noshot 0.4.0__py3-none-any.whl → 0.9.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (54) hide show
  1. noshot/data/ML TS XAI/TS/10. Seasonal ARIMA Forecasting.ipynb +246 -0
  2. noshot/data/ML TS XAI/TS/11. Multivariate ARIMA Forecasting.ipynb +228 -0
  3. noshot/data/ML TS XAI/TS/6. ACF PACF.ipynb +77 -0
  4. noshot/data/ML TS XAI/TS/7. Differencing.ipynb +167 -0
  5. noshot/data/ML TS XAI/TS/8. ARMA Forecasting.ipynb +197 -0
  6. noshot/data/ML TS XAI/TS/9. ARIMA Forecasting.ipynb +220 -0
  7. noshot/main.py +18 -18
  8. noshot/utils/__init__.py +2 -2
  9. noshot/utils/shell_utils.py +56 -56
  10. {noshot-0.4.0.dist-info → noshot-0.9.0.dist-info}/METADATA +58 -55
  11. noshot-0.9.0.dist-info/RECORD +15 -0
  12. {noshot-0.4.0.dist-info → noshot-0.9.0.dist-info}/WHEEL +1 -1
  13. {noshot-0.4.0.dist-info → noshot-0.9.0.dist-info/licenses}/LICENSE.txt +20 -20
  14. noshot/data/ML TS XAI/CIA-1-Delhi Boy.ipynb +0 -535
  15. noshot/data/ML TS XAI/Football Player/4.ipynb +0 -395
  16. noshot/data/ML TS XAI/ML/1. PCA - EDA.ipynb +0 -207
  17. noshot/data/ML TS XAI/ML/2. KNN Classifier.ipynb +0 -287
  18. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis.ipynb +0 -83
  19. noshot/data/ML TS XAI/ML/4. Linear Regression.ipynb +0 -117
  20. noshot/data/ML TS XAI/ML/5. Logistic Regression.ipynb +0 -151
  21. noshot/data/ML TS XAI/ML/6. Bayesian Classifier.ipynb +0 -89
  22. noshot/data/ML TS XAI/ML/data/balance-scale.csv +0 -626
  23. noshot/data/ML TS XAI/ML/data/balance-scale.txt +0 -625
  24. noshot/data/ML TS XAI/ML/data/machine-data.csv +0 -210
  25. noshot/data/ML TS XAI/ML/data/wine-dataset.csv +0 -179
  26. noshot/data/ML TS XAI/ML Additional/Bank.ipynb +0 -74
  27. noshot/data/ML TS XAI/ML Additional/LR.ipynb +0 -69
  28. noshot/data/ML TS XAI/ML Additional/ObesityDataSet_raw_and_data_sinthetic.csv +0 -2112
  29. noshot/data/ML TS XAI/ML Additional/Q4 LR.csv +0 -206
  30. noshot/data/ML TS XAI/ML Additional/Q7 BANK DETAILS.csv +0 -41189
  31. noshot/data/ML TS XAI/ML Additional/airfoil.ipynb +0 -69
  32. noshot/data/ML TS XAI/ML Additional/airfoil_self_noise.dat +0 -1503
  33. noshot/data/ML TS XAI/ML Additional/obesity.ipynb +0 -78
  34. noshot/data/ML TS XAI/ML Additional/voronoicode.ipynb +0 -81
  35. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/1/1.ipynb +0 -133
  36. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/1/Question.txt +0 -12
  37. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/1/airfoil_self_noise.dat +0 -1503
  38. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/2/2.ipynb +0 -139
  39. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/2/Question.txt +0 -12
  40. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/2/pop_failures.dat +0 -143
  41. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/3/3.ipynb +0 -130
  42. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/3/Qu.txt +0 -1
  43. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/3/go_track_tracks.csv +0 -164
  44. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/4/4.ipynb +0 -141
  45. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/4/Wilt.csv +0 -4340
  46. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/4/qu.txt +0 -1
  47. noshot/data/ML TS XAI/ML Lab CIA - Our Class/AllinOne.ipynb +0 -1
  48. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Heart-Disease-UCI-0.ipynb +0 -886
  49. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Housing-0.ipynb +0 -292
  50. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Lab Code Ex 1-4.ipynb +0 -1
  51. noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/Housing.csv +0 -546
  52. noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/heart_disease_uci.csv +0 -921
  53. noshot-0.4.0.dist-info/RECORD +0 -48
  54. {noshot-0.4.0.dist-info → noshot-0.9.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,167 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "0ac778c2-495b-4613-80ca-d6be2b71e598",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import pandas as pd\n",
11
+ "import numpy as np\n",
12
+ "import matplotlib.pyplot as plt"
13
+ ]
14
+ },
15
+ {
16
+ "cell_type": "code",
17
+ "execution_count": null,
18
+ "id": "a843538d-035e-4a90-b67b-1fa647c22f70",
19
+ "metadata": {},
20
+ "outputs": [],
21
+ "source": [
22
+ "df = pd.read_csv('daily-min-temperatures.csv', parse_dates = ['Date'], index_col = 'Date')\n",
23
+ "df.head()"
24
+ ]
25
+ },
26
+ {
27
+ "cell_type": "code",
28
+ "execution_count": null,
29
+ "id": "c3aff0e1-9c54-474f-83ea-2b6bb632bd3f",
30
+ "metadata": {},
31
+ "outputs": [],
32
+ "source": [
33
+ "df.plot(title = 'Daily Minimum Temperatures', figsize = (14, 8), legend = None)\n",
34
+ "plt.xlabel('Date')\n",
35
+ "plt.ylabel('Temperature (°C)')\n",
36
+ "plt.show()"
37
+ ]
38
+ },
39
+ {
40
+ "cell_type": "code",
41
+ "execution_count": null,
42
+ "id": "5d08b196-75c8-473d-b77e-85008048d590",
43
+ "metadata": {},
44
+ "outputs": [],
45
+ "source": [
46
+ "differenced_series = df.diff(periods=1) #lag-1 difference\n",
47
+ "plt.subplot(2, 1, 1)\n",
48
+ "plt.plot(df, label = \"Original Series\")\n",
49
+ "plt.title(\"Original Daily Minimum Temperatures\")\n",
50
+ "plt.grid()\n",
51
+ "\n",
52
+ "plt.subplot(2, 1, 2)\n",
53
+ "plt.plot(differenced_series, label = \"Differneced Series\", color=\"green\")\n",
54
+ "plt.title(\"Differneced Daily Minimum Temperatures\")\n",
55
+ "plt.grid()\n",
56
+ "\n",
57
+ "plt.tight_layout()\n",
58
+ "plt.show()"
59
+ ]
60
+ },
61
+ {
62
+ "cell_type": "code",
63
+ "execution_count": null,
64
+ "id": "800dd56a-1b3f-4cdd-8fac-802048d1160b",
65
+ "metadata": {},
66
+ "outputs": [],
67
+ "source": [
68
+ "X = df.values\n",
69
+ "diff = []\n",
70
+ "days_in_year = 365\n",
71
+ "for i in range(days_in_year, len(X)):\n",
72
+ " value = X[i] - X[i - days_in_year]\n",
73
+ " diff.append(value)\n",
74
+ "plt.plot(diff)\n",
75
+ "plt.show()"
76
+ ]
77
+ },
78
+ {
79
+ "cell_type": "code",
80
+ "execution_count": null,
81
+ "id": "1dc499f8-4c1d-4d65-9e16-3439fe22ef13",
82
+ "metadata": {},
83
+ "outputs": [],
84
+ "source": [
85
+ "df['diff'] = df['Temp'].diff(periods=1)\n",
86
+ "\n",
87
+ "plt.plot(df.index, df['Temp'], label = 'Original')\n",
88
+ "plt.plot(df.index, df['diff'], label = 'Differenced (lag-1)')\n",
89
+ "plt.xlabel('Date')\n",
90
+ "plt.ylabel('Temperature (°C)')\n",
91
+ "plt.title(\"Temperature Time Series with Differencing\")\n",
92
+ "plt.legend()\n",
93
+ "plt.show()"
94
+ ]
95
+ },
96
+ {
97
+ "cell_type": "code",
98
+ "execution_count": null,
99
+ "id": "7f720228-762a-48e3-aa61-733846cca105",
100
+ "metadata": {},
101
+ "outputs": [],
102
+ "source": [
103
+ "df = pd.read_csv('daily-min-temperatures.csv', header=0, index_col = 0)\n",
104
+ "X = [i%365 for i in range(0, len(df))]\n",
105
+ "y = df.values"
106
+ ]
107
+ },
108
+ {
109
+ "cell_type": "code",
110
+ "execution_count": null,
111
+ "id": "87262e57-a216-422d-a768-2d2459df23ff",
112
+ "metadata": {},
113
+ "outputs": [],
114
+ "source": [
115
+ "degree = 4\n",
116
+ "coef = np.polyfit(X, y, degree)\n",
117
+ "print(\"Coefficients:\\n\", coef)"
118
+ ]
119
+ },
120
+ {
121
+ "cell_type": "code",
122
+ "execution_count": null,
123
+ "id": "daec417d-061a-4953-9d2b-206dbc0ba8e7",
124
+ "metadata": {},
125
+ "outputs": [],
126
+ "source": [
127
+ "curve = []\n",
128
+ "for i in range(len(X)):\n",
129
+ " value = coef[-1]\n",
130
+ " for d in range(degree):\n",
131
+ " value += (X[i]**(degree - d)) * coef[d]\n",
132
+ " curve.append(value)\n",
133
+ "\n",
134
+ "values = df.values\n",
135
+ "\n",
136
+ "diff = []\n",
137
+ "for i in range(len(values)):\n",
138
+ " value = values[i] - curve[i]\n",
139
+ " diff.append(value)\n",
140
+ "\n",
141
+ "plt.plot(diff)\n",
142
+ "plt.show()"
143
+ ]
144
+ }
145
+ ],
146
+ "metadata": {
147
+ "kernelspec": {
148
+ "display_name": "Python 3 (ipykernel)",
149
+ "language": "python",
150
+ "name": "python3"
151
+ },
152
+ "language_info": {
153
+ "codemirror_mode": {
154
+ "name": "ipython",
155
+ "version": 3
156
+ },
157
+ "file_extension": ".py",
158
+ "mimetype": "text/x-python",
159
+ "name": "python",
160
+ "nbconvert_exporter": "python",
161
+ "pygments_lexer": "ipython3",
162
+ "version": "3.12.4"
163
+ }
164
+ },
165
+ "nbformat": 4,
166
+ "nbformat_minor": 5
167
+ }
@@ -0,0 +1,197 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "cb446765-5f1b-4827-8eb8-465f275c1821",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import pandas as pd\n",
11
+ "import numpy as np\n",
12
+ "import matplotlib.pyplot as plt\n",
13
+ "from scipy import stats\n",
14
+ "from statsmodels.graphics.tsaplots import plot_acf, plot_pacf\n",
15
+ "from statsmodels.graphics.api import qqplot\n",
16
+ "from statsmodels.tsa.arima.model import ARIMA\n",
17
+ "from statsmodels.api import tsa\n",
18
+ "import warnings\n",
19
+ "warnings.filterwarnings('ignore')"
20
+ ]
21
+ },
22
+ {
23
+ "cell_type": "code",
24
+ "execution_count": null,
25
+ "id": "8166c848-99fb-4883-9534-372e66da163f",
26
+ "metadata": {},
27
+ "outputs": [],
28
+ "source": [
29
+ "df = pd.read_csv('monthly-sunspots.csv', index_col = 'YEAR')\n",
30
+ "df"
31
+ ]
32
+ },
33
+ {
34
+ "cell_type": "code",
35
+ "execution_count": null,
36
+ "id": "5db24ed8-03ae-4136-9d39-b7315daa85a2",
37
+ "metadata": {},
38
+ "outputs": [],
39
+ "source": [
40
+ "df.plot(figsize=(15,8), color = 'purple')"
41
+ ]
42
+ },
43
+ {
44
+ "cell_type": "code",
45
+ "execution_count": null,
46
+ "id": "a9288a36-b6b8-4492-9dc7-276d9a185f63",
47
+ "metadata": {},
48
+ "outputs": [],
49
+ "source": [
50
+ "fig = plt.figure(figsize=(15,8))\n",
51
+ "ax1 = fig.add_subplot(211)\n",
52
+ "fig = plot_acf(df.values.squeeze(), lags=40, ax=ax1, color = 'r', title='Original Autocorrelation')\n",
53
+ "ax2 = fig.add_subplot(212)\n",
54
+ "fig = plot_pacf(df, lags=40, ax=ax2, color = 'g', title='Original Partial Autocorrelation')"
55
+ ]
56
+ },
57
+ {
58
+ "cell_type": "code",
59
+ "execution_count": null,
60
+ "id": "c4044bdd-d852-49af-882a-7cf238abd1b3",
61
+ "metadata": {},
62
+ "outputs": [],
63
+ "source": [
64
+ "arma20 = ARIMA(df, order=(2,0,0)).fit()\n",
65
+ "display(arma20.params)\n",
66
+ "display(arma20.aic, arma20.bic, arma20.hqic)"
67
+ ]
68
+ },
69
+ {
70
+ "cell_type": "code",
71
+ "execution_count": null,
72
+ "id": "653f3938-1703-4cac-969a-1d991aed2081",
73
+ "metadata": {},
74
+ "outputs": [],
75
+ "source": [
76
+ "arma30 = ARIMA(df, order=(3,0,0)).fit()\n",
77
+ "display(arma30.params)\n",
78
+ "display(arma30.aic, arma30.bic, arma30.hqic)"
79
+ ]
80
+ },
81
+ {
82
+ "cell_type": "code",
83
+ "execution_count": null,
84
+ "id": "d5f9d78e-9638-4c1f-bded-1d9a9a377543",
85
+ "metadata": {},
86
+ "outputs": [],
87
+ "source": [
88
+ "fig = plt.figure(figsize=(15,8))\n",
89
+ "ax = fig.add_subplot(111)\n",
90
+ "ax = arma30.resid.plot(ax=ax)"
91
+ ]
92
+ },
93
+ {
94
+ "cell_type": "code",
95
+ "execution_count": null,
96
+ "id": "790a3e2d-486d-4406-aa1b-58c1c50d904f",
97
+ "metadata": {},
98
+ "outputs": [],
99
+ "source": [
100
+ "resid = arma30.resid\n",
101
+ "stats.normaltest(resid)"
102
+ ]
103
+ },
104
+ {
105
+ "cell_type": "code",
106
+ "execution_count": null,
107
+ "id": "20212ba9-efa8-4bb9-88b8-5bd8c1a99a3d",
108
+ "metadata": {},
109
+ "outputs": [],
110
+ "source": [
111
+ "fig = plt.figure(figsize=(15,8))\n",
112
+ "ax = fig.add_subplot(111)\n",
113
+ "fig = qqplot(resid, line='q', ax=ax, fit=True)"
114
+ ]
115
+ },
116
+ {
117
+ "cell_type": "code",
118
+ "execution_count": null,
119
+ "id": "e50e8ade-7027-4ed9-91f4-c4bd9119ad4a",
120
+ "metadata": {},
121
+ "outputs": [],
122
+ "source": [
123
+ "fig = plt.figure(figsize=(15,8))\n",
124
+ "ax1 = fig.add_subplot(211)\n",
125
+ "fig = plot_acf(resid.values.squeeze(), lags=40, ax=ax1, color='g', title='Residual Autocorrelation')\n",
126
+ "ax2 = fig.add_subplot(212)\n",
127
+ "fig = plot_pacf(resid, lags=40, ax=ax2, color='r', title='Residual Partial Autocorrelation')"
128
+ ]
129
+ },
130
+ {
131
+ "cell_type": "code",
132
+ "execution_count": null,
133
+ "id": "f6b5a13b-3ce6-4be3-9e6b-436435d79141",
134
+ "metadata": {},
135
+ "outputs": [],
136
+ "source": [
137
+ "r, q, p = tsa.acf(resid.values.squeeze(), fft=True, qstat=True)\n",
138
+ "data = np.c_[np.arange(1, 25), r[1:], q, p]"
139
+ ]
140
+ },
141
+ {
142
+ "cell_type": "code",
143
+ "execution_count": null,
144
+ "id": "87267a9d-ebfa-4324-b5ae-45c5680af95a",
145
+ "metadata": {},
146
+ "outputs": [],
147
+ "source": [
148
+ "df2 = pd.DataFrame(data, columns = ['Lag', 'AC', 'Q', 'Prob(>Q)'])\n",
149
+ "df2.set_index('Lag')"
150
+ ]
151
+ },
152
+ {
153
+ "cell_type": "code",
154
+ "execution_count": null,
155
+ "id": "6cccb84e-4a8e-4278-b8a5-ed592936d84b",
156
+ "metadata": {},
157
+ "outputs": [],
158
+ "source": [
159
+ "predict_sunspots = arma30.predict('1990', '2012', dynamic=True)\n",
160
+ "predict_sunspots = predict_sunspots['1990-12-31':'2008-12-31']\n",
161
+ "predict_sunspots = pd.DataFrame(predict_sunspots)\n",
162
+ "predict_sunspots.head()"
163
+ ]
164
+ },
165
+ {
166
+ "cell_type": "code",
167
+ "execution_count": null,
168
+ "id": "74f236dc-3062-4395-a444-bbeb411e8460",
169
+ "metadata": {},
170
+ "outputs": [],
171
+ "source": [
172
+ "np.mean((df['1990-12-31':'2008-12-31':1]['SUNACTIVITY'].values - predict_sunspots['predicted_mean'].values))"
173
+ ]
174
+ }
175
+ ],
176
+ "metadata": {
177
+ "kernelspec": {
178
+ "display_name": "Python 3 (ipykernel)",
179
+ "language": "python",
180
+ "name": "python3"
181
+ },
182
+ "language_info": {
183
+ "codemirror_mode": {
184
+ "name": "ipython",
185
+ "version": 3
186
+ },
187
+ "file_extension": ".py",
188
+ "mimetype": "text/x-python",
189
+ "name": "python",
190
+ "nbconvert_exporter": "python",
191
+ "pygments_lexer": "ipython3",
192
+ "version": "3.12.4"
193
+ }
194
+ },
195
+ "nbformat": 4,
196
+ "nbformat_minor": 5
197
+ }
@@ -0,0 +1,220 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "6e3f5839-6844-42c3-a57c-5e6324c7ee43",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import pandas as pd\n",
11
+ "import numpy as np\n",
12
+ "import matplotlib.pyplot as plt\n",
13
+ "from scipy import stats\n",
14
+ "from statsmodels.graphics.tsaplots import plot_acf, plot_pacf\n",
15
+ "from statsmodels.graphics.api import qqplot\n",
16
+ "from statsmodels.tsa.arima.model import ARIMA\n",
17
+ "from statsmodels.tsa.stattools import adfuller\n",
18
+ "from statsmodels.api import tsa\n",
19
+ "from sklearn.metrics import r2_score\n",
20
+ "from sklearn.model_selection import TimeSeriesSplit\n",
21
+ "import warnings\n",
22
+ "warnings.filterwarnings('ignore')"
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "code",
27
+ "execution_count": null,
28
+ "id": "f32d68f1-db8f-4b74-b23e-2f3ad3b56eed",
29
+ "metadata": {},
30
+ "outputs": [],
31
+ "source": [
32
+ "df = pd.read_csv('monthly-sunspots.csv', index_col = 'YEAR')\n",
33
+ "df"
34
+ ]
35
+ },
36
+ {
37
+ "cell_type": "code",
38
+ "execution_count": null,
39
+ "id": "500a40bd-7d8f-4d52-923a-ad76d590216f",
40
+ "metadata": {
41
+ "scrolled": true
42
+ },
43
+ "outputs": [],
44
+ "source": [
45
+ "df.plot(figsize=(15,8), color = 'purple')"
46
+ ]
47
+ },
48
+ {
49
+ "cell_type": "code",
50
+ "execution_count": null,
51
+ "id": "6dc6f56f-93bd-4506-b32a-e0f7361829b7",
52
+ "metadata": {},
53
+ "outputs": [],
54
+ "source": [
55
+ "result = adfuller(df['SUNACTIVITY'])\n",
56
+ "display(result)"
57
+ ]
58
+ },
59
+ {
60
+ "cell_type": "code",
61
+ "execution_count": null,
62
+ "id": "13ece976-8c18-4a2e-b44a-49fa6bc6ff85",
63
+ "metadata": {},
64
+ "outputs": [],
65
+ "source": [
66
+ "pvalue = result[1]\n",
67
+ "if pvalue < 0.05:\n",
68
+ " print(\"Stationary\")\n",
69
+ "else:\n",
70
+ " print(\"Non Stationary\")"
71
+ ]
72
+ },
73
+ {
74
+ "cell_type": "code",
75
+ "execution_count": null,
76
+ "id": "d83cf3f0-244b-4961-8ff4-dedf97e5a766",
77
+ "metadata": {},
78
+ "outputs": [],
79
+ "source": [
80
+ "plot_acf(df['SUNACTIVITY'], lags = 40)\n",
81
+ "plot_pacf(df['SUNACTIVITY'], lags = 40)\n",
82
+ "plt.show()"
83
+ ]
84
+ },
85
+ {
86
+ "cell_type": "code",
87
+ "execution_count": null,
88
+ "id": "5dacfe47-b35b-46e4-a06f-6001040a6405",
89
+ "metadata": {},
90
+ "outputs": [],
91
+ "source": [
92
+ "model = ARIMA(list(df['SUNACTIVITY']), order = (1,0,1))\n",
93
+ "result = model.fit()\n",
94
+ "pred = result.predict()\n",
95
+ "print(r2_score(df, pred))"
96
+ ]
97
+ },
98
+ {
99
+ "cell_type": "code",
100
+ "execution_count": null,
101
+ "id": "171168aa-f0a2-43f1-a195-72b9f3791a53",
102
+ "metadata": {},
103
+ "outputs": [],
104
+ "source": [
105
+ "plt.plot(list(df['SUNACTIVITY']))\n",
106
+ "plt.plot(pred, linestyle = '--')\n",
107
+ "plt.legend(['Actual Sunspots'], ['Predicted SUnspots'])\n",
108
+ "plt.xlabel('Timesteps')\n",
109
+ "plt.show()"
110
+ ]
111
+ },
112
+ {
113
+ "cell_type": "code",
114
+ "execution_count": null,
115
+ "id": "62e74f51-e0b4-4b22-856b-5a28838375b7",
116
+ "metadata": {},
117
+ "outputs": [],
118
+ "source": [
119
+ "ax = pd.Series(result.resid).hist()\n",
120
+ "ax.set_xlabel('Residual')\n",
121
+ "ax.set_ylabel('Number of Occurences')\n",
122
+ "plt.show()"
123
+ ]
124
+ },
125
+ {
126
+ "cell_type": "code",
127
+ "execution_count": null,
128
+ "id": "1cac3ae4-d8f2-49c4-a04d-fabf5290977a",
129
+ "metadata": {},
130
+ "outputs": [],
131
+ "source": [
132
+ "result.summary()"
133
+ ]
134
+ },
135
+ {
136
+ "cell_type": "code",
137
+ "execution_count": null,
138
+ "id": "e3ae6db1-4b9c-4a9b-8286-b6484fabb348",
139
+ "metadata": {},
140
+ "outputs": [],
141
+ "source": [
142
+ "data_array = df.values\n",
143
+ "avg_errors = []\n",
144
+ "for p in range(1):\n",
145
+ " for q in range(13):\n",
146
+ " errors = []\n",
147
+ " tscv = TimeSeriesSplit(test_size = 10)\n",
148
+ " for train_index, test_index in tscv.split(data_array):\n",
149
+ " x_train, x_test = data_array[train_index], data_array[test_index]\n",
150
+ " x_test_orig = x_test\n",
151
+ "\n",
152
+ " fcst = []\n",
153
+ " for stop in range(10):\n",
154
+ " try:\n",
155
+ " mod = ARIMA(x_train, order = (p,0,q))\n",
156
+ " res = mod.fit()\n",
157
+ " fcst.append(res.forecast(steps = 1))\n",
158
+ " except:\n",
159
+ " print(\"Error\")\n",
160
+ " fcst.append(-9999999.)\n",
161
+ " x_train = np.concatenate((x_train, x_test[0:1,]))\n",
162
+ " x_test = x_test[1:]\n",
163
+ " errors.append(r2_score(x_test_orig, fcst))\n",
164
+ " pq_result = [p, q, np.mean(errors)]\n",
165
+ " print(pq_result)\n",
166
+ " avg_errors.append(pq_result)\n",
167
+ "avg_errors = pd.DataFrame(avg_errors)\n",
168
+ "avg_errors.columns = ['p', 'q', 'error']\n",
169
+ "result = avg_errors.pivot(index = 'p', columns = 'q')"
170
+ ]
171
+ },
172
+ {
173
+ "cell_type": "code",
174
+ "execution_count": null,
175
+ "id": "f0882bbd-e5de-4249-b74c-9f96c6777205",
176
+ "metadata": {},
177
+ "outputs": [],
178
+ "source": [
179
+ "dta_array = df.values\n",
180
+ "X_train, X_test = dta_array[:10], dta_array[-10:]\n",
181
+ "X_test_orig = X_test\n",
182
+ "\n",
183
+ "fcst = []\n",
184
+ "for step in range(10):\n",
185
+ " mod = ARIMA(X_train, order = (10,0,9))\n",
186
+ " res = mod.fit()\n",
187
+ " fcst.append(res.forecast(steps = 1))\n",
188
+ " X_train = np.concatenate((X_train, X_test[0:1,:]))\n",
189
+ " X_test = X_test[1:]\n",
190
+ "\n",
191
+ "plt.plot(X_test_orig)\n",
192
+ "plt.plot(fcst)\n",
193
+ "plt.legend(['Actual Sunspots', 'Predicted Sunspots'])\n",
194
+ "plt.xlabel('Time Steps of Test Data')\n",
195
+ "plt.show()"
196
+ ]
197
+ }
198
+ ],
199
+ "metadata": {
200
+ "kernelspec": {
201
+ "display_name": "Python 3 (ipykernel)",
202
+ "language": "python",
203
+ "name": "python3"
204
+ },
205
+ "language_info": {
206
+ "codemirror_mode": {
207
+ "name": "ipython",
208
+ "version": 3
209
+ },
210
+ "file_extension": ".py",
211
+ "mimetype": "text/x-python",
212
+ "name": "python",
213
+ "nbconvert_exporter": "python",
214
+ "pygments_lexer": "ipython3",
215
+ "version": "3.12.4"
216
+ }
217
+ },
218
+ "nbformat": 4,
219
+ "nbformat_minor": 5
220
+ }
noshot/main.py CHANGED
@@ -1,19 +1,19 @@
1
- from noshot.utils.shell_utils import get_folder
2
- from noshot.utils.shell_utils import get_file
3
- from noshot.utils.shell_utils import remove_folder
4
-
5
- available = {'-1 ' : "ML TS XAI(Folder)",
6
- '0 ' : "Remove Folder"}
7
-
8
- def get(name = None, open = False):
9
- try:
10
- if name is not None:
11
- name = str(name)
12
- if name in ['-1'] : get_folder("ML TS XAI", loc = True)
13
- elif name in ['0'] : remove_folder("ML TS XAI")
14
- else:
15
- for k, v in available.items():
16
- sep = " : " if v else ""
17
- print(k,v,sep = sep)
18
- except Exception as error:
1
+ from noshot.utils.shell_utils import get_folder
2
+ from noshot.utils.shell_utils import get_file
3
+ from noshot.utils.shell_utils import remove_folder
4
+
5
+ available = {'-1 ' : "ML TS XAI(Folder)",
6
+ '0 ' : "Remove Folder"}
7
+
8
+ def get(name = None, open = False):
9
+ try:
10
+ if name is not None:
11
+ name = str(name)
12
+ if name in ['-1'] : get_folder("ML TS XAI", loc = True)
13
+ elif name in ['0'] : remove_folder("ML TS XAI")
14
+ else:
15
+ for k, v in available.items():
16
+ sep = " : " if v else ""
17
+ print(k,v,sep = sep)
18
+ except Exception as error:
19
19
  print(error)
noshot/utils/__init__.py CHANGED
@@ -1,3 +1,3 @@
1
- from .shell_utils import get_file
2
- from .shell_utils import get_folder
1
+ from .shell_utils import get_file
2
+ from .shell_utils import get_folder
3
3
  from .shell_utils import remove_folder