noshot 0.3.7__py3-none-any.whl → 0.3.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,78 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "0654f3b1-de71-409d-b69e-bca199d6e851",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import pandas as pd\n",
11
+ "import numpy as np\n",
12
+ "from sklearn.model_selection import train_test_split\n",
13
+ "from sklearn.preprocessing import StandardScaler, LabelEncoder\n",
14
+ "from sklearn.neighbors import KNeighborsClassifier\n",
15
+ "from sklearn.decomposition import PCA\n",
16
+ "from sklearn.metrics import accuracy_score\n",
17
+ "\n",
18
+ "# Load the dataset\n",
19
+ "data = pd.read_csv('ObesityDataSet_raw_and_data_sinthetic.csv')\n",
20
+ "\n",
21
+ "# Encode categorical columns if any\n",
22
+ "for col in data.select_dtypes(include=['object']).columns:\n",
23
+ " data[col] = LabelEncoder().fit_transform(data[col])\n",
24
+ "\n",
25
+ "# Assuming the last column is the target variable\n",
26
+ "y = data.iloc[:, -1]\n",
27
+ "X = data.iloc[:, :-1]\n",
28
+ "\n",
29
+ "# Standardize the features\n",
30
+ "scaler = StandardScaler()\n",
31
+ "X_scaled = scaler.fit_transform(X)\n",
32
+ "\n",
33
+ "# Split into training and testing sets\n",
34
+ "X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)\n",
35
+ "\n",
36
+ "# Apply KNN without PCA\n",
37
+ "knn = KNeighborsClassifier(n_neighbors=5)\n",
38
+ "knn.fit(X_train, y_train)\n",
39
+ "y_pred_knn = knn.predict(X_test)\n",
40
+ "knn_accuracy = accuracy_score(y_test, y_pred_knn)\n",
41
+ "print(f'KNN Accuracy without PCA: {knn_accuracy}')\n",
42
+ "\n",
43
+ "# Applying PCA (reducing to 2 principal components for visualization purposes)\n",
44
+ "pca = PCA(n_components=2)\n",
45
+ "X_train_pca = pca.fit_transform(X_train)\n",
46
+ "X_test_pca = pca.transform(X_test)\n",
47
+ "\n",
48
+ "# KNN with PCA-transformed data\n",
49
+ "knn_pca = KNeighborsClassifier(n_neighbors=5)\n",
50
+ "knn_pca.fit(X_train_pca, y_train)\n",
51
+ "y_pred_pca = knn_pca.predict(X_test_pca)\n",
52
+ "knn_pca_accuracy = accuracy_score(y_test, y_pred_pca)\n",
53
+ "print(f'KNN Accuracy with PCA: {knn_pca_accuracy}')\n"
54
+ ]
55
+ }
56
+ ],
57
+ "metadata": {
58
+ "kernelspec": {
59
+ "display_name": "Python 3 (ipykernel)",
60
+ "language": "python",
61
+ "name": "python3"
62
+ },
63
+ "language_info": {
64
+ "codemirror_mode": {
65
+ "name": "ipython",
66
+ "version": 3
67
+ },
68
+ "file_extension": ".py",
69
+ "mimetype": "text/x-python",
70
+ "name": "python",
71
+ "nbconvert_exporter": "python",
72
+ "pygments_lexer": "ipython3",
73
+ "version": "3.12.4"
74
+ }
75
+ },
76
+ "nbformat": 4,
77
+ "nbformat_minor": 5
78
+ }
@@ -0,0 +1,81 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "88e226f6-c463-4f5d-a469-a521debfb377",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import numpy as np\n",
11
+ "import matplotlib.pyplot as plt\n",
12
+ "from sklearn.neighbors import KNeighborsClassifier\n",
13
+ "from sklearn.datasets import make_classification\n",
14
+ "from scipy.spatial import Voronoi, voronoi_plot_2d\n",
15
+ "\n",
16
+ "# Generate synthetic dataset\n",
17
+ "X, y = make_classification(\n",
18
+ " n_samples=100,\n",
19
+ " n_features=2,\n",
20
+ " n_classes=3,\n",
21
+ " n_clusters_per_class=1,\n",
22
+ " n_redundant=0,\n",
23
+ " n_informative=2,\n",
24
+ " random_state=42,\n",
25
+ ")\n",
26
+ "\n",
27
+ "# Fit KNN classifier\n",
28
+ "knn = KNeighborsClassifier(n_neighbors=3)\n",
29
+ "knn.fit(X, y)\n",
30
+ "\n",
31
+ "# Create a grid for decision boundary\n",
32
+ "x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1\n",
33
+ "y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1\n",
34
+ "xx, yy = np.meshgrid(np.linspace(x_min, x_max, 500), np.linspace(y_min, y_max, 500))\n",
35
+ "grid_points = np.c_[xx.ravel(), yy.ravel()]\n",
36
+ "\n",
37
+ "# Predict on the grid\n",
38
+ "Z = knn.predict(grid_points)\n",
39
+ "Z = Z.reshape(xx.shape)\n",
40
+ "\n",
41
+ "# Plot decision boundaries\n",
42
+ "plt.figure(figsize=(10, 7))\n",
43
+ "plt.contourf(xx, yy, Z, alpha=0.3, cmap=plt.cm.Paired)\n",
44
+ "plt.scatter(X[:, 0], X[:, 1], c=y, edgecolor='k', cmap=plt.cm.Paired, label='Data Points')\n",
45
+ "\n",
46
+ "# Compute Voronoi regions\n",
47
+ "vor = Voronoi(X)\n",
48
+ "voronoi_plot_2d(vor, ax=plt.gca(), show_points=False, show_vertices=False, line_colors='black', line_width=0.8)\n",
49
+ "\n",
50
+ "# Display plot\n",
51
+ "plt.title(\"KNN Classification with Voronoi Diagram (k=3)\")\n",
52
+ "plt.xlabel(\"Feature 1\")\n",
53
+ "plt.ylabel(\"Feature 2\")\n",
54
+ "plt.legend(loc=\"upper right\")\n",
55
+ "plt.grid()\n",
56
+ "plt.show()"
57
+ ]
58
+ }
59
+ ],
60
+ "metadata": {
61
+ "kernelspec": {
62
+ "display_name": "Python 3 (ipykernel)",
63
+ "language": "python",
64
+ "name": "python3"
65
+ },
66
+ "language_info": {
67
+ "codemirror_mode": {
68
+ "name": "ipython",
69
+ "version": 3
70
+ },
71
+ "file_extension": ".py",
72
+ "mimetype": "text/x-python",
73
+ "name": "python",
74
+ "nbconvert_exporter": "python",
75
+ "pygments_lexer": "ipython3",
76
+ "version": "3.12.4"
77
+ }
78
+ },
79
+ "nbformat": 4,
80
+ "nbformat_minor": 5
81
+ }
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: noshot
3
- Version: 0.3.7
3
+ Version: 0.3.9
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -10,6 +10,15 @@ noshot/data/ML TS XAI/ML/data/balance-scale.csv,sha256=TIXuC522eeShSGKEzpVdslBH-
10
10
  noshot/data/ML TS XAI/ML/data/balance-scale.txt,sha256=_QWQ4ru9MWCeh_4x372ev6Ipg5oOeUcGFH_2Jp0QA9E,6249
11
11
  noshot/data/ML TS XAI/ML/data/machine-data.csv,sha256=poHH1NKX94SE7hyRTX7Gug4fWdAHRY4SnUNwYg_B1TQ,8746
12
12
  noshot/data/ML TS XAI/ML/data/wine-dataset.csv,sha256=zYAVj609HiA9YdrkIkJiCwLdX5GOY3tfCDgeOefPUgQ,12261
13
+ noshot/data/ML TS XAI/ML Additional/Bank.ipynb,sha256=PX9-mjUbYAtRNgXPg-t3nzeq3Hat3Fm3LZxpAgy-yek,2332
14
+ noshot/data/ML TS XAI/ML Additional/LR.ipynb,sha256=d1t6_xphPFCAMikhaAZK2f63rSIEJVH3NQpPshHw--E,2050
15
+ noshot/data/ML TS XAI/ML Additional/ObesityDataSet_raw_and_data_sinthetic.csv,sha256=ti4escjJgTeb7iPjnjVoP1RVaDvXctxyKCcVjd6Smh8,261534
16
+ noshot/data/ML TS XAI/ML Additional/Q4 LR.csv,sha256=LRgNqCbNasyiVsTnl76sCq5bSzf7t3SvwbkK6DGcW2U,26511
17
+ noshot/data/ML TS XAI/ML Additional/Q7 BANK DETAILS.csv,sha256=u0Wt2R1OAocPzeKO5PkTt4JopapgUej74sPhYBBAQ1U,4887557
18
+ noshot/data/ML TS XAI/ML Additional/airfoil.ipynb,sha256=P7xJDaG0gr7y6RoaCzW-2izjgetesGXPtFcRts1Hkes,2115
19
+ noshot/data/ML TS XAI/ML Additional/airfoil_self_noise.dat,sha256=EO4G5s-yfa5rRCE9Qh0hcBL7H5tpdZLnOk5AFrUtQl8,58481
20
+ noshot/data/ML TS XAI/ML Additional/obesity.ipynb,sha256=-I7RSTLvsap3l02NpQwPJKzGsIy-rpvDPSbUBpjrOpc,2528
21
+ noshot/data/ML TS XAI/ML Additional/voronoicode.ipynb,sha256=dxkLk_SCxksdYu-RiEZdzsLjfgTDqvSb464IjxiDl5w,2413
13
22
  noshot/data/ML TS XAI/ML Lab CIA/1/1.ipynb,sha256=RwpYKNBXvwkAuT8f5mvs56Qg8oml847e1Lz4Rn3B9Co,3995
14
23
  noshot/data/ML TS XAI/ML Lab CIA/1/Question.txt,sha256=cxrnnGmeKfFzUdYcD2H1iNBqBArJwuvkxBryrx45pcg,389
15
24
  noshot/data/ML TS XAI/ML Lab CIA/1/airfoil_self_noise.dat,sha256=EO4G5s-yfa5rRCE9Qh0hcBL7H5tpdZLnOk5AFrUtQl8,58481
@@ -46,8 +55,8 @@ noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb,sha2
46
55
  noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/shampoo_sales.csv,sha256=c3ry-Yy1m-MoLGWopaD9jfVX9UZ2JRBBJA2DtwWi_fg,484
47
56
  noshot/utils/__init__.py,sha256=NovRMat6RWu1WNI1_OH_Xo6Uvaq8D91no-ZhLcuVwHs,108
48
57
  noshot/utils/shell_utils.py,sha256=WzVq5EZEgiJFysbDYn9QPRYSE555Ew20HZbb3RDymkE,2555
49
- noshot-0.3.7.dist-info/LICENSE.txt,sha256=MLVZLpViyRWQLkQCesNwRqdfGzt-aunQSFiP5b_5Qn4,1066
50
- noshot-0.3.7.dist-info/METADATA,sha256=WfcYt-ieg7-k3E9OLzzwSXIPZwC30GFjZg4DeCDhvRo,2391
51
- noshot-0.3.7.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
52
- noshot-0.3.7.dist-info/top_level.txt,sha256=UL-c0HffdRwohz-y9icY_rnY48pQDdxGcBsgyCKh2Q8,7
53
- noshot-0.3.7.dist-info/RECORD,,
58
+ noshot-0.3.9.dist-info/LICENSE.txt,sha256=MLVZLpViyRWQLkQCesNwRqdfGzt-aunQSFiP5b_5Qn4,1066
59
+ noshot-0.3.9.dist-info/METADATA,sha256=0K34AYcusoZVHqiPDJLaDFqzwG6jHHxiClrcFy2r3zM,2391
60
+ noshot-0.3.9.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
61
+ noshot-0.3.9.dist-info/top_level.txt,sha256=UL-c0HffdRwohz-y9icY_rnY48pQDdxGcBsgyCKh2Q8,7
62
+ noshot-0.3.9.dist-info/RECORD,,
File without changes