noshot 0.4.0__py3-none-any.whl → 0.9.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (54) hide show
  1. noshot/data/ML TS XAI/TS/10. Seasonal ARIMA Forecasting.ipynb +246 -0
  2. noshot/data/ML TS XAI/TS/11. Multivariate ARIMA Forecasting.ipynb +228 -0
  3. noshot/data/ML TS XAI/TS/6. ACF PACF.ipynb +77 -0
  4. noshot/data/ML TS XAI/TS/7. Differencing.ipynb +167 -0
  5. noshot/data/ML TS XAI/TS/8. ARMA Forecasting.ipynb +197 -0
  6. noshot/data/ML TS XAI/TS/9. ARIMA Forecasting.ipynb +220 -0
  7. noshot/main.py +18 -18
  8. noshot/utils/__init__.py +2 -2
  9. noshot/utils/shell_utils.py +56 -56
  10. {noshot-0.4.0.dist-info → noshot-0.9.0.dist-info}/METADATA +58 -55
  11. noshot-0.9.0.dist-info/RECORD +15 -0
  12. {noshot-0.4.0.dist-info → noshot-0.9.0.dist-info}/WHEEL +1 -1
  13. {noshot-0.4.0.dist-info → noshot-0.9.0.dist-info/licenses}/LICENSE.txt +20 -20
  14. noshot/data/ML TS XAI/CIA-1-Delhi Boy.ipynb +0 -535
  15. noshot/data/ML TS XAI/Football Player/4.ipynb +0 -395
  16. noshot/data/ML TS XAI/ML/1. PCA - EDA.ipynb +0 -207
  17. noshot/data/ML TS XAI/ML/2. KNN Classifier.ipynb +0 -287
  18. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis.ipynb +0 -83
  19. noshot/data/ML TS XAI/ML/4. Linear Regression.ipynb +0 -117
  20. noshot/data/ML TS XAI/ML/5. Logistic Regression.ipynb +0 -151
  21. noshot/data/ML TS XAI/ML/6. Bayesian Classifier.ipynb +0 -89
  22. noshot/data/ML TS XAI/ML/data/balance-scale.csv +0 -626
  23. noshot/data/ML TS XAI/ML/data/balance-scale.txt +0 -625
  24. noshot/data/ML TS XAI/ML/data/machine-data.csv +0 -210
  25. noshot/data/ML TS XAI/ML/data/wine-dataset.csv +0 -179
  26. noshot/data/ML TS XAI/ML Additional/Bank.ipynb +0 -74
  27. noshot/data/ML TS XAI/ML Additional/LR.ipynb +0 -69
  28. noshot/data/ML TS XAI/ML Additional/ObesityDataSet_raw_and_data_sinthetic.csv +0 -2112
  29. noshot/data/ML TS XAI/ML Additional/Q4 LR.csv +0 -206
  30. noshot/data/ML TS XAI/ML Additional/Q7 BANK DETAILS.csv +0 -41189
  31. noshot/data/ML TS XAI/ML Additional/airfoil.ipynb +0 -69
  32. noshot/data/ML TS XAI/ML Additional/airfoil_self_noise.dat +0 -1503
  33. noshot/data/ML TS XAI/ML Additional/obesity.ipynb +0 -78
  34. noshot/data/ML TS XAI/ML Additional/voronoicode.ipynb +0 -81
  35. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/1/1.ipynb +0 -133
  36. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/1/Question.txt +0 -12
  37. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/1/airfoil_self_noise.dat +0 -1503
  38. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/2/2.ipynb +0 -139
  39. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/2/Question.txt +0 -12
  40. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/2/pop_failures.dat +0 -143
  41. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/3/3.ipynb +0 -130
  42. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/3/Qu.txt +0 -1
  43. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/3/go_track_tracks.csv +0 -164
  44. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/4/4.ipynb +0 -141
  45. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/4/Wilt.csv +0 -4340
  46. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/4/qu.txt +0 -1
  47. noshot/data/ML TS XAI/ML Lab CIA - Our Class/AllinOne.ipynb +0 -1
  48. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Heart-Disease-UCI-0.ipynb +0 -886
  49. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Housing-0.ipynb +0 -292
  50. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Lab Code Ex 1-4.ipynb +0 -1
  51. noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/Housing.csv +0 -546
  52. noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/heart_disease_uci.csv +0 -921
  53. noshot-0.4.0.dist-info/RECORD +0 -48
  54. {noshot-0.4.0.dist-info → noshot-0.9.0.dist-info}/top_level.txt +0 -0
@@ -1,151 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "0fcc8bb7-4d22-4d3b-b58a-302bb24f8f2e",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import itertools\n",
11
- "import numpy as np\n",
12
- "import pandas as pd\n",
13
- "import matplotlib.pyplot as plt\n",
14
- "from sklearn import linear_model,datasets\n",
15
- "from sklearn.model_selection import train_test_split\n",
16
- "from sklearn.metrics import confusion_matrix\n",
17
- "import warnings\n",
18
- "warnings.filterwarnings('ignore')"
19
- ]
20
- },
21
- {
22
- "cell_type": "code",
23
- "execution_count": null,
24
- "id": "d28e507b-fb15-4058-a161-656859a27c65",
25
- "metadata": {},
26
- "outputs": [],
27
- "source": [
28
- "wine = pd.read_csv('data/wine-dataset.csv')\n",
29
- "print(wine.shape)"
30
- ]
31
- },
32
- {
33
- "cell_type": "code",
34
- "execution_count": null,
35
- "id": "c4e953da-6941-43f2-a9ce-aab907876d45",
36
- "metadata": {},
37
- "outputs": [],
38
- "source": [
39
- "wine.columns"
40
- ]
41
- },
42
- {
43
- "cell_type": "code",
44
- "execution_count": null,
45
- "id": "9ee44a66-dc4a-4c79-9dab-eec60669dd8b",
46
- "metadata": {},
47
- "outputs": [],
48
- "source": [
49
- "X = wine.iloc[:, :13]\n",
50
- "X.head()"
51
- ]
52
- },
53
- {
54
- "cell_type": "code",
55
- "execution_count": null,
56
- "id": "5cfd2fe6-3825-4d95-b606-3b3e2ef685b2",
57
- "metadata": {},
58
- "outputs": [],
59
- "source": [
60
- "y = wine.iloc[:, 13]\n",
61
- "y"
62
- ]
63
- },
64
- {
65
- "cell_type": "code",
66
- "execution_count": null,
67
- "id": "bd9d60dd-8272-46b4-8335-69d9751ed0c7",
68
- "metadata": {},
69
- "outputs": [],
70
- "source": [
71
- "X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=0.30, random_state=7)\n",
72
- "\n",
73
- "log_reg_model = linear_model.LogisticRegression()\n",
74
- "log_reg_model.fit(X_train,y_train)"
75
- ]
76
- },
77
- {
78
- "cell_type": "code",
79
- "execution_count": null,
80
- "id": "7c8fca42-c8d8-4334-9cc4-da4f5e1b0a1e",
81
- "metadata": {},
82
- "outputs": [],
83
- "source": [
84
- "log_reg_base_score = log_reg_model.score(X_test,y_test)\n",
85
- "print(\"The score for the Logistic Regression Model is : \", log_reg_base_score)"
86
- ]
87
- },
88
- {
89
- "cell_type": "code",
90
- "execution_count": null,
91
- "id": "61bbb23e-cb29-41ae-9ea3-82e8d465c7f2",
92
- "metadata": {},
93
- "outputs": [],
94
- "source": [
95
- "cm = confusion_matrix(y_test, log_reg_model.predict(X_test))\n",
96
- "print(cm)"
97
- ]
98
- },
99
- {
100
- "cell_type": "code",
101
- "execution_count": null,
102
- "id": "600ec8f2-34e1-4be7-8ef5-fe53ff673f41",
103
- "metadata": {
104
- "scrolled": true
105
- },
106
- "outputs": [],
107
- "source": [
108
- "X = X.iloc[:, :2]\n",
109
- "Y = y\n",
110
- "\n",
111
- "log_reg_model.fit(X,Y)\n",
112
- "x_min, x_max = X.iloc[:, 0].min() - .5, X.iloc[:, 0].max() + .5\n",
113
- "y_min, y_max = X.iloc[:, 1].min() - .5, X.iloc[:, 1].max() + .5\n",
114
- "xx, yy = np.meshgrid(np.arange(x_min, x_max, .01), np.arange(y_min, y_max, .01))\n",
115
- "Z = log_reg_model.predict(np.c_[xx.ravel(), yy.ravel()])\n",
116
- "Z = Z.reshape(xx.shape)\n",
117
- "plt.figure(1, figsize = (4, 3))\n",
118
- "plt.pcolormesh(xx, yy, Z, cmap = plt.cm.Paired)\n",
119
- "plt.scatter(X.iloc[:, 0], X.iloc[:, 1], c = Y, edgecolors = 'k', cmap = plt.cm.Paired)\n",
120
- "plt.xlabel('X')\n",
121
- "plt.ylabel('Y')\n",
122
- "plt.xlim(xx.min(), xx.max())\n",
123
- "plt.ylim(yy.min(), yy.max())\n",
124
- "plt.xticks(())\n",
125
- "plt.yticks(())\n",
126
- "plt.show()"
127
- ]
128
- }
129
- ],
130
- "metadata": {
131
- "kernelspec": {
132
- "display_name": "Python 3 (ipykernel)",
133
- "language": "python",
134
- "name": "python3"
135
- },
136
- "language_info": {
137
- "codemirror_mode": {
138
- "name": "ipython",
139
- "version": 3
140
- },
141
- "file_extension": ".py",
142
- "mimetype": "text/x-python",
143
- "name": "python",
144
- "nbconvert_exporter": "python",
145
- "pygments_lexer": "ipython3",
146
- "version": "3.12.4"
147
- }
148
- },
149
- "nbformat": 4,
150
- "nbformat_minor": 5
151
- }
@@ -1,89 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "939c616d-2779-4e21-adcf-1d070898d65b",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "from sklearn import datasets\n",
11
- "from sklearn.metrics import confusion_matrix\n",
12
- "from sklearn.model_selection import train_test_split\n",
13
- "from sklearn.naive_bayes import GaussianNB\n",
14
- "import pandas as pd"
15
- ]
16
- },
17
- {
18
- "cell_type": "code",
19
- "execution_count": null,
20
- "id": "17720a0d-e788-4b1d-b2b2-a542f6b824a2",
21
- "metadata": {},
22
- "outputs": [],
23
- "source": [
24
- "wine = pd.read_csv('data/wine-dataset.csv')\n",
25
- "print(wine.shape)"
26
- ]
27
- },
28
- {
29
- "cell_type": "code",
30
- "execution_count": null,
31
- "id": "a050923e-4382-4ff7-93bf-446b117c0ef5",
32
- "metadata": {},
33
- "outputs": [],
34
- "source": [
35
- "X = wine.iloc[:, :13]\n",
36
- "X.head()"
37
- ]
38
- },
39
- {
40
- "cell_type": "code",
41
- "execution_count": null,
42
- "id": "9f1a4355-718e-40ed-b892-3e3d03c4ef3c",
43
- "metadata": {},
44
- "outputs": [],
45
- "source": [
46
- "y = wine.iloc[:, 13]\n",
47
- "y"
48
- ]
49
- },
50
- {
51
- "cell_type": "code",
52
- "execution_count": null,
53
- "id": "dd3f31ef-c0d2-48dd-9fb7-338c10f9fbf9",
54
- "metadata": {},
55
- "outputs": [],
56
- "source": [
57
- "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)\n",
58
- "\n",
59
- "gnb = GaussianNB().fit(X_train, y_train)\n",
60
- "gnb_predictions = gnb.predict(X_test)\n",
61
- "accuracy = gnb.score(X_test, y_test)\n",
62
- "accuracy\n",
63
- "cm = confusion_matrix(y_test, gnb_predictions)\n",
64
- "cm"
65
- ]
66
- }
67
- ],
68
- "metadata": {
69
- "kernelspec": {
70
- "display_name": "Python 3 (ipykernel)",
71
- "language": "python",
72
- "name": "python3"
73
- },
74
- "language_info": {
75
- "codemirror_mode": {
76
- "name": "ipython",
77
- "version": 3
78
- },
79
- "file_extension": ".py",
80
- "mimetype": "text/x-python",
81
- "name": "python",
82
- "nbconvert_exporter": "python",
83
- "pygments_lexer": "ipython3",
84
- "version": "3.12.4"
85
- }
86
- },
87
- "nbformat": 4,
88
- "nbformat_minor": 5
89
- }