
|
+
"cell_type": "code",
|
172
|
+
"execution_count": null,
|
173
|
+
"id": "8773dcb6",
|
174
|
+
"metadata": {},
|
175
|
+
"outputs": [],
|
176
|
+
"source": [
|
177
|
+
"display(arma_fit.hqic,arima_fit.hqic,sarima_fit.hqic)"
|
178
|
+
]
|
179
|
+
},
|
180
|
+
{
|
181
|
+
"cell_type": "code",
|
182
|
+
"execution_count": null,
|
183
|
+
"id": "50ca8a19",
|
184
|
+
"metadata": {},
|
185
|
+
"outputs": [],
|
186
|
+
"source": [
|
187
|
+
"sarima_fit.resid.plot(color='teal')\n",
|
188
|
+
"plt.title('Residual Plot')\n",
|
189
|
+
"plt.show()"
|
190
|
+
]
|
191
|
+
},
|
192
|
+
{
|
193
|
+
"cell_type": "code",
|
194
|
+
"execution_count": null,
|
195
|
+
"id": "6b6ddce5",
|
196
|
+
"metadata": {},
|
197
|
+
"outputs": [],
|
198
|
+
"source": [
|
199
|
+
"plt.plot(df['Bill Charge'],label='Original',color='blue')\n",
|
200
|
+
"plt.plot(sarima_fit.predict(),label='Forecast',color='red')\n",
|
201
|
+
"plt.title(\"Forecast\")\n",
|
202
|
+
"plt.legend()\n",
|
203
|
+
"plt.show()"
|
204
|
+
]
|
205
|
+
},
|
206
|
+
{
|
207
|
+
"cell_type": "code",
|
208
|
+
"execution_count": null,
|
209
|
+
"id": "d3839c19",
|
210
|
+
"metadata": {},
|
211
|
+
"outputs": [],
|
212
|
+
"source": [
|
213
|
+
"print(f\"r2_Score : {r2_score(df['Bill Charge'],sarima_fit.predict())}\")\n",
|
214
|
+
"print(f\"Mean Squared Error : {mean_squared_error(df['Bill Charge'],sarima_fit.predict())}\")"
|
215
|
+
]
|
216
|
+
}
|
217
|
+
],
|
218
|
+
"metadata": {
|
219
|
+
"kernelspec": {
|
220
|
+
"display_name": "Python 3 (ipykernel)",
|
221
|
+
"language": "python",
|
222
|
+
"name": "python3"
|
223
|
+
},
|
224
|
+
"language_info": {
|
225
|
+
"codemirror_mode": {
|
226
|
+
"name": "ipython",
|
227
|
+
"version": 3
|
228
|
+
},
|
229
|
+
"file_extension": ".py",
|
230
|
+
"mimetype": "text/x-python",
|
231
|
+
"name": "python",
|
232
|
+
"nbconvert_exporter": "python",
|
233
|
+
"pygments_lexer": "ipython3",
|
234
|
+
"version": "3.12.4"
|
235
|
+
}
|
236
|
+
},
|
237
|
+
"nbformat": 4,
|
238
|
+
"nbformat_minor": 5
|
239
|
+
}
|
@@ -3,198 +3,216 @@
|
|
3
3
|
{
|
4
4
|
"cell_type": "code",
|
5
5
|
"execution_count": null,
|
6
|
-
"id": "
|
6
|
+
"id": "3d63e9c0",
|
7
7
|
"metadata": {},
|
8
8
|
"outputs": [],
|
9
9
|
"source": [
|
10
|
-
"import pandas as pd
|
10
|
+
"import pandas as pd\n",
|
11
11
|
"import numpy as np\n",
|
12
12
|
"import matplotlib.pyplot as plt\n",
|
13
|
-
"import seaborn as sns"
|
13
|
+
"import seaborn as sns\n",
|
14
|
+
"from statsmodels.graphics.tsaplots import plot_acf,plot_pacf\n",
|
15
|
+
"from statsmodels.tsa.stattools import adfuller\n",
|
16
|
+
"from statsmodels.tsa.arima.model import ARIMA\n",
|
17
|
+
"from statsmodels.tsa.statespace import sarimax\n",
|
18
|
+
"from sklearn.metrics import r2_score,mean_squared_error"
|
14
19
|
]
|
15
20
|
},
|
16
21
|
{
|
17
22
|
"cell_type": "code",
|
18
23
|
"execution_count": null,
|
19
|
-
"id": "
|
24
|
+
"id": "411787bc",
|
20
25
|
"metadata": {},
|
21
26
|
"outputs": [],
|
22
27
|
"source": [
|
23
|
-
"
|
24
|
-
"
|
25
|
-
"auto"
|
28
|
+
"df=pd.read_csv('data/daily-min-temperatures.csv')\n",
|
29
|
+
"display(df.head())"
|
26
30
|
]
|
27
31
|
},
|
28
32
|
{
|
29
33
|
"cell_type": "code",
|
30
34
|
"execution_count": null,
|
31
|
-
"id": "
|
35
|
+
"id": "af7abd2d",
|
32
36
|
"metadata": {},
|
33
37
|
"outputs": [],
|
34
38
|
"source": [
|
35
|
-
"
|
39
|
+
"df['Date']=pd.to_datetime(df['Date'])\n",
|
40
|
+
"df"
|
36
41
|
]
|
37
42
|
},
|
38
43
|
{
|
39
44
|
"cell_type": "code",
|
40
45
|
"execution_count": null,
|
41
|
-
"id": "
|
46
|
+
"id": "10b20a75",
|
42
47
|
"metadata": {},
|
43
48
|
"outputs": [],
|
44
49
|
"source": [
|
45
|
-
"
|
50
|
+
"print(df.isnull().sum())"
|
46
51
|
]
|
47
52
|
},
|
48
53
|
{
|
49
54
|
"cell_type": "code",
|
50
55
|
"execution_count": null,
|
51
|
-
"id": "
|
56
|
+
"id": "d8a439ba",
|
52
57
|
"metadata": {},
|
53
58
|
"outputs": [],
|
54
59
|
"source": [
|
55
|
-
"
|
60
|
+
"display(df.describe())"
|
56
61
|
]
|
57
62
|
},
|
58
63
|
{
|
59
64
|
"cell_type": "code",
|
60
65
|
"execution_count": null,
|
61
|
-
"id": "
|
66
|
+
"id": "d7ef84ea",
|
62
67
|
"metadata": {},
|
63
68
|
"outputs": [],
|
64
69
|
"source": [
|
65
|
-
"
|
70
|
+
"df.info()"
|
66
71
|
]
|
67
72
|
},
|
68
73
|
{
|
69
74
|
"cell_type": "code",
|
70
75
|
"execution_count": null,
|
71
|
-
"id": "
|
76
|
+
"id": "f79409e8",
|
72
77
|
"metadata": {},
|
73
78
|
"outputs": [],
|
74
79
|
"source": [
|
75
|
-
"
|
80
|
+
"plt.plot(df['Temp'],label='Temp')\n",
|
81
|
+
"plt.xlabel('Date')\n",
|
82
|
+
"plt.ylabel(\"Temp\")\n",
|
83
|
+
"plt.legend()\n",
|
84
|
+
"plt.title('Temp By Date')\n",
|
85
|
+
"plt.show()"
|
76
86
|
]
|
77
87
|
},
|
78
88
|
{
|
79
89
|
"cell_type": "code",
|
80
90
|
"execution_count": null,
|
81
|
-
"id": "
|
91
|
+
"id": "fbf0d907",
|
82
92
|
"metadata": {},
|
83
93
|
"outputs": [],
|
84
94
|
"source": [
|
85
|
-
"
|
95
|
+
"def stationarity_test(data):\n",
|
96
|
+
" data=adfuller(data)\n",
|
97
|
+
" print(f'Result : The Data is {\"not\" if data[1]<0.05 else \"\"} Stationary')\n",
|
98
|
+
"\n",
|
99
|
+
"stationarity_test(df['Temp'])"
|
86
100
|
]
|
87
101
|
},
|
88
102
|
{
|
89
103
|
"cell_type": "code",
|
90
104
|
"execution_count": null,
|
91
|
-
"id": "
|
105
|
+
"id": "7965415d",
|
92
106
|
"metadata": {},
|
93
107
|
"outputs": [],
|
94
108
|
"source": [
|
95
|
-
"
|
96
|
-
"
|
109
|
+
"plot_acf(df['Temp'],lags=7)\n",
|
110
|
+
"plot_pacf(df['Temp'],lags=7)\n",
|
111
|
+
"plt.show()"
|
97
112
|
]
|
98
113
|
},
|
99
114
|
{
|
100
115
|
"cell_type": "code",
|
101
116
|
"execution_count": null,
|
102
|
-
"id": "
|
117
|
+
"id": "7c5c5023",
|
103
118
|
"metadata": {},
|
104
119
|
"outputs": [],
|
105
120
|
"source": [
|
106
|
-
"
|
121
|
+
"arma_model=ARIMA(df['Temp'],order=(2,0,0))\n",
|
122
|
+
"arma_fit=arma_model.fit()\n",
|
123
|
+
"display(arma_fit.summary())"
|
107
124
|
]
|
108
125
|
},
|
109
126
|
{
|
110
127
|
"cell_type": "code",
|
111
128
|
"execution_count": null,
|
112
|
-
"id": "
|
129
|
+
"id": "46da16b9",
|
113
130
|
"metadata": {},
|
114
131
|
"outputs": [],
|
115
132
|
"source": [
|
116
|
-
"
|
133
|
+
"arima_model=ARIMA(df['Temp'],order=(2,1,0))\n",
|
134
|
+
"arima_fit=arima_model.fit()\n",
|
135
|
+
"display(arima_fit.summary())"
|
117
136
|
]
|
118
137
|
},
|
119
138
|
{
|
120
139
|
"cell_type": "code",
|
121
140
|
"execution_count": null,
|
122
|
-
"id": "
|
141
|
+
"id": "1e629e66",
|
123
142
|
"metadata": {},
|
124
143
|
"outputs": [],
|
125
144
|
"source": [
|
126
|
-
"
|
127
|
-
"
|
145
|
+
"sarima_model=sarimax.SARIMAX(df['Temp'],order=(1,1,0),seasonal_order=(1,2,0,4))\n",
|
146
|
+
"sarima_fit=sarima_model.fit()\n",
|
147
|
+
"display(sarima_fit.summary())"
|
128
148
|
]
|
129
149
|
},
|
130
150
|
{
|
131
151
|
"cell_type": "code",
|
132
152
|
"execution_count": null,
|
133
|
-
"id": "
|
153
|
+
"id": "e3ae7519",
|
134
154
|
"metadata": {},
|
135
155
|
"outputs": [],
|
136
156
|
"source": [
|
137
|
-
"
|
138
|
-
"plt.xlabel(\"log.annual.inc\")\n",
|
139
|
-
"plt.ylabel(\"installment\")\n",
|
140
|
-
"plt.plot(au['log.annual.inc'],au['installment'],color=\"blue\")\n",
|
141
|
-
"plt.show(10,20)"
|
157
|
+
"display(arma_fit.aic,arima_fit.aic,sarima_fit.aic)"
|
142
158
|
]
|
143
159
|
},
|
144
160
|
{
|
145
161
|
"cell_type": "code",
|
146
162
|
"execution_count": null,
|
147
|
-
"id": "
|
163
|
+
"id": "e9e40bbd",
|
148
164
|
"metadata": {},
|
149
165
|
"outputs": [],
|
150
166
|
"source": [
|
151
|
-
"
|
152
|
-
"plt.xlabel(\"log.annual.inc\")\n",
|
153
|
-
"plt.ylabel(\"installment\")\n",
|
154
|
-
"plt.bar(au['log.annual.inc'],au['installment'],color=\"green\")\n",
|
155
|
-
"plt.show()\n"
|
167
|
+
"display(arma_fit.bic,arima_fit.bic,sarima_fit.bic)"
|
156
168
|
]
|
157
169
|
},
|
158
170
|
{
|
159
171
|
"cell_type": "code",
|
160
172
|
"execution_count": null,
|
161
|
-
"id": "
|
173
|
+
"id": "8773dcb6",
|
162
174
|
"metadata": {},
|
163
175
|
"outputs": [],
|
164
176
|
"source": [
|
165
|
-
"
|
177
|
+
"display(arma_fit.hqic,arima_fit.hqic,sarima_fit.hqic)"
|
166
178
|
]
|
167
179
|
},
|
168
180
|
{
|
169
181
|
"cell_type": "code",
|
170
182
|
"execution_count": null,
|
171
|
-
"id": "
|
183
|
+
"id": "50ca8a19",
|
172
184
|
"metadata": {},
|
173
185
|
"outputs": [],
|
174
186
|
"source": [
|
175
|
-
"
|
187
|
+
"arma_fit.resid.plot(color='teal')\n",
|
188
|
+
"plt.title('Residual Plot')\n",
|
176
189
|
"plt.show()"
|
177
190
|
]
|
178
191
|
},
|
179
192
|
{
|
180
193
|
"cell_type": "code",
|
181
194
|
"execution_count": null,
|
182
|
-
"id": "
|
195
|
+
"id": "6b6ddce5",
|
183
196
|
"metadata": {},
|
184
197
|
"outputs": [],
|
185
198
|
"source": [
|
186
|
-
"plt.
|
187
|
-
"
|
199
|
+
"plt.plot(df['Temp'],label='Original',color='blue')\n",
|
200
|
+
"plt.plot(arma_fit.predict(),label='Forecast',color='red')\n",
|
201
|
+
"plt.title(\"Forecast\")\n",
|
202
|
+
"plt.legend()\n",
|
188
203
|
"plt.show()"
|
189
204
|
]
|
190
205
|
},
|
191
206
|
{
|
192
207
|
"cell_type": "code",
|
193
208
|
"execution_count": null,
|
194
|
-
"id": "
|
209
|
+
"id": "d3839c19",
|
195
210
|
"metadata": {},
|
196
211
|
"outputs": [],
|
197
|
-
"source": [
|
212
|
+
"source": [
|
213
|
+
"print(f\"r2_Score : {r2_score(df['Temp'],arma_fit.predict())}\")\n",
|
214
|
+
"print(f\"Mean Squared Error : {mean_squared_error(df['Temp'],arma_fit.predict())}\")"
|
215
|
+
]
|
198
216
|
}
|
199
217
|
],
|
200
218
|
"metadata": {
|
@@ -0,0 +1,21 @@
|
|
1
|
+
Date,Patient Name,Age,Bill Charge
|
2
|
+
1/1/2023,Bob,33,100.5
|
3
|
+
1/4/2023,Bob,24,250
|
4
|
+
1/7/2023,Bob,56,75
|
5
|
+
1/7/2023,Eve,40,300
|
6
|
+
1/9/2023,Charlie,40,150.5
|
7
|
+
1/10/2023,Charlie,24,200
|
8
|
+
1/11/2023,Bob,40,175
|
9
|
+
1/11/2023,Eve,40,400
|
10
|
+
1/11/2023,Bob,40,120
|
11
|
+
1/12/2023,Charlie,42,180
|
12
|
+
1/14/2023,Charlie,24,90
|
13
|
+
1/17/2023,Alice,33,50
|
14
|
+
1/18/2023,Eve,24,25
|
15
|
+
1/18/2023,Diana,24,75
|
16
|
+
1/20/2023,Eve,40,325
|
17
|
+
1/21/2023,Bob,24,60
|
18
|
+
1/21/2023,Diana,56,60
|
19
|
+
1/26/2023,Bob,42,100
|
20
|
+
1/29/2023,Diana,40,250
|
21
|
+
1/30/2023,Alice,33,40
|