noshot 0.3.4__py3-none-any.whl → 0.3.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/1/1.ipynb +255 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/1/Question.txt +12 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/1/airfoil_self_noise.dat +1503 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/2/2.ipynb +399 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/2/Question.txt +12 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/2/pop_failures.dat +143 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/3/3.ipynb +276 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/3/Qu.txt +1 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/3/go_track_tracks.csv +164 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/4/4.ipynb +265 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/4/Wilt.csv +4340 -0
- noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/4/qu.txt +1 -0
- noshot/data/ML TS XAI/TSLabCIA-Question order may be different/1 - AirPassengers/1 - AirPassengers.ipynb +563 -0
- noshot/data/ML TS XAI/TSLabCIA-Question order may be different/1 - AirPassengers/AirPassengers.csv +145 -0
- noshot/data/ML TS XAI/TSLabCIA-Question order may be different/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +688 -0
- noshot/data/ML TS XAI/TSLabCIA-Question order may be different/2 - Daily-total-female-births/daily-total-female-births.csv +366 -0
- noshot/data/ML TS XAI/TSLabCIA-Question order may be different/3 - Bill Charge/3 - Bill Charge.ipynb +819 -0
- noshot/data/ML TS XAI/TSLabCIA-Question order may be different/3 - Bill Charge/bill charge.csv +21 -0
- noshot/data/ML TS XAI/TSLabCIA-Question order may be different/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +573 -0
- noshot/data/ML TS XAI/TSLabCIA-Question order may be different/4 - Daily min temperatures/daily-min-temperatures.csv +3651 -0
- noshot/data/ML TS XAI/TSLabCIA-Question order may be different/5 - shampoo sales/5 - Shampoo sales.ipynb +421 -0
- noshot/data/ML TS XAI/TSLabCIA-Question order may be different/5 - shampoo sales/shampoo_sales.csv +37 -0
- noshot/data/ML TS XAI/TSLabCIA-Question order may be different/Questions TMS 27 Feb 25.pdf +0 -0
- {noshot-0.3.4.dist-info → noshot-0.3.6.dist-info}/METADATA +1 -1
- noshot-0.3.6.dist-info/RECORD +53 -0
- {noshot-0.3.4.dist-info → noshot-0.3.6.dist-info}/WHEEL +1 -1
- noshot-0.3.4.dist-info/RECORD +0 -30
- {noshot-0.3.4.dist-info → noshot-0.3.6.dist-info}/LICENSE.txt +0 -0
- {noshot-0.3.4.dist-info → noshot-0.3.6.dist-info}/top_level.txt +0 -0
noshot/data/ML TS XAI/TSLabCIA-Question order may be different/5 - shampoo sales/shampoo_sales.csv
ADDED
@@ -0,0 +1,37 @@
|
|
1
|
+
"Month","Sales"
|
2
|
+
"1-01",266.0
|
3
|
+
"1-02",145.9
|
4
|
+
"1-03",183.1
|
5
|
+
"1-04",119.3
|
6
|
+
"1-05",180.3
|
7
|
+
"1-06",168.5
|
8
|
+
"1-07",231.8
|
9
|
+
"1-08",224.5
|
10
|
+
"1-09",192.8
|
11
|
+
"1-10",122.9
|
12
|
+
"1-11",336.5
|
13
|
+
"1-12",185.9
|
14
|
+
"2-01",194.3
|
15
|
+
"2-02",149.5
|
16
|
+
"2-03",210.1
|
17
|
+
"2-04",273.3
|
18
|
+
"2-05",191.4
|
19
|
+
"2-06",287.0
|
20
|
+
"2-07",226.0
|
21
|
+
"2-08",303.6
|
22
|
+
"2-09",289.9
|
23
|
+
"2-10",421.6
|
24
|
+
"2-11",264.5
|
25
|
+
"2-12",342.3
|
26
|
+
"3-01",339.7
|
27
|
+
"3-02",440.4
|
28
|
+
"3-03",315.9
|
29
|
+
"3-04",439.3
|
30
|
+
"3-05",401.3
|
31
|
+
"3-06",437.4
|
32
|
+
"3-07",575.5
|
33
|
+
"3-08",407.6
|
34
|
+
"3-09",682.0
|
35
|
+
"3-10",475.3
|
36
|
+
"3-11",581.3
|
37
|
+
"3-12",646.9
|
Binary file
|
@@ -0,0 +1,53 @@
|
|
1
|
+
noshot/__init__.py,sha256=000R40tii8lDFU8C1fBaD3SOnxD0PWRNWZU-km49YrU,21
|
2
|
+
noshot/main.py,sha256=6gU5gZ5csHxJQ7H-YyWVkW51hJIZdV9cqsPBDTjFo9s,645
|
3
|
+
noshot/data/ML TS XAI/ML/1. PCA - EDA.ipynb,sha256=YHOR8PEU-UZDbOnYfY8RXWlKWPmAylk8JjyCNXGJDWs,4951
|
4
|
+
noshot/data/ML TS XAI/ML/2. KNN Classifier.ipynb,sha256=Z-s44hC240B3ZQL4LHVhh6kdec8zbc9WXntA6rmu2gc,7705
|
5
|
+
noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis.ipynb,sha256=S7lovIZpIxK2rSUa201DQwnbBfVFN99R0v03nFq1amI,2218
|
6
|
+
noshot/data/ML TS XAI/ML/4. Linear Regression.ipynb,sha256=F3DQAZf_2omM8fBeWfkadzdbvrzh6dlRoeG6vqbqJgg,3152
|
7
|
+
noshot/data/ML TS XAI/ML/5. Logistic Regression.ipynb,sha256=QUJd2YY0dR8QncLM2_IgfGOJRJnIH1rBIV9XD8kY2ZY,3766
|
8
|
+
noshot/data/ML TS XAI/ML/6. Bayesian Classifier.ipynb,sha256=O1FCVYpuPBNe33vO2eRmKghvnehMe_rIup1djnzrDJY,2003
|
9
|
+
noshot/data/ML TS XAI/ML/data/balance-scale.csv,sha256=TIXuC522eeShSGKEzpVdslBH-7pj-iElyk1J0LQfp3k,6315
|
10
|
+
noshot/data/ML TS XAI/ML/data/balance-scale.txt,sha256=_QWQ4ru9MWCeh_4x372ev6Ipg5oOeUcGFH_2Jp0QA9E,6249
|
11
|
+
noshot/data/ML TS XAI/ML/data/machine-data.csv,sha256=poHH1NKX94SE7hyRTX7Gug4fWdAHRY4SnUNwYg_B1TQ,8746
|
12
|
+
noshot/data/ML TS XAI/ML/data/wine-dataset.csv,sha256=zYAVj609HiA9YdrkIkJiCwLdX5GOY3tfCDgeOefPUgQ,12261
|
13
|
+
noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/1/1.ipynb,sha256=N-GLV0BIJp5YhaCKRjeqbH3ZhR4-kxEFJoI0Zxy7PLc,107540
|
14
|
+
noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/1/Question.txt,sha256=cxrnnGmeKfFzUdYcD2H1iNBqBArJwuvkxBryrx45pcg,389
|
15
|
+
noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/1/airfoil_self_noise.dat,sha256=EO4G5s-yfa5rRCE9Qh0hcBL7H5tpdZLnOk5AFrUtQl8,58481
|
16
|
+
noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/2/2.ipynb,sha256=Ed7J9o6qylLl7cTkxEZBwCvzsZdbzqLttF4KbfVx71k,64828
|
17
|
+
noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/2/Question.txt,sha256=b-lOzBMSgYIF1NaFpHqKGaKBgg6InJ2X1BzDfrqvtiI,517
|
18
|
+
noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/2/pop_failures.dat,sha256=Pf4s5kiObecb2vJmWTjKoXfZP_zlkbhG5nl-vhymW2I,65536
|
19
|
+
noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/3/3.ipynb,sha256=ZxT-GvK6C7_m-Z-VSgx38pSw3Wbpfjsvv0xn9I8GfdY,68465
|
20
|
+
noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/3/Qu.txt,sha256=gvt2BGN7SWAXxHlbxjUOHk-VV6CY5lCeXLL3gl7cQvA,44
|
21
|
+
noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/3/go_track_tracks.csv,sha256=xDfqYnGJFmNBRZicq8D98WC2o34qiR5buhPBMShxSC0,10979
|
22
|
+
noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/4/4.ipynb,sha256=bEqJ-BEhRLRdcZ1khrbeEOZbeRF1SZ0WxNcDfJvbQIM,124115
|
23
|
+
noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/4/Wilt.csv,sha256=2Ew_JR5_DOLq5DtuAVZCmJiVK54uccMdT90yAW_9XWk,244730
|
24
|
+
noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/4/qu.txt,sha256=sM9c0pox6ooOXkyqFFZq_8QCYekl6CwU14ZPVocVeNk,53
|
25
|
+
noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb,sha256=TSBMPI4qdxsp4TV8FXxlutybmft76PP5AnnAEVBmX14,5483
|
26
|
+
noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb,sha256=HdDfhPowxFujZweySJRuP-Et_y_2TvZP-PZLevgXUKY,4231
|
27
|
+
noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb,sha256=Fi1Aq6BhqlqY8XcHwvRdOwTTNQ5QvIS7yr41sTMkW3A,3705
|
28
|
+
noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb,sha256=7-_k3WNgab0sIAX4vC2Ot_jbJwcLBszh4hw_F66PSms,3194
|
29
|
+
noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb,sha256=I3vHyu1oxp95TiroeLUrTeKR7am5G7CEPVjp3CZ4V4U,4612
|
30
|
+
noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb,sha256=tRSrqFrJpXQHRo4nyXCz-UZbNmhJc47F4b8pGRWEMRk,1901
|
31
|
+
noshot/data/ML TS XAI/TS/AllinOne.ipynb,sha256=egNDVfK-aObDRs_qyWLWjdQKQhccijA3_cirYbinJeg,35686
|
32
|
+
noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv,sha256=F4yFcHwUgxnEyjUGnQRMeZ_yLo1xt6LAiSIhZ1bRiWE,64271
|
33
|
+
noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv,sha256=nvfDjkWMQydf_0NJKSLwCZgI1y9oVtrDY9kAwEM1RQQ,5855
|
34
|
+
noshot/data/ML TS XAI/TS/data/raw_sales.csv,sha256=prmIL2Za6SSvtNySuENVeeWm96ErETBE2yKdzUTsAIQ,1150525
|
35
|
+
noshot/data/ML TS XAI/TS/data/shampoo_sales.csv,sha256=3cnpMyQZjuLerDQ6seFWybW79od4Xx0J1jYJYOjBrm0,426
|
36
|
+
noshot/data/ML TS XAI/TSLabCIA-Question order may be different/Questions TMS 27 Feb 25.pdf,sha256=B_z0vtszHqZ8yK4r7M7qL-BdryhR3hqs978QrzUMCeQ,156479
|
37
|
+
noshot/data/ML TS XAI/TSLabCIA-Question order may be different/1 - AirPassengers/1 - AirPassengers.ipynb,sha256=5PON7gbUPJ_SZ0DZAIib0y6VtGhR1NC-a8wfs1OgpCo,341912
|
38
|
+
noshot/data/ML TS XAI/TSLabCIA-Question order may be different/1 - AirPassengers/AirPassengers.csv,sha256=X4sxa4RUXZz7BWEimN-EFc5MREIccBLRCUZVZLB-vAY,1746
|
39
|
+
noshot/data/ML TS XAI/TSLabCIA-Question order may be different/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb,sha256=GZpz8z4SyWhVxPoxJ3UcE2ChG1Ow18cqzsGIJwk3Q-4,505511
|
40
|
+
noshot/data/ML TS XAI/TSLabCIA-Question order may be different/2 - Daily-total-female-births/daily-total-female-births.csv,sha256=nvfDjkWMQydf_0NJKSLwCZgI1y9oVtrDY9kAwEM1RQQ,5855
|
41
|
+
noshot/data/ML TS XAI/TSLabCIA-Question order may be different/3 - Bill Charge/3 - Bill Charge.ipynb,sha256=A5QyOdCmNRpQbzVrf9X4DQFwaTK6hWQJOe09jUTBX3k,142429
|
42
|
+
noshot/data/ML TS XAI/TSLabCIA-Question order may be different/3 - Bill Charge/bill charge.csv,sha256=tLP-OanWaF3ddiGFYyFjzcK1cXYpPvSmitbyOOe0Okk,471
|
43
|
+
noshot/data/ML TS XAI/TSLabCIA-Question order may be different/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb,sha256=Uza9SHo53LvbY28F9rLdZqTGSrF4bS5kd6BXaK97eJ8,396985
|
44
|
+
noshot/data/ML TS XAI/TSLabCIA-Question order may be different/4 - Daily min temperatures/daily-min-temperatures.csv,sha256=F4yFcHwUgxnEyjUGnQRMeZ_yLo1xt6LAiSIhZ1bRiWE,64271
|
45
|
+
noshot/data/ML TS XAI/TSLabCIA-Question order may be different/5 - shampoo sales/5 - Shampoo sales.ipynb,sha256=4-j2D5SdcILmYmTy1k68oddC49M2OTMHDZKxVoh6HB0,374132
|
46
|
+
noshot/data/ML TS XAI/TSLabCIA-Question order may be different/5 - shampoo sales/shampoo_sales.csv,sha256=c3ry-Yy1m-MoLGWopaD9jfVX9UZ2JRBBJA2DtwWi_fg,484
|
47
|
+
noshot/utils/__init__.py,sha256=NovRMat6RWu1WNI1_OH_Xo6Uvaq8D91no-ZhLcuVwHs,108
|
48
|
+
noshot/utils/shell_utils.py,sha256=WzVq5EZEgiJFysbDYn9QPRYSE555Ew20HZbb3RDymkE,2555
|
49
|
+
noshot-0.3.6.dist-info/LICENSE.txt,sha256=MLVZLpViyRWQLkQCesNwRqdfGzt-aunQSFiP5b_5Qn4,1066
|
50
|
+
noshot-0.3.6.dist-info/METADATA,sha256=rB7H0YScxj5lcmazuBpJwVONMoVWPOFRa65gIdzMxqs,2391
|
51
|
+
noshot-0.3.6.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
|
52
|
+
noshot-0.3.6.dist-info/top_level.txt,sha256=UL-c0HffdRwohz-y9icY_rnY48pQDdxGcBsgyCKh2Q8,7
|
53
|
+
noshot-0.3.6.dist-info/RECORD,,
|
noshot-0.3.4.dist-info/RECORD
DELETED
@@ -1,30 +0,0 @@
|
|
1
|
-
noshot/__init__.py,sha256=000R40tii8lDFU8C1fBaD3SOnxD0PWRNWZU-km49YrU,21
|
2
|
-
noshot/main.py,sha256=6gU5gZ5csHxJQ7H-YyWVkW51hJIZdV9cqsPBDTjFo9s,645
|
3
|
-
noshot/data/ML TS XAI/ML/1. PCA - EDA.ipynb,sha256=YHOR8PEU-UZDbOnYfY8RXWlKWPmAylk8JjyCNXGJDWs,4951
|
4
|
-
noshot/data/ML TS XAI/ML/2. KNN Classifier.ipynb,sha256=Z-s44hC240B3ZQL4LHVhh6kdec8zbc9WXntA6rmu2gc,7705
|
5
|
-
noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis.ipynb,sha256=S7lovIZpIxK2rSUa201DQwnbBfVFN99R0v03nFq1amI,2218
|
6
|
-
noshot/data/ML TS XAI/ML/4. Linear Regression.ipynb,sha256=F3DQAZf_2omM8fBeWfkadzdbvrzh6dlRoeG6vqbqJgg,3152
|
7
|
-
noshot/data/ML TS XAI/ML/5. Logistic Regression.ipynb,sha256=QUJd2YY0dR8QncLM2_IgfGOJRJnIH1rBIV9XD8kY2ZY,3766
|
8
|
-
noshot/data/ML TS XAI/ML/6. Bayesian Classifier.ipynb,sha256=O1FCVYpuPBNe33vO2eRmKghvnehMe_rIup1djnzrDJY,2003
|
9
|
-
noshot/data/ML TS XAI/ML/data/balance-scale.csv,sha256=TIXuC522eeShSGKEzpVdslBH-7pj-iElyk1J0LQfp3k,6315
|
10
|
-
noshot/data/ML TS XAI/ML/data/balance-scale.txt,sha256=_QWQ4ru9MWCeh_4x372ev6Ipg5oOeUcGFH_2Jp0QA9E,6249
|
11
|
-
noshot/data/ML TS XAI/ML/data/machine-data.csv,sha256=poHH1NKX94SE7hyRTX7Gug4fWdAHRY4SnUNwYg_B1TQ,8746
|
12
|
-
noshot/data/ML TS XAI/ML/data/wine-dataset.csv,sha256=zYAVj609HiA9YdrkIkJiCwLdX5GOY3tfCDgeOefPUgQ,12261
|
13
|
-
noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb,sha256=TSBMPI4qdxsp4TV8FXxlutybmft76PP5AnnAEVBmX14,5483
|
14
|
-
noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb,sha256=HdDfhPowxFujZweySJRuP-Et_y_2TvZP-PZLevgXUKY,4231
|
15
|
-
noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb,sha256=Fi1Aq6BhqlqY8XcHwvRdOwTTNQ5QvIS7yr41sTMkW3A,3705
|
16
|
-
noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb,sha256=7-_k3WNgab0sIAX4vC2Ot_jbJwcLBszh4hw_F66PSms,3194
|
17
|
-
noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb,sha256=I3vHyu1oxp95TiroeLUrTeKR7am5G7CEPVjp3CZ4V4U,4612
|
18
|
-
noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb,sha256=tRSrqFrJpXQHRo4nyXCz-UZbNmhJc47F4b8pGRWEMRk,1901
|
19
|
-
noshot/data/ML TS XAI/TS/AllinOne.ipynb,sha256=egNDVfK-aObDRs_qyWLWjdQKQhccijA3_cirYbinJeg,35686
|
20
|
-
noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv,sha256=F4yFcHwUgxnEyjUGnQRMeZ_yLo1xt6LAiSIhZ1bRiWE,64271
|
21
|
-
noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv,sha256=nvfDjkWMQydf_0NJKSLwCZgI1y9oVtrDY9kAwEM1RQQ,5855
|
22
|
-
noshot/data/ML TS XAI/TS/data/raw_sales.csv,sha256=prmIL2Za6SSvtNySuENVeeWm96ErETBE2yKdzUTsAIQ,1150525
|
23
|
-
noshot/data/ML TS XAI/TS/data/shampoo_sales.csv,sha256=3cnpMyQZjuLerDQ6seFWybW79od4Xx0J1jYJYOjBrm0,426
|
24
|
-
noshot/utils/__init__.py,sha256=NovRMat6RWu1WNI1_OH_Xo6Uvaq8D91no-ZhLcuVwHs,108
|
25
|
-
noshot/utils/shell_utils.py,sha256=WzVq5EZEgiJFysbDYn9QPRYSE555Ew20HZbb3RDymkE,2555
|
26
|
-
noshot-0.3.4.dist-info/LICENSE.txt,sha256=MLVZLpViyRWQLkQCesNwRqdfGzt-aunQSFiP5b_5Qn4,1066
|
27
|
-
noshot-0.3.4.dist-info/METADATA,sha256=fFVLUCkRQfl-MNMUYRJt1hyQVXqx0JzsA944dLEVVXA,2391
|
28
|
-
noshot-0.3.4.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
29
|
-
noshot-0.3.4.dist-info/top_level.txt,sha256=UL-c0HffdRwohz-y9icY_rnY48pQDdxGcBsgyCKh2Q8,7
|
30
|
-
noshot-0.3.4.dist-info/RECORD,,
|
File without changes
|
File without changes
|