noshot 0.3.7__py3-none-any.whl → 0.3.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,74 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "07c07cfa-8a32-4795-a765-defeee75e225",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import pandas as pd\n",
11
+ "import numpy as np\n",
12
+ "from sklearn.model_selection import train_test_split\n",
13
+ "from sklearn.preprocessing import StandardScaler\n",
14
+ "from sklearn.neighbors import KNeighborsClassifier\n",
15
+ "from sklearn.discriminant_analysis import LinearDiscriminantAnalysis\n",
16
+ "from sklearn.metrics import accuracy_score\n",
17
+ "\n",
18
+ "# Load the dataset\n",
19
+ "data = pd.read_csv('/mnt/data/Q7 BANK DETAILS.csv')\n",
20
+ "\n",
21
+ "# Assuming the last column is the target variable\n",
22
+ "y = data.iloc[:, -1]\n",
23
+ "X = data.iloc[:, :-1]\n",
24
+ "\n",
25
+ "# Standardize the features\n",
26
+ "scaler = StandardScaler()\n",
27
+ "X_scaled = scaler.fit_transform(X)\n",
28
+ "\n",
29
+ "# Split into training and testing sets\n",
30
+ "X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)\n",
31
+ "\n",
32
+ "# Apply KNN\n",
33
+ "knn = KNeighborsClassifier(n_neighbors=5)\n",
34
+ "knn.fit(X_train, y_train)\n",
35
+ "y_pred_knn = knn.predict(X_test)\n",
36
+ "knn_accuracy = accuracy_score(y_test, y_pred_knn)\n",
37
+ "print(f'KNN Accuracy: {knn_accuracy}')\n",
38
+ "\n",
39
+ "# Apply LDA (reducing to 2 components for visualization purposes)\n",
40
+ "lda = LinearDiscriminantAnalysis(n_components=2)\n",
41
+ "X_train_lda = lda.fit_transform(X_train, y_train)\n",
42
+ "X_test_lda = lda.transform(X_test)\n",
43
+ "\n",
44
+ "# KNN with LDA-transformed data\n",
45
+ "knn_lda = KNeighborsClassifier(n_neighbors=5)\n",
46
+ "knn_lda.fit(X_train_lda, y_train)\n",
47
+ "y_pred_lda = knn_lda.predict(X_test_lda)\n",
48
+ "lda_accuracy = accuracy_score(y_test, y_pred_lda)\n",
49
+ "print(f'KNN with LDA Accuracy: {lda_accuracy}')\n"
50
+ ]
51
+ }
52
+ ],
53
+ "metadata": {
54
+ "kernelspec": {
55
+ "display_name": "Python 3 (ipykernel)",
56
+ "language": "python",
57
+ "name": "python3"
58
+ },
59
+ "language_info": {
60
+ "codemirror_mode": {
61
+ "name": "ipython",
62
+ "version": 3
63
+ },
64
+ "file_extension": ".py",
65
+ "mimetype": "text/x-python",
66
+ "name": "python",
67
+ "nbconvert_exporter": "python",
68
+ "pygments_lexer": "ipython3",
69
+ "version": "3.12.4"
70
+ }
71
+ },
72
+ "nbformat": 4,
73
+ "nbformat_minor": 5
74
+ }
@@ -0,0 +1,69 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "99ea2146-3157-4adc-b656-2f01685a91eb",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import pandas as pd\n",
11
+ "import numpy as np\n",
12
+ "from sklearn.model_selection import train_test_split\n",
13
+ "from sklearn.linear_model import LinearRegression\n",
14
+ "from sklearn.decomposition import PCA\n",
15
+ "from sklearn.metrics import mean_squared_error\n",
16
+ "\n",
17
+ "# Load the dataset\n",
18
+ "data = pd.read_csv('/mnt/data/Q4 LR.csv')\n",
19
+ "\n",
20
+ "# Assuming the last column is the target variable\n",
21
+ "y = data.iloc[:, -1]\n",
22
+ "X = data.iloc[:, :-1]\n",
23
+ "\n",
24
+ "# Split into training and testing sets\n",
25
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
26
+ "\n",
27
+ "# Linear Regression without PCA\n",
28
+ "lr = LinearRegression()\n",
29
+ "lr.fit(X_train, y_train)\n",
30
+ "y_pred = lr.predict(X_test)\n",
31
+ "mse_without_pca = mean_squared_error(y_test, y_pred)\n",
32
+ "print(f'MSE without PCA: {mse_without_pca}')\n",
33
+ "\n",
34
+ "# Applying PCA (reducing to 2 principal components for simplicity)\n",
35
+ "pca = PCA(n_components=2)\n",
36
+ "X_train_pca = pca.fit_transform(X_train)\n",
37
+ "X_test_pca = pca.transform(X_test)\n",
38
+ "\n",
39
+ "# Linear Regression with PCA\n",
40
+ "lr_pca = LinearRegression()\n",
41
+ "lr_pca.fit(X_train_pca, y_train)\n",
42
+ "y_pred_pca = lr_pca.predict(X_test_pca)\n",
43
+ "mse_with_pca = mean_squared_error(y_test, y_pred_pca)\n",
44
+ "print(f'MSE with PCA: {mse_with_pca}')\n"
45
+ ]
46
+ }
47
+ ],
48
+ "metadata": {
49
+ "kernelspec": {
50
+ "display_name": "Python 3 (ipykernel)",
51
+ "language": "python",
52
+ "name": "python3"
53
+ },
54
+ "language_info": {
55
+ "codemirror_mode": {
56
+ "name": "ipython",
57
+ "version": 3
58
+ },
59
+ "file_extension": ".py",
60
+ "mimetype": "text/x-python",
61
+ "name": "python",
62
+ "nbconvert_exporter": "python",
63
+ "pygments_lexer": "ipython3",
64
+ "version": "3.12.4"
65
+ }
66
+ },
67
+ "nbformat": 4,
68
+ "nbformat_minor": 5
69
+ }