noshot 0.3.4__py3-none-any.whl → 0.3.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/1/1.ipynb +255 -0
  2. noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/1/Question.txt +12 -0
  3. noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/1/airfoil_self_noise.dat +1503 -0
  4. noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/2/2.ipynb +399 -0
  5. noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/2/Question.txt +12 -0
  6. noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/2/pop_failures.dat +143 -0
  7. noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/3/3.ipynb +276 -0
  8. noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/3/Qu.txt +1 -0
  9. noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/3/go_track_tracks.csv +164 -0
  10. noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/4/4.ipynb +265 -0
  11. noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/4/Wilt.csv +4340 -0
  12. noshot/data/ML TS XAI/ML Lab CIA - Healthy directly upload file/4/qu.txt +1 -0
  13. noshot/data/ML TS XAI/TSLabCIA-Question order may be different/1 - AirPassengers/1 - AirPassengers.ipynb +563 -0
  14. noshot/data/ML TS XAI/TSLabCIA-Question order may be different/1 - AirPassengers/AirPassengers.csv +145 -0
  15. noshot/data/ML TS XAI/TSLabCIA-Question order may be different/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +688 -0
  16. noshot/data/ML TS XAI/TSLabCIA-Question order may be different/2 - Daily-total-female-births/daily-total-female-births.csv +366 -0
  17. noshot/data/ML TS XAI/TSLabCIA-Question order may be different/3 - Bill Charge/3 - Bill Charge.ipynb +819 -0
  18. noshot/data/ML TS XAI/TSLabCIA-Question order may be different/3 - Bill Charge/bill charge.csv +21 -0
  19. noshot/data/ML TS XAI/TSLabCIA-Question order may be different/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +573 -0
  20. noshot/data/ML TS XAI/TSLabCIA-Question order may be different/4 - Daily min temperatures/daily-min-temperatures.csv +3651 -0
  21. noshot/data/ML TS XAI/TSLabCIA-Question order may be different/5 - shampoo sales/5 - Shampoo sales.ipynb +421 -0
  22. noshot/data/ML TS XAI/TSLabCIA-Question order may be different/5 - shampoo sales/shampoo_sales.csv +37 -0
  23. noshot/data/ML TS XAI/TSLabCIA-Question order may be different/Questions TMS 27 Feb 25.pdf +0 -0
  24. {noshot-0.3.4.dist-info → noshot-0.3.6.dist-info}/METADATA +1 -1
  25. noshot-0.3.6.dist-info/RECORD +53 -0
  26. {noshot-0.3.4.dist-info → noshot-0.3.6.dist-info}/WHEEL +1 -1
  27. noshot-0.3.4.dist-info/RECORD +0 -30
  28. {noshot-0.3.4.dist-info → noshot-0.3.6.dist-info}/LICENSE.txt +0 -0
  29. {noshot-0.3.4.dist-info → noshot-0.3.6.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,255 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "id": "31067fce-1168-4c6e-97c2-bfc4fb40904b",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import pandas as pd\n",
11
+ "import numpy as np\n",
12
+ "import matplotlib.pyplot as plt\n",
13
+ "import seaborn as sns\n",
14
+ "from sklearn.decomposition import PCA\n",
15
+ "from sklearn.linear_model import LinearRegression\n",
16
+ "from sklearn.model_selection import train_test_split\n",
17
+ "from sklearn.preprocessing import StandardScaler\n",
18
+ "from sklearn.metrics import r2_score, mean_squared_error"
19
+ ]
20
+ },
21
+ {
22
+ "cell_type": "code",
23
+ "execution_count": 2,
24
+ "id": "30e4ba93-9e95-4b51-a3e4-89931c193a3a",
25
+ "metadata": {},
26
+ "outputs": [
27
+ {
28
+ "data": {
29
+ "text/html": [
30
+ "<div>\n",
31
+ "<style scoped>\n",
32
+ " .dataframe tbody tr th:only-of-type {\n",
33
+ " vertical-align: middle;\n",
34
+ " }\n",
35
+ "\n",
36
+ " .dataframe tbody tr th {\n",
37
+ " vertical-align: top;\n",
38
+ " }\n",
39
+ "\n",
40
+ " .dataframe thead th {\n",
41
+ " text-align: right;\n",
42
+ " }\n",
43
+ "</style>\n",
44
+ "<table border=\"1\" class=\"dataframe\">\n",
45
+ " <thead>\n",
46
+ " <tr style=\"text-align: right;\">\n",
47
+ " <th></th>\n",
48
+ " <th>Frequency</th>\n",
49
+ " <th>Angle of Attack</th>\n",
50
+ " <th>Chord Length</th>\n",
51
+ " <th>Free-stream Velocity</th>\n",
52
+ " <th>Suction Side Thickness</th>\n",
53
+ " <th>Scaled SPL</th>\n",
54
+ " </tr>\n",
55
+ " </thead>\n",
56
+ " <tbody>\n",
57
+ " <tr>\n",
58
+ " <th>0</th>\n",
59
+ " <td>800</td>\n",
60
+ " <td>0.0</td>\n",
61
+ " <td>0.3048</td>\n",
62
+ " <td>71.3</td>\n",
63
+ " <td>0.002663</td>\n",
64
+ " <td>126.201</td>\n",
65
+ " </tr>\n",
66
+ " <tr>\n",
67
+ " <th>1</th>\n",
68
+ " <td>1000</td>\n",
69
+ " <td>0.0</td>\n",
70
+ " <td>0.3048</td>\n",
71
+ " <td>71.3</td>\n",
72
+ " <td>0.002663</td>\n",
73
+ " <td>125.201</td>\n",
74
+ " </tr>\n",
75
+ " <tr>\n",
76
+ " <th>2</th>\n",
77
+ " <td>1250</td>\n",
78
+ " <td>0.0</td>\n",
79
+ " <td>0.3048</td>\n",
80
+ " <td>71.3</td>\n",
81
+ " <td>0.002663</td>\n",
82
+ " <td>125.951</td>\n",
83
+ " </tr>\n",
84
+ " <tr>\n",
85
+ " <th>3</th>\n",
86
+ " <td>1600</td>\n",
87
+ " <td>0.0</td>\n",
88
+ " <td>0.3048</td>\n",
89
+ " <td>71.3</td>\n",
90
+ " <td>0.002663</td>\n",
91
+ " <td>127.591</td>\n",
92
+ " </tr>\n",
93
+ " <tr>\n",
94
+ " <th>4</th>\n",
95
+ " <td>2000</td>\n",
96
+ " <td>0.0</td>\n",
97
+ " <td>0.3048</td>\n",
98
+ " <td>71.3</td>\n",
99
+ " <td>0.002663</td>\n",
100
+ " <td>127.461</td>\n",
101
+ " </tr>\n",
102
+ " </tbody>\n",
103
+ "</table>\n",
104
+ "</div>"
105
+ ],
106
+ "text/plain": [
107
+ " Frequency Angle of Attack Chord Length Free-stream Velocity \\\n",
108
+ "0 800 0.0 0.3048 71.3 \n",
109
+ "1 1000 0.0 0.3048 71.3 \n",
110
+ "2 1250 0.0 0.3048 71.3 \n",
111
+ "3 1600 0.0 0.3048 71.3 \n",
112
+ "4 2000 0.0 0.3048 71.3 \n",
113
+ "\n",
114
+ " Suction Side Thickness Scaled SPL \n",
115
+ "0 0.002663 126.201 \n",
116
+ "1 0.002663 125.201 \n",
117
+ "2 0.002663 125.951 \n",
118
+ "3 0.002663 127.591 \n",
119
+ "4 0.002663 127.461 "
120
+ ]
121
+ },
122
+ "execution_count": 2,
123
+ "metadata": {},
124
+ "output_type": "execute_result"
125
+ }
126
+ ],
127
+ "source": [
128
+ "file_path = \"airfoil_self_noise.dat\"\n",
129
+ "columns = [\"Frequency\", \"Angle of Attack\", \"Chord Length\", \"Free-stream Velocity\", \"Suction Side Thickness\", \"Scaled SPL\"]\n",
130
+ "df = pd.read_csv(file_path, sep=\"\\t\", header=None, names=columns)\n",
131
+ "df.head()"
132
+ ]
133
+ },
134
+ {
135
+ "cell_type": "code",
136
+ "execution_count": 3,
137
+ "id": "c99f7732-9da4-4f2e-8ad2-16722962c435",
138
+ "metadata": {},
139
+ "outputs": [],
140
+ "source": [
141
+ "df.columns = df.columns.str.strip()\n",
142
+ "X = df.iloc[:, :-1].values # Features\n",
143
+ "y = df.iloc[:, -1].values # Target"
144
+ ]
145
+ },
146
+ {
147
+ "cell_type": "code",
148
+ "execution_count": 4,
149
+ "id": "15940be7-1bdd-497e-81b4-eccd14424881",
150
+ "metadata": {},
151
+ "outputs": [],
152
+ "source": [
153
+ "scaler = StandardScaler()\n",
154
+ "X_scaled = scaler.fit_transform(X)\n",
155
+ "\n",
156
+ "pca = PCA(n_components=2)\n",
157
+ "X_pca = pca.fit_transform(X_scaled)\n",
158
+ "\n",
159
+ "X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)\n",
160
+ "X_pca_train, X_pca_test, _, _ = train_test_split(X_pca, y, test_size=0.2, random_state=42)\n",
161
+ "\n",
162
+ "lr_original = LinearRegression()\n",
163
+ "lr_original.fit(X_train, y_train)\n",
164
+ "y_pred_original = lr_original.predict(X_test)\n",
165
+ "\n",
166
+ "lr_pca = LinearRegression()\n",
167
+ "lr_pca.fit(X_pca_train, y_train)\n",
168
+ "y_pred_pca = lr_pca.predict(X_pca_test)"
169
+ ]
170
+ },
171
+ {
172
+ "cell_type": "code",
173
+ "execution_count": 5,
174
+ "id": "617f4fdf-6722-4caf-bef3-66240c3cbc0e",
175
+ "metadata": {},
176
+ "outputs": [
177
+ {
178
+ "name": "stdout",
179
+ "output_type": "stream",
180
+ "text": [
181
+ "R2 Original: 0.5582979754897288\n",
182
+ "RMSE Original: 4.704109194974885\n",
183
+ "R2 PCA: 0.002542856822182582\n",
184
+ "RMSE PCA: 7.069029952393537\n"
185
+ ]
186
+ }
187
+ ],
188
+ "source": [
189
+ "print(\"R2 Original:\", r2_score(y_test, y_pred_original))\n",
190
+ "print(\"RMSE Original:\", np.sqrt(mean_squared_error(y_test, y_pred_original)))\n",
191
+ "print(\"R2 PCA:\", r2_score(y_test, y_pred_pca))\n",
192
+ "print(\"RMSE PCA:\", np.sqrt(mean_squared_error(y_test, y_pred_pca)))"
193
+ ]
194
+ },
195
+ {
196
+ "cell_type": "code",
197
+ "execution_count": 6,
198
+ "id": "83ed2bce-0dfe-4bc4-b24b-356113eb6be3",
199
+ "metadata": {},
200
+ "outputs": [
201
+ {
202
+ "data": {
203
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHqCAYAAADVi/1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5hU5fnw8e/0vr3DwtKLFBUUFRUULGBPFFsi1kSj5mc0GnuLsSaWN8YSRdHYTZRE1BDsiCjFBtJhKQvb6/R63j/OzrCzO7vsLrs7W+7Pde0FM3PmzHPKzDxzn/u5H42iKApCCCGEEEIIIYQQQvQgbbIbIIQQQgghhBBCCCEGHglKCSGEEEIIIYQQQogeJ0EpIYQQQgghhBBCCNHjJCglhBBCCCGEEEIIIXqcBKWEEEIIIYQQQgghRI+ToJQQQgghhBBCCCGE6HESlBJCCCGEEEIIIYQQPU6CUkIIIYQQQgghhBCix0lQSgghhBBCCCGEEEL0OAlKiT5v4cKFaDQaVq9e3eoyO3bsQKPRsHDhwp5rWBf67LPP0Gg0sT+dTkd2djannXZam9vd30SP9Y4dO5LdlG7ldrt58MEHOeSQQ7Db7dhsNg4++GDuv/9+3G53h9al0Wi4++67O9WOmTNnMnPmzE49t72i5/Znn33WruWif0ajkezsbKZPn85tt93Gzp07O92GvXv3cvfdd/P99993eh1CCNEdpI8jfZz+pKioKO5Y2+12pk2bxssvv9xi2Ugkwj/+8Q9mz55NVlYWBoOBnJwcTj31VN577z0ikUiL56xduxaNRoPBYKC0tLRDbWvaLo1GQ0pKCkcddRSvv/56p7e3rdfqbN+sJ1x88cUUFRXtd7mZM2fG9pdWq8XhcDBy5EjOOecc/vnPfyY8Ru312muv8fjjj3f6+aJvkaCUGBDy8/NZsWIFp5xySrKbckDuv/9+VqxYwWeffcYdd9zBV199xYwZM9iyZUuym9YjTjnlFFasWEF+fn6ym9JtysvLOeKII7j33ns56aSTePfdd1m0aBFz5szhvvvu44gjjqC8vLzd61uxYgWXX355p9ry1FNP8dRTT3Xqud0l+h749NNPWbBgATNnzuSFF15g3LhxvPrqq51a5969e7nnnnskKCWE6JOkj9M/DIQ+DsD06dNZsWIFK1asiAXi5s+fz9NPPx1bxufzMXfuXObPn09OTg5PP/00n3zyCc888wwFBQWcc845vPfeey3W/fzzzwMQCoUSBrr25+yzz2bFihV89dVXPPPMMzQ0NHDBBRfw2muvdX6D+7nhw4fH9tmiRYu4+eab8Xq9nHPOOcycOZP6+vpOrVeCUgOLPtkNEKInmEwmjjjiiGQ3o00ejwer1drmMqNGjYptxzHHHENaWhrz58/nlVde4Z577umJZsa0p71dLTs7m+zs7B59zZ520UUXsXHjRj799FOOPvro2P0nnHACp5xyCscddxzz58/nv//9b6vrUBQFn8+HxWI5oPN+/PjxnX5ud2n6HgA4/fTTueGGG5g9ezYXX3wxkyZNYuLEiUlsoRBC9Czp43Q96eN0n7S0tLjzdfbs2QwdOpRHH32Uq666CoDrr7+eJUuW8NJLL3HRRRfFPf9nP/sZN954I16vN+5+v9/Pq6++yuTJk6mqquKFF17gD3/4Q4falpubG2vbkUceyfTp0ykqKuLZZ5/lggsu6Mzm9nuJ+pqXX345L774Ipdeeim/+tWvePPNN5PUOtFXSKaUGBASpbbffffdaDQafvrpJ84//3xSU1PJzc3l0ksvbRHVVxSFp556ioMPPhiLxUJ6ejpnn30227dvj1tu6dKlnHHGGQwePBiz2czIkSP59a9/TVVVVdxy0df+9ttvOfvss0lPT2fEiBEd3q6pU6cCtMic2bJlCxdccAE5OTmYTCbGjRvH3/72txbP/+mnnzjxxBOxWq1kZ2dz9dVX8/7777cYTjVz5kwmTJjAF198wVFHHYXVauXSSy8FoKGhgd///vcMGzYMo9HIoEGDuO6661oMM3v77beZNm0aqampWK1Whg8fHlsHqGna9913H2PGjMFisZCWlsakSZN44oknYsu0ltr+wgsvMHnyZMxmMxkZGZx11lls2LAhbpmLL74Yu93O1q1bmTt3Lna7ncLCQm644Qb8fv9+93UkEuHhhx9m7NixmEwmcnJyuOiiiygpKYlbLrqvVq1axTHHHBPb1gcffHC/acyrV6/mf//7H5dddllcQCrq6KOP5tJLL2XJkiWsWbMmdr9Go+Gaa67hmWeeYdy4cZhMJl566aXYY81TxL/88kuOPPJIzGYzgwYN4o477uD5559vsW+bD9+Lvo/+/Oc/8+ijjzJs2DDsdjtHHnkkX3/9dYttOe+88ygqKsJisVBUVMT5559/QMPsWpORkcGzzz5LKBTisccei92/detWLrnkEkaNGoXVamXQoEGcdtpprF27NrbMZ599xmGHHQbAJZdcEktDj+6zntwOIYToDOnjSB+nL/RxWpOWlsaYMWNi36tlZWU8//zznHTSSS0CUlGjRo1i0qRJcfctWrSI6upqLr/8cubPn8/mzZv58ssvO9WmqKFDh5Kdnd3iHGzvedHQ0MAVV1xBZmYmdrudk08+mc2bN7d4ndaGy0XfS01FIhH++te/xt6v0SDff/7zn7jl3nzzTY488khsNht2u52TTjqJ7777rsVrLFy4kDFjxsTeS53JMEvkkksuYe7cubz99ttxfaa//e1vHHvsseTk5GCz2Zg4cSIPP/wwwWAwtszMmTN5//332blzZ9yQyqh77rmHadOmkZGRQUpKCoceeigLFixAUZQuabvoeZIpJQa8n//855x77rlcdtllrF27lltuuQVQOwFRv/71r1m4cCG//e1veeihh6ipqeHee+/lqKOO4ocffiA3NxeAbdu2ceSRR3L55ZeTmprKjh07ePTRRzn66KNZu3YtBoMh7rV/9rOfcd5553HllVd2uFYQQHFxMQCjR4+O3bd+/XqOOuoohgwZwl/+8hfy8vJYsmQJv/3tb6mqquKuu+4CoLS0lBkzZmCz2Xj66afJycnh9ddf55prrkn4WqWlpfziF7/gpptu4v7770er1eLxeJgxYwYlJSXceuutTJo0iZ9++ok777yTtWvX8tFHH6HRaFixYgXnnnsu5557LnfffTdms5mdO3fyySefxNb/8MMPc/fdd3P77bdz7LHHEgwG2bhxI3V1dW3ugwceeIBbb72V888/nwceeIDq6mruvvtujjzySFatWsWoUaNiywaDQU4//XQuu+wybrjhBr744gv++Mc/kpqayp133tnm61x11VX8/e9/55prruHUU09lx44d3HHHHXz22Wd8++23ZGVlxZYtKyvjwgsv5IYbbuCuu+7i3Xff5ZZbbqGgoKDVDhaoHX6AM888s9VlzjzzTP7+97+zdOlSpkyZErt/0aJFLFu2jDvvvJO8vDxycnISPv/HH3/khBNOYPTo0bz00ktYrVaeeeYZXnnllTa3v6m//e1vjB07NpZWfccddzB37lyKi4tJTU0F1B9JY8aM4bzzziMjI4PS0lKefvppDjvsMNavXx+3v7rCYYcdRn5+Pl988UXsvr1795KZmcmDDz5IdnY2NTU1vPTSS0ybNo3vvvuOMWPGcOihh/Liiy9yySWXcPvtt8eGvwwePDgp2yGEEF1J+jjSx+ktfZzWBINBdu7cGcsS+/TTTwkGg232hRJZsGABJpOJCy+8kJqaGh544AEWLFiQ8CJfe9XX11NTUxOXCdTe80JRFM4880y++uor7rzzTg477DCWL1/OnDlzOt0eUANYr7zyCpdddhn33nsvRqORb7/9Ni6Yef/993P77bfH+jaBQIBHHnmEY445hpUrV8Yy4RcuXMgll1zCGWecwV/+8hfq6+u5++678fv9aLUHnrty+umn88EHH7Bs2TKGDh0KqJ8jF1xwQSyg98MPP/CnP/2JjRs3xj6XnnrqKX71q1+xbds23n333Rbr3bFjB7/+9a8ZMmQIAF9//TXXXnste/bs2e+5LnopRYg+7sUXX1QAZdWqVa0uU1xcrADKiy++GLvvrrvuUgDl4Ycfjlv2N7/5jWI2m5VIJKIoiqKsWLFCAZS//OUvccvt3r1bsVgsyk033ZTwNSORiBIMBpWdO3cqgPLvf/+7xWvfeeed7drGTz/9VAGUN998UwkGg4rH41GWL1+ujBkzRhk/frxSW1sbW/akk05SBg8erNTX18et45prrlHMZrNSU1OjKIqi3HjjjYpGo1F++umnuOVOOukkBVA+/fTT2H0zZsxQAOXjjz+OW/aBBx5QtFpti33/z3/+UwGUDz74QFEURfnzn/+sAEpdXV2r23jqqacqBx98cJv7IXqsi4uLFUVRlNraWsVisShz586NW27Xrl2KyWRSLrjggth98+fPVwDlrbfeilt27ty5ypgxY9p83Q0bNiiA8pvf/Cbu/m+++UYBlFtvvTV2X3RfffPNN3HLjh8/XjnppJPafJ0rr7xSAZSNGzfuty1XXXVV7D5ASU1NjR3bpgDlrrvuit0+55xzFJvNplRWVsbuC4fDyvjx4+P2bXRbZsyYEbsdfR9NnDhRCYVCsftXrlypAMrrr7/eartDoZDicrkUm82mPPHEE7H7o+d20/Mtkehyb7/9dqvLTJs2TbFYLG22IRAIKKNGjVJ+97vfxe5ftWpVi8+Hjm6HEEJ0B+njSB+nv/RxFEVRhg4dqsydO1cJBoNKMBhUiouLY22/8cYbFUVRlAcffFABlP/+97/7XV/Ujh07FK1Wq5x33nlxbbXZbEpDQ0O71hHdB8FgUAkEAsrmzZuV008/XXE4HMrq1atjy7X3vPjwww8VoEVf4U9/+lOLvtn8+fOVoUOHtmhT9L0U9cUXXyiActttt7W6Hbt27VL0er1y7bXXxt3vdDqVvLw8Zd68eYqiqH2/goIC5dBDD419HiiKui8NBkPC9jQ3Y8YM5aCDDmr18eg+eOihhxI+Hg6HlWAwqLz88suKTqeL68eecsop7WpDdB333nuvkpmZGbctou+Q4XtiwDv99NPjbk+aNAmfz0dFRQUAixcvRqPR8Itf/IJQKBT7y8vLY/LkyXEp4BUVFVx55ZUUFhai1+sxGAyxKwPNU61BvYLZEeeeey4GgwGr1cr06dNpaGjg/fffJy0tDVALQ3788cecddZZWK3WuPbOnTsXn88XG2b1+eefM2HChBZ1g84///yEr52ens7xxx8fd9/ixYuZMGECBx98cNxrnXTSSXHp8dHhUfPmzeOtt95iz549LdZ/+OGH88MPP/Cb3/yGJUuW0NDQsN/9sWLFCrxeLxdffHHc/YWFhRx//PF8/PHHcfdrNBpOO+20uPsmTZq036FYn376KUCL1zn88MMZN25ci9fJy8vj8MMP7/DrtIfSmJrcPJ37+OOPJz09fb/P//zzzzn++OPjrnpqtVrmzZvX7jaccsop6HS62O1oCn3T7XO5XPzhD39g5MiR6PV69Ho9drsdt9ud8L3QFZRmaduhUIj777+f8ePHYzQa0ev1GI1GtmzZ0u42JGM7hBCiq0gfR/o4va2P88EHH2AwGDAYDAwbNoy33nqLa6+9lvvuu69dz0/kxRdfJBKJxA2ZvPTSS3G73XH1jMLhcNyxbD7k8KmnnsJgMGA0Ghk9ejQffvghr7/+elxmenvPi+h+vfDCC+Ne40BqU3344YcAXH311a0us2TJEkKhEBdddFFc+8xmMzNmzIi1b9OmTezdu5cLLrggrk85dOhQjjrqqE63sanm/TKA7777jtNPP53MzEx0Oh0Gg4GLLrqIcDiccGhjIp988gmzZ88mNTU1to4777yT6urq2Geb6FskKCUGvMzMzLjbJpMJIFZAsby8HEVRyM3NjX2JRv++/vrrWC2FSCTCiSeeyDvvvMNNN93Exx9/zMqVK2MdpOYFGYEOz7Dy0EMPsWrVKj7//HNuu+02ysvLOfPMM2P1AqqrqwmFQvz1r39t0da5c+cCxNpbXV0dS8lvKtF9rbW1vLycH3/8scVrORwOFEWJvdaxxx7LokWLYl+SgwcPZsKECXHT7N5yyy38+c9/5uuvv2bOnDlkZmYya9asNqeDrq6ubrVtBQUFscejrFYrZrM57j6TyYTP52v1NTrzOs3PqejrJDoHmoqmIUeHLCQSTc8uLCyMu7+951JHj3si+3vPgNrpevLJJ7n88stZsmQJK1euZNWqVWRnZ+93P3TWrl27KCgoiN2+/vrrueOOOzjzzDN57733+Oabb1i1ahWTJ09udxuSsR1CCNFVpI8TT/o4B/46ne3jRB199NGsWrWK1atXs379eurq6vh//+//YTQagfb1hZqKRCIsXLiQgoICpkyZQl1dHXV1dcyePRubzcaCBQtiy44YMSLuWN57771x65o3bx6rVq3iq6++4tlnn8XhcHDeeefFzQDZ3vOiuroavV7fYn/l5eW1a7sSqaysRKfTtbmOaP2rww47rEUb33zzzbj2tdaeA2ljU9FAZbRvtmvXLo455hj27NnDE088wbJly1i1alWsJlx7zqGVK1dy4oknAvDcc8+xfPlyVq1axW233dbudYjeR2pKCbEfWVlZaDQali1bFuvMNRW9b926dfzwww8sXLiQ+fPnxx7funVrq+tunu2yP8OHD48V/jz22GOxWCzcfvvt/PWvf+X3v/896enp6HQ6fvnLX7Z6FWXYsGGA2qloXrgR1FoB7W1rVlYWFoslrjZF88ejzjjjDM444wz8fj9ff/01DzzwABdccAFFRUUceeSR6PV6rr/+eq6//nrq6ur46KOPuPXWWznppJPYvXt3wllwol/0paWlLR7bu3dvl9X7afo60VpD3fE6J5xwArfeeiuLFi3i5JNPTrjMokWLYss21d5zqaPHvTPq6+tZvHgxd911FzfffHPsfr/fT01NTZe9TlMrV66krKyMyy67LHbfK6+8wkUXXcT9998ft2xVVVXsyntbkrEdQgjRk6SP03pbpY/Tta8TlZqaGjvOiRx33HEYDAYWLVrElVdeud/1ffTRR7HgR6KA2ddff8369esZP3487733Xlzh96YXskCdATHatiOPPJJx48YxY8YMfve737F48WKg/edFZmYmoVCI6urquHYlOgfNZnPCgvTNJxHIzs4mHA5TVlbWatA3+vr//Oc/Y5mMiUTblKg9XdUn/M9//oNGo+HYY48F1D6s2+3mnXfeiWvb999/3+51vvHGGxgMBhYvXhwXhI32j0XfJJlSQuzHqaeeiqIo7Nmzh6lTp7b4i04/H+3QNO/UPfvss93WtptuuomRI0fy4IMP4nQ6sVqtHHfccXz33XdMmjQpYXujX0IzZsxg3bp1rF+/Pm6db7zxRrtf/9RTT2Xbtm1kZmYmfK1EM4mYTCZmzJjBQw89BJBwJpC0tDTOPvtsrr76ampqalrMRBN15JFHYrFYWhTpLikp4ZNPPmHWrFnt3pa2RFP6m7/OqlWr2LBhQ5e9ztSpUznxxBNZsGABy5cvb/H4l19+yQsvvMDJJ58cl0reETNmzOCTTz6J6+hEIhHefvvtTre7uWiBz+bvheeff55wONxlrxNVU1PDlVdeicFg4He/+11cO5q34f33328xtCJRplf0+T25HUII0dOkj9M66eN0bR+nvfLy8mLZya3NBLdt2zZ+/PFHQC1wrtVqWbRoEZ9++mnc3z/+8Q9gX2H/iRMnxh3D5kGp5o455hguuugi3n//fVasWAG0/7w47rjjAHj11Vfj1vnaa6+1eJ2ioiIqKiriAqmBQIAlS5bELRctkv7000+32uaTTjoJvV7Ptm3bErYvGnQbM2YM+fn5vP7663HD7Hbu3MlXX33V5n5pjxdffJEPP/yQ888/P5b9luhzRFEUnnvuuRbPby37TqPRoNfr48pIeL3e2LEWfZNkSol+45NPPkn4xR5N6e6s6dOn86tf/YpLLrmE1atXc+yxx2Kz2SgtLeXLL79k4sSJXHXVVYwdO5YRI0Zw8803oygKGRkZvPfee7EZ1bqDwWDg/vvvZ968eTzxxBPcfvvtPPHEExx99NEcc8wxXHXVVRQVFeF0Otm6dSvvvfdebDaY6667jhdeeIE5c+Zw7733kpuby2uvvcbGjRsB2jXrxnXXXce//vUvjj32WH73u98xadIkIpEIu3bt4n//+x833HAD06ZN484776SkpIRZs2YxePBg6urqeOKJJzAYDMyYMQOA0047jQkTJjB16lSys7PZuXMnjz/+OEOHDo2bXaaptLQ07rjjDm699VYuuugizj//fKqrq7nnnnswm82xWXgO1JgxY/jVr37FX//6V7RaLXPmzInNTFNYWBgXCDlQL7/8MrNnz+bEE0/kt7/9bawz+Mknn/DEE08wduzYuGm/O+q2227jvffeY9asWdx2221YLBaeeeaZ2MxIXTHbSkpKCsceeyyPPPIIWVlZFBUV8fnnn7NgwYJ2ZSi1ZcuWLXz99ddEIhGqq6v55ptvWLBgAQ0NDbz88sscdNBBsWVPPfVUFi5cyNixY5k0aRJr1qzhkUceaXEleMSIEVgsFl599VXGjRuH3W6noKCAgoKCbtsOIYToCOnjSB+nP/Rx2uvRRx9l+/btXHzxxSxZsoSzzjqL3NxcqqqqWLp0KS+++CJvvPEGgwYN4t///jcnnXQSZ5xxRsJ1PfbYY7z88ss88MADLWaIbI8//vGPvPnmm9xxxx189NFH7T4vTjzxRI499lhuuukm3G43U6dOZfny5QmDJ+eeey533nkn5513HjfeeCM+n4//9//+X4sLYMcccwy//OUvue+++ygvL+fUU0/FZDLx3XffYbVaufbaaykqKuLee+/ltttuY/v27Zx88smkp6dTXl7OypUrsdls3HPPPWi1Wv74xz9y+eWXc9ZZZ3HFFVdQV1fH3Xff3aHhe16vN24Y7/bt21m0aBGLFy9mxowZPPPMM7FlTzjhBIxGI+effz433XQTPp+Pp59+mtra2hbrnThxIu+88w5PP/00U6ZMQavVMnXqVE455RQeffRRLrjgAn71q19RXV3Nn//854SZnqIP6fna6kJ0rehsJa39FRcXtzkzTdNZyJqur+ksZIqiKC+88IIybdo0xWazKRaLRRkxYoRy0UUXxc3IsX79euWEE05QHA6Hkp6erpxzzjnKrl27Wsyy0dprt2Z/M49NmzZNSU9Pj838UlxcrFx66aXKoEGDFIPBoGRnZytHHXWUct9998U9b926dcrs2bMVs9msZGRkKJdddpny0ksvKYDyww8/xJZra3YNl8ul3H777cqYMWMUo9GopKamKhMnTlR+97vfKWVlZYqiKMrixYuVOXPmKIMGDVKMRqOSk5OjzJ07V1m2bFlsPX/5y1+Uo446SsnKylKMRqMyZMgQ5bLLLlN27NgRW6a1Y/P8888rkyZNir3+GWec0WLGnfnz5ys2m61F+5vPbNKacDisPPTQQ8ro0aMVg8GgZGVlKb/4xS+U3bt3xy3X2r5qbWaVRFwul3L//fcrBx98sGK1WhWr1apMmjRJue+++xSXy9VieUC5+uqrE66r+bmnKIqybNkyZdq0aYrJZFLy8vKUG2+8UXnooYdazB7U2ux7jzzyyH5fp6SkRPn5z3+upKenKw6HQzn55JOVdevWKUOHDlXmz58fW66js+9F//R6vZKZmakceeSRyq233hp3nkTV1tYql112mZKTk6NYrVbl6KOPVpYtW9ZiuxRFUV5//XVl7NixisFgiNuW9m6HEEJ0B+njSB+nP/Vxhg4dqpxyyin7XU5R1NluX3rpJeX4449XMjIyFL1er2RnZytz5sxRXnvtNSUcDiuPP/64AiiLFi1qdT3PPPOMAij/+te/2ny9tvpSN954owIon3/+uaIo7TsvFEVR6urqlEsvvVRJS0tTrFarcsIJJygbN25M2Df74IMPlIMPPlixWCzK8OHDlSeffDLh8QuHw8pjjz2mTJgwIfbaRx55pPLee+/FLbdo0SLluOOOU1JSUhSTyaQMHTpUOfvss5WPPvoobrnnn39eGTVqlGI0GpXRo0crL7zwQruPZ3Q2xuifzWZThg8frpx99tnK22+/rYTD4RbPee+995TJkycrZrNZGTRokHLjjTfGZulr2hesqalRzj77bCUtLU3RaDRx++GFF15QxowZo5hMJmX48OHKAw88oCxYsCDh+0f0DRpFSVAWXwgxYP3qV7/i9ddfp7q6OlZ0UvR/J554Ijt27Gj3zCdCCCFEXyN9HCGE6H1k+J4QA9i9995LQUEBw4cPx+VysXjxYp5//nluv/126az1Y9dffz2HHHIIhYWF1NTU8Oqrr7J06dK4GWqEEEKIvkz6OEII0TdIUEqIAcxgMPDII49QUlJCKBRi1KhRPProo/zf//1fspsmulE4HObOO++krKwMjUbD+PHj+cc//sEvfvGLZDdNCCGE6BLSxxFCiL5Bhu8JIYQQQgghhBBCiB534NMsCSGEEEIIIYQQQgjRQUkNSn3xxRecdtppFBQUoNFoWLRoUavL/vrXv0aj0fD444/H3e/3+7n22mvJysrCZrNx+umnU1JS0r0NF0IIIYRIIulDCSGEEKI/SGpQyu12M3nyZJ588sk2l1u0aBHffPMNBQUFLR677rrrePfdd3njjTf48ssvcblcnHrqqYTD4e5qthBCCCFEUkkfSgghhBD9QVILnc+ZM4c5c+a0ucyePXu45pprWLJkCaecckrcY/X19SxYsIB//OMfzJ49G4BXXnmFwsJCPvroI0466aR2tSMSibB3714cDgcajaZzGyOEEEKIPkFRFJxOJwUFBWi1fbOSQW/oQ0n/SQghhBg4uqv/1Ktn34tEIvzyl7/kxhtv5KCDDmrx+Jo1awgGg5x44omx+woKCpgwYQJfffVVu4NSe/fupbCwsMvaLYQQQojeb/fu3QwePDjZzegWPdGHkv6TEEIIMfB0df+pVwelHnroIfR6Pb/97W8TPl5WVobRaCQ9PT3u/tzcXMrKylpdr9/vx+/3x25HJyDcvXs3KSkpXdByIYQQQvRWDQ0NFBYW4nA4kt2UbtMdfSjpPwkhhBADV3f1n3ptUGrNmjU88cQTfPvttx1OCVcUpc3nPPDAA9xzzz0t7k9JSZFOlRBCCDFA9NchZ93Vh5L+kxBCCCG6uv/UawspLFu2jIqKCoYMGYJer0ev17Nz505uuOEGioqKAMjLyyMQCFBbWxv33IqKCnJzc1td9y233EJ9fX3sb/fu3d25KUIIIYQQPaa7+lDSfxJCCCFEV+u1Qalf/vKX/Pjjj3z//fexv4KCAm688UaWLFkCwJQpUzAYDCxdujT2vNLSUtatW8dRRx3V6rpNJlPsqp5c3RNCCCFEf9JdfSjpPwkhhBCiqyV1+J7L5WLr1q2x28XFxXz//fdkZGQwZMgQMjMz45Y3GAzk5eUxZswYAFJTU7nsssu44YYbyMzMJCMjg9///vdMnDgxNpOMEEIIIUR/I30oIYQQQvQHSQ1KrV69muOOOy52+/rrrwdg/vz5LFy4sF3reOyxx9Dr9cybNw+v18usWbNYuHAhOp2uO5oshBBCCJF00ocSQgghRH+gUaJTpwxgDQ0NpKamUl9fL6noQgghRD8n3/tdQ/ajEEIIMXB01/d+r60pJYQQQgghhBBCCCH6LwlKCSGEEEIIIYQQQogeJ0EpIYQQQgghhBBCCNHjJCglhBBCCCGEEEIIIXqcBKWEEEIIIYQQQgghRI+ToJQQQgghhBBCCCGE6HESlBJCCCGEEEIIIYQQPU6CUkIIIYQQQgghhBCix0lQSgghhBBCCCGEEEL0OAlKCSGEEKJ3UZRkt0AIIYQQou/pg30oCUoJIYQQovfYuRNmzoS1a5PdEiGEEEKIvkFR4Ikn4Ior+lxgSoJSQgghhOgdPv0Upk6FL77ok50qIYQQQoge5/HARRfBddfBggWwZEmyW9QhEpQSQgghRHIpCjz2GJxwAlRVwaGHwptvgkaT7JYJIYQQQvReO3bA0UfDK6+ATgePPw4nnZTsVnWIPtkNEEIIIcQA5vGoWVGvvabe/uUv4dlnwWJJbruEEEIIIXqzjz+Gc8+F6mrIyoK331ZLIPQxEpQSQgghRHIoCpx8Mixbpl7de+wxuOYayZASQgghhGjL0qVqHyoSgSlT4J13YMiQZLeqUyQoJYQQQojk0Gjg+uth82Z1uN6MGclukRBCCCFE73fssXDYYTB2LDz9dJ/OMJeglBBCCCF6jqLArl0wdKh6+8wzYfZssNuT2iwhhBBCiF6tpATy89XscpMJPvoIbLY+n2Euhc6FEEII0TPcbjjvPPXK3q5d++6XgJQQQgghROv+9z+YNAluv33ffXZ7nw9IgQSlhBBCCNETtm2DI4+Et96C2lr45ptkt0gIIYQQondTFHjoIZgzR+0/ffIJ+P3JblWXkqCUEEIIIbrXkiVqdtTatZCbC59+Cueck+xWCSGEEEL0Xi6XOrvezTerBc0vvRQ+/1wdutePSFBKCCGEEN1DUeDBB/dd3Zs2DdasgaOPTnbLhBBCCCF6r61b1Qzzt98Gg0EtZv7882A2J7tlXU4KnQshhBCie/ztb3DLLer/L78cnnyy313dE0IIIYToUj4fzJwJe/ZAXh78858wfXqyW9VtJFNKCCGEEN3j0kvV7Khnn4XnnpOAlBBCCCHE/pjN8MgjaqbUmjX9OiAFkiklhBBCiK60ciVMnQpaLVitsHy5OnWxEEIIIYRIzOlUZyY+6CD19vnnw7x5A6IPJZlSQgghhDhwkQj86U9wxBHqv1EDoDMlhBBCCNFpW7ao/acTToDS0n33D5A+lASlhBBCCHFgGhrg5z+H229Xi5uXlqr/CiGEEEKI1i1erM5QvH69erusLLntSQIJSgkhhBCi8zZtUutGLVoERqNaO+qpp0CjSXbLhBBCCCF6p0gE7r0XTjsN6uvVulFr1sAhhyS7ZT1OakoJIYQQonP+8x/45S/VTKlBg+Bf/1IDVEIIIYQQIrGGBrjoIvj3v9Xbv/kNPPaYenFvAJKglBBCCCE6rqwMzj1Xnbb46KPh7bfVaYuFEEIIIUTr7rpLDUgZjfD00+psxQOYBKWEEEII0XF5efC3v8G338Kjjw7Yq3tCCCGEEB1y771qDak//hEOPzzZrUk6qSklhBBCiPbZsAF++GHf7UsvhSeflICUEEIIIURrIhE1ozw6CYzDAUuWSECqkQSlhBBCCLF/ixapnaczzoCqqmS3RgghhBCi96urU/tO8+apmeWiBQlKCSGEEKJ1kQjccQecdRa4XFBUtO9KnxBCCCGESGz9evWC3uLFYDJBdnayW9QrSU0pIYQQQiRWVwcXXggffKDe/r//g0ceAYMhqc0SQgghhOjV3n1XnWHP5YLCQvX2lCnJblWvJJlSQgghhGgpenXvgw/AbIaXX4bHH5eAlBBCCCFEa8JhNcP8Zz9TA1IzZ8KaNRKQaoMEpYQQQgjR0l13wZYtMGQILF8Ov/xlslskhBBCCNG7rV0LDz6o/v+662DpUhm2tx8yfE8IIYQQLf3972C3w8MPS2dKCCGEEKI9Dj4Y/vpXtQ/1i18kuzV9gmRKCSGEEAJqa+HJJ/cVMU9PhxdflICUEEIIIURb/vUvtexB1JVXSkCqAyQoJYQQQgx069bBYYfBtdfCs88muzVCCCGEEL1fOAy33AJnnw1nngn19cluUZ8kw/eEEEKIgeytt+CSS8DjgaFDYdq0ZLdICCGEEKJ3q6mBCy6AJUvU26efDjZbctvUR0mmlBBCCDEQhcPwhz/AueeqAanZs2H1ajjkkGS3TAghhBCi9/rxR5g6VQ1IWSzw2mvw5z+DXnJ+OkOCUkIIIcRAU10Nc+aoRcwBbrwRPvwQsrKS2y4hhBBCiN7sjTfgyCOhuBiGDYMVK+D885Pdqj5NQnlCCCHEQPP99/Dxx2C1wgsvqNlSQgghhBCidZGIWnvT44ETToDXX4fMzGS3qs+ToJQQQggx0MyaBc88o9aPmjQp2a0RQgghhOj9tFp480147jm4+WbQ6ZLdon4hqcP3vvjiC0477TQKCgrQaDQsWrQo7vG7776bsWPHYrPZSE9PZ/bs2XzzzTdxy8ycORONRhP3d9555/XgVgghhBC9XCgEt98OW7fuu++KKyQg1YdJH0oIIYToAd9/D3/6077bOTlw220SkOpCSQ1Kud1uJk+ezJNPPpnw8dGjR/Pkk0+ydu1avvzyS4qKijjxxBOprKyMW+6KK66gtLQ09vesTGcthBBCqKqq4KST1A7VWWdBMJjsFokuIH0oIYQQopu99hocdZR6Ye/NN5Pdmn4rqcP35syZw5w5c1p9/IILLoi7/eijj7JgwQJ+/PFHZs2aFbvfarWSl5fXbe0UQggh+qRvv4Wf/Qx27lSnKb7rLjAYkt0q0QWkDyWEEEJ0k1AIbroJHntMvX3yyXDiicltUz/WZ2bfCwQC/P3vfyc1NZXJkyfHPfbqq6+SlZXFQQcdxO9//3ucTmeb6/L7/TQ0NMT9CSGEEP3KK6/A9OlqQGrECPj6azj77GS3SiRBV/WhpP8khBCi36usVANQ0YDUrbfC4sWQnp7cdvVjvb7Q+eLFiznvvPPweDzk5+ezdOlSsppMWX3hhRcybNgw8vLyWLduHbfccgs//PADS5cubXWdDzzwAPfcc09PNF8IIYToWcGgenXv8cfV23PmwKuvSmdqAOrqPpT0n4QQQvRr336rljrYtUvNMH/pJfj5z5Pdqn5PoyiKkuxGAGg0Gt59913OPPPMuPvdbjelpaVUVVXx3HPP8cknn/DNN9+Qk5OTcD1r1qxh6tSprFmzhkMPPTThMn6/H7/fH7vd0NBAYWEh9fX1pKSkdNk2CSGEED3O74eZM9XMqNtvh7vvlmKczTQ0NJCamtpvvvd7qg8l/SchhBD92r//DWeeCaNGwbvvwkEHJbtFvUp39Z96/fA9m83GyJEjOeKII1iwYAF6vZ4FCxa0uvyhhx6KwWBgy5YtrS5jMplISUmJ+xNCCCFcvhCbypx8u6uWzWVOXL5QspvUcSYT/Otfasfqj3+UgNQA1tV9KOk/CSGE6NfOOEMtbr5ypQSkelCvH77XnKIocVfpmvvpp58IBoPk5+f3YKuEEEL0dSW1HpauL6fOs292ujSrgRPG5zI43ZrElrXDSy/B9u0QHVpVUACnn57cNoleR/pQQgghRBMVFXDVVWr9qCFD1PvOPz+5bRqAkhqUcrlcbN26NXa7uLiY77//noyMDDIzM/nTn/7E6aefTn5+PtXV1Tz11FOUlJRwzjnnALBt2zZeffVV5s6dS1ZWFuvXr+eGG27gkEMOYfr06cnaLCGEEH2MyxdqEZACqPMEWbq+nHOmFGI398LrOMEgXH89PPmkevv442HGjOS2SfQI6UMJIYQQB2DVKnWG4pISqK2FTz5JdosGrKT2sFevXs1xxx0Xu3399dcDMH/+fJ555hk2btzISy+9RFVVFZmZmRx22GEsW7aMgxpT6YxGIx9//DFPPPEELpeLwsJCTjnlFO666y50MlxBCCFEO+2p87YISEXVeYLsqfMyJs/Rw63aj/JyOOccWLZMvX3XXXDMMcltk+gx0ocSQgghOmnhQrjySrUO55gx8NRTyW7RgNZrCp0nU38reCqEEKJjvt1Vy+ebKlt9fOaYbA4Z0otmr1u5Ur26t2cPOBzwyisyXK8D5Hu/a8h+FEII0acEAmqG+d/+pt4+/XR4+WVITU1uu/qI7vre74VjEYQQQvRXLl+IPXVe3IEQdqOegjRLrxgWZzO23Qbrfh7vUS+/DFdcoXasxo5VZ4cZOzbZrRJCCCGE6L2qquCss+DLL9Xb99yjzlKs7fVzv/V7vaiXLYQQoj/rzYXEB6VZSLMaEg7hS7MaGJRmSUKrWmEwqAGpM85QA1SSoSKEEEII0TarFVwutd/0yitw2mnJbpFoJEEpIYQQ3a4nCokfSBaW3aznhPG5rQbNkp7NpSig0aj/P/98yMqCWbPk6p4QQgghRFuifSirVc0uj9aREr2GBKWEEEJ0u+4uJN4VWViD062cM6WQPXVePIEQVqOeQb1heOHXX8Nvfwv/+Q/k5an3nXBCctskhBBCCNGbBQLwf/8HBQVwxx3qfUVFSW2SSEwusQohhOh27kCozcc9+3m8LfvLwnL52r9uu1nPmDwHhwxJZ0yeI/kBqeeeg2OPVactvvXW5LZFCCGEEKIvKC2F446DZ55Ra0dt357sFok2SFBKCCFEt+vOQuLtycLqc/x++PWv4Ve/gmAQfv5zeOKJZLdKCCGEEKJ3++ormDJF/Tc1Vc00Hz482a0SbZCglBBCiG4XLSSeyIEWEu/OLKyk2LsXZs6Ev/9drYFw//3w9tvg6PzwRiGEEEKIfu/ZZ9U+VGkpHHQQrF4Nc+cmu1ViPyQoJYQQottFC4k3D0x1RSHx7szC6nFr16pX977+GtLS4IMP4JZb9hU5F0IIIYQQLV17LVx5pZphfvbZal9q5Mhkt0q0Qx/qqQshhOjLuquQeDQLK9EQvgPNwupxRUWQnq7OrrdoEYwYkewWCSGEEEL0foccol7Ee+ABuOkmuaDXh0hQSgghRI+JFhLv6nWeMD631dn3kl6sfH8CATAY1M6TwwEffgiZmWC3J7tlQgghhBC9l98PJpP6/0svhSOOgPHjk9sm0WG9vKcuhBBC7F93ZWF1u5IStYj5vHlwww3qfUOHJrdNQgghhBC9maLA00/D44+rBc2zstT7JSDVJ/Xy3roQQnQPly/Enjov7kAIu1FPQV8IYIg2dUcWVrf64gs45xyoqIDiYrjiCkhJSXarhBBCCCF6L58PfvMbePFF9faCBfCHPyS3TeKAyC8wIcSAU1LraXWo1+B0axJbJgYERYG//Q1+9zsIhWDSJHj3XQlICSGEEEK0Zfdu+NnP1Fn1tFp46KF9meaiz5LZ94QQA4rLF2oRkAKo8wRZur4cly+UpJaJAcHrhUsuUWeICYXg/PPVtPPhw5PdMiGEEEKI3uvzz9UZilevhowMWLIEfv97KWjeD0hQSggxoOyp8yacpQ3UwNSeOm8Pt0gMGOEwzJoFL72kXt37y1/g1VfBZkt2y4QQQggheq///EftQ1VWwsEHq4Gp2bOT3SrRRWT4nhBiQHEH2s6E8uzncSE6TaeDCy6AzZvhzTfVzpUQQgghhGjbMcdAURFMmwbPPQdWKbfRn0hQSggxoNiMbX/sWffz+EAxEArB98g2KgrU1EBmpnr76qvh3HMhO7vn2iCEEEII0ddUVan9J40G0tNhxQp1lj0ZrtfvSM9XCNGv7O9H/qA0C2lWQ8IhfGlWA4PSLD3Z3F5pIBSC75Ft9Hjg17+Gb76BVasgNVXtSDUGpAbCfhZCCCGE6LBPP4V58+CPf4Qrr1Tva+w/if5HakoJIfqNkloPb6/ZzQdrS/l8UyXvry3l7TW7Kan1xJaxm/WcMD6XNKsh7rnRYMBAz1IZCIXge2Qbd+yAo4+GV16B7dvV4pw93QYhhBBCiL5EUeCxx+CEE9RMqZdeUmtyin5tYP/6EkL0G/v7kX/OlMJYwGlwupVzphSyp86LJxDCatQzSIZNAe0rBD8mz9HDrepa3b6NH3+sDtGrrlav6r31Fsyc2bNtEEIIIYToSzweuOIKeO019fZFF8Ezz6g1OUW/Jr/AhBD9QvMf+VoNZNqMKIA/GGHtnjomDkqLBZ7sZr386E9gIBSC77ZtVBR49FG46SaIRNRpi995B4YM6XAb6j0BNpU5pdaUEEIIIfq/4mL42c/g++/VINSjj8K110r9qAFCerhCiH6h6Y98rQbyUsws31pFudMPwJYKJxvLnFKvZz8GQiH4btvGhx+Gm29W/x+9umdJXKOsrTY0+ILsrHFTsq06dl97a01J4XQhhBBC9Cn19eqsepWVaob522/DjBnJbpXoQVJTSgjRLzT9kZ9pM8YFpAAMOq3U62mHaCH4RPpLIfhu28ZLLoHhw+Gvf4WFC1sNSLXVhkAogssXwh+MxN3fnnO3PTXVhBBCCCF6ldRUuOEGmDoV1qyRgNQAJEEpIUS/0PRHvgJxASmzQYvDrD4WrdfTX7l8ITaVOfl2Vy2by5wdDsANhELwB7qNTfdx8Zff7tvHOTnw009wzTX7TTdvrQ0GnYapQ9OpdgdaPKetc1cKpwshhBCiz3C7Yffufbdvugm+/BIKC5PXJpE0ff/XhRBCsO9H/tL15XFZJmaDluHZdoz6fTH4/lAXKZGSWk+LwER7h301NRAKwXd2G2P72B1g6tvPc/ALj/LlLQ8z/Iar1H1sNh9QG3zBMJ9tqiCiJH5Oa+euFE4XQgghRJ+wfTucdZZaf3PFCrDb1Yt5JlOyWyaSpP/8whBCDHjRH/lr99SxpcKJQadmSDUNSEHX1EXqbbV7OjL7YHsMhELwdrMaiIoex7113jaPY3Qfu6rrmfvorYz5/EMAUn78tlP7ONqGpvt5U5mz1YAUtH7uDoQC9UIIIYTo45YsgfPPh9payM1VC5xPnJjsVokkk6CUEKJfsZv1TByUxsYyZ8LMka6oi9RVGUldSTJlOq6jx3FPnRdl6zbOu+dqsos3E9Yb+Ow3t/HjKedBF+3j6DDUjp67A6FAvRBCCCH6KEVRJ4S59VY1Q2raNPjXv2DQoGS3TPQCUlNKCNHvtLdmUGfqL/XW2j2JMmUCoQjVLj+l9V721Hp6dV2hA62F1ZnX6+hx1P3vv1xwzc/JLt6MOyObfz7yEj+een6sflRb2Ujt3b7O1rtqXji96bFHUciwGVttmxBCCCFEt3G5YN48dYbiSAQuvxw+/1wCUiJGLp0KIfql/dUM6my2U2sZSYFQhG0VLtbsqiE/xdLjw/maZ8o0+IJsr3Tha6yvtafOy9trdic1m6s1ycg863Bm2bZtjLj0fDThMHvHHcziO/8f7szcuOe1lo3U2vbNGJVNMKK0GALamXpXTWuq7arxxI59rsNEQZqFD9buZda43nfshRBCCNHPXXst/POfYDDAk0/Cr36V7BaJXkaCUkKIfqu1ukgHUn8pUUZS0wBQUZaNb3fW9fhwvqbDvgKhSFxAKtdhQkPn60t1p66uhdVeHa7BNGIEwZtupvin7Sz51a2EjfGZR60NrWtt+3bVeHj6821MHpxKpSsQW0f0nOlMTa/B6VZOnVTAZ5vKyUsxowF8oTDr9zZgNel73bEXQgghxABw333www9qQOqoo5LdGtELyfA9IcSA054smdY0z0hqHgAyNRZV7+nhfE2HfTl9wbiA1PSRWVS7A7F2tbV9PcnlC7F2Tx0bShuodvkJhCJxj3dnW9tVg2nLFti1K3af8U9/xLbweRxptrhl2xpal+hci54zu2o8NK1p3hXnTI07wPpSJ19tq+LjjRUs31rNxnIn60vr2VXj6TXHXgghhBD9lKLAp5/uuz1oEKxZIwEp0Sq5XCqEGHAOZKay5oWomweANE2W7ekC49FhX2t21VCUZcOk16IByhp8cTO69YaZ2KJD2sJhhZ3VHgDMBi3Ds+2kmPfVRuqutu6voPiQFZ/CJRfByJGwbBlYLKDRJBxal2EzUuMO8O2u2hYzMSY615qeM/5WAnGdPWfqPIG4IGmUL6gGwuo9gU6tVwghhBBiv5xOuPhieOcdeOstOOcc9X6Nps2niYFNglJCiAHnQGYqa1q7p84TJBCOz0gqa/DFLd/TASC7WU9eioVvd9bhbGWZZM/E5vKF+HhDOQathhSzHqNOi16ndlaKK12My0/F2Jhx1l1tbX4co9LMOn72wUIsD/xRvdJnNoPbrQalmjw3GjQqqfWw+Me9rdbDSnSuRc8ZUDPrmh+n9p4zLl+IPXXeuJpUEUXBH4xgNeoACIWV2L71BsKEFaWtVSZcpwz3E0IIIcR+bd4MZ54JGzaA0aj2n4RoB+lpCiEGnP1lySSqDdRU02yZkloPe+u8CTOSIDkBoAPdvu62p86LWa9j+dYqUi0GfMEwe6u82Ix6hmRYcfqCZNpN3d7W5llPdr+HYTdcjf69f6sLXHUVPP642rFKoD31sBIdC6NODbg1z6yLas8501rx9MmDUxmebWP1jtq4LC2bUc+UoeltBmSTUXBeCCGEEP3A4sVw4YXQ0AAFBWqm1LRpyW6V6COkppQQYsBpWn+pqbZqAyVax5g8B9OGZRKKKFS6Ai0CUskKAHXF9nUXly9ERYOPkloPg9KtaLUajhieQUGqBXcgxK4aD6GI0mNtjR7HQzzljDp9thqQMhphwQJ46qlWA1LQvtpkiY6Fw2xgSIY1rtZXVHvOmbaCYV9srmBiQSqplvhjn2pRXzOagdaRdfZkbTQhhBBC9CGRCNxzD5x2mhqQOvpotX6UBKREB0imlBBiQEpUG2hQJ4YqtToMLMkBoK7avq4UzcRZt6eer7dXA1CQauGIEZkclJ/ClKJ0gmGF6SMyOXxYZs+29corYeNGtRjnO+/A4Yfv9yntrU2W6FiYDBo+31QZF8jMsBmYMSZ7v8Pn2gqGlTcEiABj8xyx/WnQaXD7QqzaWcPRo7ITPq89Abaeqo0mhBBCiD7iiy/g7rvV/19zDfzlL21e0BMiEQlKCSEGrKa1gQ5EbwwAQddtX1domomjAfRaDaGIwt56L19vq2ZsnoPvdtVhNmg5KRnBvIUL4Xe/g2eegdzcdj2lI7XJEh2LrEPNsXPGoNUSjER4a1UJDd4gDrMBo16bcPhcW8GwsKJg1uvZVVsfV+w8WkQ+FIkkfN6BFP8XQgghxAA1cybceiuMGqUWOBeiEyQoJYQQXaA3BYB6o6aZOGaDjnSbkVp3IBaYmlKUHgucpFp74ApbfT0sWQLz5qm3i4rg3Xc7tIoDrd0VPWdKaj2sKq7h040VlDv9wL4gEhCrTxUN1LUVDDPqtKRa9Bw3OodAOII3GMZi1GHUaqn3BVutV3Ugxf+FEEIIMYAsXgxTpkB+vnr7T39KbntEnye9TCGEEN2uaSaOw2wg1WJAr9XiD4WJRBTsJj3j81PJSTF1fx2uDRvU2WG2bAGrFU49NfZQa7PPtXb/gQ7djGaQ6bWaWEAKwBeMsL3Sxfj81BbD59oKhhVlWsm2m1n849649eU6TMwan9vqvu3txfGFEEIIkWSRiDpU749/hOnT4ZNPZKie6BISlBJCCNHtmmbiGPVqFtD2Shc6rTr/XKrFgM2k7/46XIsWwS9/CS4XFBZCXl7sodZmnzt8WAard9RQ4048K92BDN2MZpA5TC2X9wUjsZkImw6faysYdtzYbN77YS/1vvjgUr0vyK6a1qdm7q210YQQQgjRC9TVqf2nxYvV21OngibRHMJCdJz0MoUQQnS75pk4KWYD4/NTcfqCpFgMHFaUweB0a/cFPyIRuOsuuO8+9fbMmfDWW5CtFv5ubfa5igY/C5fvYPLg1Lj7o7PSRYfVtXfoZvOMK18wjFYDJkPiWfGCYbUGVPPhc60Fw/bUeQmFie3bYDiCQafFYTYQCtNmwfLeWhtNCCGEEEm0fv2+DHOzGf7+dzVAJUQXkZ6mEEKIbpcoE8eo1zIix96ikHeXq6uDCy+EDz5Qb193HTzyCOj3fQW2Nvuc0xdkV42HSc2CUtDxWekSZWIpisKgNAuhSIRchyluyB2AQadtdfhcomBYdJikUa8l025q8Zz9FSyX2mhCCCGEiHnnHZg/X80wHzJErb956KHJbpXoZyQoJYQQokf0RCZOwtpPH36oBqTMZnjuOfjFL1o8r7XZ5wKNmUr+UOJZ69o7K11rmVjBsMLqnbUcUpjK9JFZLN9aFVfsfEiGlRPGq7MBbipztqhp1Vx/KFjeWv0uIYQQQvSgYBDuuEMNSB13HLz5ZizDXIiulHi8QA/54osvOO200ygoKECj0bBo0aK4x++++27Gjh2LzWYjPT2d2bNn880338Qt4/f7ufbaa8nKysJms3H66adTUlLSg1shhBBdz+ULsanMybe7atlc5sTla1/wo7eLZuIcMiSdMXmOLg02lNR6eHvNbj5YW8rnmyp5f20pb6/ZTcnJZ6hD95YvTxiQgtaDOUad+jVp0if+umxvkKe1TCyjXovdrMeg11LW4OPwYRmcOimfUyflc+3xI7lg2lCAxNtV62mxvugwyUT6QsHyVo9hgm0d6KQPJYQQolsZDGqm1M03w//+JwEp0W2SGpRyu91MnjyZJ598MuHjo0eP5sknn2Tt2rV8+eWXFBUVceKJJ1JZWRlb5rrrruPdd9/ljTfe4Msvv8TlcnHqqacSDod7ajOEEKJLyQ/zjmuaiaQJh5n65t8x19fEaj+5br69zXTz1oI5DrOBIRlWEpXy7EiQp7VMLFDraw3NsHHyhHwOGpTK4cMyOeuQwUwtysQbDPPWqt1sKG2g2uUn0JixFduuZsHK6DDJ5tvSFwqWt5ZN1tq2DnTShxJCCNHl1q2DF1/cd3vMGHjggbiSB0J0NY2iKEqyGwGg0Wh49913OfPMM1tdpqGhgdTUVD766CNmzZpFfX092dnZ/OMf/+Dcc88FYO/evRQWFvLBBx9w0kknteu1o+utr68nJSWlKzZHCCE6xeUL8faa3QmzatKshlhh7d6uI0OwumK41qYyJx+sLcXkrGfOAzcwbPUydh5yFO88+AJoNMydmL/fWkmdnX2vI+1rzdyJ+bFC5dH9YDRoWL2jhrdX74ktZzaoMxemmA2x5yXarug+7UsFy9uzj7qq3lV/+95PVh+qv+1HIYQY0N5+Gy65BLxe+PhjdVIYIZroru/93t1DbSIQCPD3v/+d1NRUJk+eDMCaNWsIBoOceOKJseUKCgqYMGECX331VbuDUkII0Vu0NswLOl5YuyO6so5Pa8GdREGcjizbFncgRGbxJk6762rSy3YTMJr5ZubpVDj9hBWFPbWe/QZm2qp5NTTDdkBBnuazDzaVYTNg0GrigpGBUIQql5+jRmSi02oIR9TrR75ghO2VLsbnp2LUa6n3BFhbUk+F04dBpyHXYWZQ4yyGfa1geVvZZND++l2iJelDCSGEaFU4DLffDg8+qN6eNQsmTEhum8SA0uuDUosXL+a8887D4/GQn5/P0qVLycrKAqCsrAyj0Uh6enrcc3JzcykrK2t1nX6/H79/3wxHDQ0N3dN4IYTooGT8MO+qwBDsfwhW00yvjiy7P3n//Q8TfnsVRr+Xisx8nvrtI3xlH4x/WxXpNiMTB6Xy9prd+92m1oI5BxrkSTT7IKj7ecaYbD7dWBl3f3TWP60GRmTZ2Fzhij3mC0Zw+oIY9Fq2VDj53/pyfEF1WF+uw8Ss8blMGZrevTMadoP+UKS9t+nqPpT0n4QQop+pqYHzz1drRgHceCPcf78M1xM9Kqk1pdrjuOOO4/vvv+err77i5JNPZt68eVRUVLT5HEVR0GgSVQBRPfDAA6Smpsb+CgsLu7rZQgjRKT39w7yr6/i0J9OrM8u2KhSCm26i4NcXY/R7+WHcYdx710t8ZR+MOxAiFFEwG3SEw0rSaxNFM7HmTsxn5phs5k7M55wphfiDSov9EJ31r8LpJyfF3GJdvmCYek+QbZWuWEAKoNzp5+P15awqrunx7TzQ4vx9vUh7b9TVfSjpPwkhRD/yww8wdaoakLJa4fXX4eGHJSAlelyvD0rZbDZGjhzJEUccwYIFC9Dr9SxYsACAvLw8AoEAtbW1cc+pqKggNze31XXecsst1NfXx/52797drdsghBDt1dM/zLskMNRERzK9uiQrzOVSZ4YBNlx0FS/c+jfc9tTYugtSLUwZkk5xlRvo3DYdqKbBmr11XgalWeJmH0y0H6Kz/nkDYbIdJnIdprjHM+xGJg5KYWOZK+5+nVZDqsVARFH4pri6x2Zu7Iri/H25SHtv1dV9KOk/CSFEP7JsGRQXw/DhsGIFnHdeslskBqg+18NTFCWWOj5lyhQMBgNLly5l3rx5AJSWlrJu3ToefvjhVtdhMpkwmUytPi6EEMnS1jCv7vhh3tXDBTuS6dUlWWFpafDuu2xftor/jT6aw2xGDDq1GLhBp8HtC/Hd7joK0/cF83qyNtH2CheLvt9DWYMPo05LqsXAyBw7hRkWtFotdqMeq0GHVgORJtOOOMwGzAYtvmCEUCTC4cMyUAB/KEKqRc/Y3BReW7krVmsK1IDUIYVprCyuYUeNh4JUM3mplk4PxWyvrhyG2VZdL3HgDrQPJf0nIYToR66+Ws04v+giyMhIdmvEAJbUXp7L5WLr1q2x28XFxXz//fdkZGSQmZnJn/70J04//XTy8/Oprq7mqaeeoqSkhHPOOQeA1NRULrvsMm644QYyMzPJyMjg97//PRMnTmT27NnJ2iwhhDggPfnDvKuHC7ZV0Lt5pldHlo3z+uvgdsPll6u3J04kmF1EZG0pla4AWXYj6/bUxz3FoNuXGNxTtYl2VLt4+vNt7KpRs4V0Wg2HFaWz5KcyvMFwrFi5zaijKMvGjip3LDBl1KuBNZcvBApUugKAul+OHJGF2x9Gp40fYjUiy8bK4hr21nsZneuIbXNngkMd0dXF+ftikfZkkD6UEEKIDqmqgltugUceUS/qaTRw3XXJbpUQyQ1KrV69muOOOy52+/rrrwdg/vz5PPPMM2zcuJGXXnqJqqoqMjMzOeyww1i2bBkHHXRQ7DmPPfYYer2eefPm4fV6mTVrFgsXLkSn0/X49gghRFfpqR/mnQ4MtaIjmV4dzgoLhQjccCPG//c4EYOBXcMPIuuow7Cb9XHboUEt+F3uVDNCzAYtDrOh09vUGS5fiFXFNbGAFKhBo+Vbq9hb5yPdZqTC6SPHodaL2lXjZkiGlR3V+5YfkmFlxuhsgmGlRXDS5QsxJMPK7lpPrKaUzaxnb70Xm1GPUbdvm6F7Z26UWfOSQ/pQQggh2u277+Css2DnTnA64Y03kt0iIWI0iqIo+1+sf2toaCA1NZX6+npSUlKS3RwhRD/n8oXYU+fFHQhhN+opSPLwpK6cfS8quo3tyfRquqxeq8Wg0+ANhrE13TeVlfjOPgfzF58D8M35V7Liot+S6jDH2hndjgZvkLwUM8u3VlHvCzI8206K2dDtw9ia2lTmZNnmSpZuKI/dN2lwKm+t2k1EUci0myjMsKLVEGvf7HG5GPXaNvdZ03MnEomwpcLJ0vUVuP1hJgxKZdnmSoZn28hPs5Bijq/NNHNMNocMiZ9praMSnbt76rx8sLa01efMnZjf6zKf5Hu/a8h+FEKIPuDVV9Xscp8PRoyARYtgwoRkt0r0Qd31vS9FGoQQ/dpACAAdqO4YLtiRTK/osk2DSpk2I9ErJlOqtzPmNxdj3r2bgNnKkhsfZOsxJwHxQ9Oaboc3EGJyYRrBsEIoEmnXNnXlueIOhDAZ9g0ZDEcUnL4QkcbrQBFFQa/V4AmE2V7pYnx+KqFIhIl5qa2uM9G5YzPq+M3MkTR4g0QUBV8wTIrZgFHfch6TAx222Nq5O2NUNhk2AzXursm2E0IIIUQXCIXgxhvh8cfV23PmqAGq9AO7QCVEV5OglBCi3+ptAaCuLAjd1ZJdxyc63M2g05CTYqba6ae8wUfe4n8x8h8Pogv6qS4Yyvt3/43qolFxz206NK2z29HV54rNqI8bRugPhWlS1gqHad9x9gUjOH3BNoNGrZ077kCYtXvqOWdKIQC7axPXdzrQ4FBb5+7nWyo5bmw2n26s7JHi/EIIIYTYj8pKmDcPPvtMvX377XD33SDDs0UvJD1FIUS/1BsDQF1dELo/2Vrh5NONFTj9IfbUqtlKBakWZitOjEE/xdNm8vAvbqNo8GCMCZ5/IHWLuuNcGZRm4WtFYfrILJZvrWJrZZAaV4DBGVY8/hBDMm3UugOx5VMsbQeN2nvudNfMjft7fX9QkVnzhBBCiN5CUWDbNrDb4eWX1XpSQvRS0lsUQvRLvTEAJAWhE3P5QvxvfTnlTj9Woy62n/bWe3ly6s8oT8+l5pQzqdlSTaYvSKa95ZT0BzI0rTPnyv6G+tnNemaNy+XjDeUcPiyDCYNSqXT5OX5cDuv2NLC53BkbnpjrMHHifoJG7T13umvmxva8frKz7YQQQgjRKCcH/v1vMJlg/Phkt0aINklQSgjRL/XGAJBtP4GTA63501ftqfNS7w1iNeoYWryBX7/1FPf84i4a9Cb2NvjYPvs0UjRach0mguFIi+cf6NC0jp4r7R3qNzjdys8PVQNE9Z4AO2vcBEMRRufaGZljxx+KYNJrsZv0jMxpO5jTkXNnf8GhztTOknNXCCGE6MWCQbjhBpgyBebPV+875JDktkmIdpJepBCiX+qNP6IHpVlIsxq6peZPX1be4GVntZuD/vcON7z7BMZQgAs+WMALZ11DIBxBURTc/hDTR2axp84b99yuGJrWkXOlo0P9mgaICtItLZ6rsxo4bFjGftvfVedOZ2tnybkrhBBC9FLl5Wr9qC++AIsFTjoJ8vKS3Soh2k2CUkKIfqk3/oi2m/XdVvOnr3L5QlTUOPnFq3/h5M/+CcCycUfy1DEX4PcGSbcayXaYcfpC+EJhfnlkETXuQJcOTevIuXIgw0IPZGhdV5w7B1I7S85dIYQQohdatQp+9jMoKQGHA155RQJSos+RXqQQol/qrT+iu6vmT19VtmUnx1x5Prk/rALgzVMv44PTL8Nc5yMcCDEsy4ZZr0VnNTBrXC7ZDhPZjviaUu0ZjtbWMh05Vw50WOiB1F060HPnQOusybkrhBBC9CIvvghXXQV+P4wdC+++q/4rRB8jPUkhRL/VW39ES0HoRt9/z5A5czGWlRKwOVh45b18PGoamggUZdnIcZg4eUIeBWnWuOMWDTB5AiE0wMriGtyBcGy1zYejtWfIWnvPlWQPCz2Qc6cr6qzJuSuEEEIkmaLAtdfC3/6m3j7jDHWGvZSU5LZLiE6SoJQQol/rLT+iO1Ncuiuf3ytlZ6MNh6kuHM7ie/6GdexYToVYAXANUJBmjTt+TQNM2XYjK4trqPcFGZ5tJ8VsAOKHowHtHrLWnnOlNwwL7ey5kOyAmhBCCCG6gEYDGRnqv/fcA7fdBlptslslRKdJD1QIIbpZZ4tLd9Xze5VIZF/HadAgAu9/yIe1emo0ZnAFYos5aRnkaV4TSQHKnX7CEYWf9tQzPNuOXqvBYTbEhqMBBzRkrblkDws9kHOhNwTUhBBCCNFJTftQd98Nc+bAkUcmtUlCdAUJqQohRDfaX3Fpl6/tIVMH+vxepbQUjj0W3n47dpf1sEOZedhI0qyGuEUTBXma10TyByP4Q2EqnT721Hkpb/CxpcLF+tJ6GnxBPIFQlwxZay461G/uxHxmjslm7sR8zplS2O0BwgM9F6IBtfbsayGEEEL0Is8/r/ahvI2zEGu1EpAS/Yb0QIUQohsdaHHpA31+r7FiBfz852pgascOOO00MJuB9tdzah5g0us01LoDhBXItBnRaTWY9FpMei0VDT7qPAHMBh2BUASjPvE1mM4OWUvGsNCuOBd6a501IYQQQiTg98P//R88+6x6+4UX4Oqrk9smIbqY9EKFEKIbHWimTndk+vS4v/8drrkGgkEYPx4WLcKFnj1lzri6SPsLqDSvieQJhMlNMaMoasCmwacWPq/3BhmebaPWE8AbCFPl8mM362M1p6I6MmStN9T06qpzobfUWRNCCCFEG/buhbPPVi/saTRw333wm98ku1VCdDkJSgkhRDc60OLSiZ6v1aiZQQpQ4w6wuczZ5UGSLgnC+P3q7DDPPafe/vnP4cUXKQnpWLpmd4frIjWvibS7xsOcCXm8v7YUXzCM1aijxh0gN9XMuPwU/ruunJmjs5g6NJ3VO2sx63WxjKmODFnrLTW9pFC5EEIIMUB89ZXabyorg7Q0eO01tYaUEP2Q9GCFEKIbHWhx6ebP12ogL8XM8q1V1PuCjM9P5ceS+i4NknRJEMbvh5kz4euv1at7998Pf/gDLn+YpT/ubtdseM01LzKu02qodPkZnG5l+ogsfOEILl+QGleALzZXkmIxEFagssHH5MGpjMixYzboOjRkrWkdp0AogtMXJBCOUO3yEwxFuGDa0B7LmJJC5UIIIcQA8M9/wgUXqBnmEybAu+/CyJHJbpUQ3UYKnQshRDc60OLSzZ+faTPGAlLDs+2xzJ+uKnzeZYXVTSaYPl29uvfBB3DzzaDRtKsuUluaFhk/fXIBQzNs1HuDfFNcw/o9DXy2qZIf99SrTdDr8IciRBSodKn1pQ4Zks6YPEe7A0kltR70jbWq9DrQACW1XrZUuFi+rYqNZfXt2x9dQAqVCyGEEAPA1KngcMA556hD9yQgJfo56cEKIUQ3O9Di0k2fX97gZWOZk0Hp1hbFu7ui8PkBFdNWFPB4wGZTbz/4IPz2tzBkSGyRrqiL1LQmklYLkXUKCmrhcwC9VkN6k8LnzsbndXR4W0mth//8sJeVxTVUOn2EIgoFqRYOH5bBd7vr8AUjbCh1MjYvtccCQlKoXAghhOiHPB6wNmajFxXB6tXqvxpNMlslRI+QXqwQQnSDRDWZDiRYFA3EuAMhMu2mVpc70MLnnQ4a+XzqbDCbNsEnn4DRCHp9XEAKWtZF0muhKNNGIBzB7Q9T6wlQ6fST7Wh9G5sam5fK9BFZ7KrxEIoouP0hIgrotBpyHSaiXbmODm+LZow1eIP4Q2FCEQWAvfVeVhbXMDbPweYKF0CnAoEHUrNLCpULIYQQ/ciyZXDuuerEMKeeqt43bFhy2yRED5KglBhQesMMWqL/687C2N1d7LpT69+9Wy3GuWoVaLV4l37CrinTE77PmtZF0mthRLadN1fvZmuFC71WQ7bDzLAsGxdPL+KggtT9ttdu1jN3Un5sf1uMOrZXukg1G5g+MouyBl+nhrdFM8YcZgMmvS7usb31XqYUpceCXh0NBB7o+SGfY0IIIUQ/oCjw1FNw3XUQCsEjj8App0h2lBhwpBcrBozeMoPWgZIfpL3b/moytVXIuz26u9h1h9f/xRdqzYOKCsjIoPK5hSxOG0Pd2tK450XfZ02LlWfZjHEBqeiQu101HhYu38FNJ49tV8ZU8yFteq0Wg06DLxjm4CHpnRreFs0YM+q1jMi20eANxmWRGXSaWNCrI4HApudH01kU/cEIK7ZVM3OMrs1t7orPMfkMEUIIIZLM54OrroKFC9Xb550Hzz8vASkxIEkvVAwI3R0o6Cn9JbC2P335R/MB1WRqh+Yz0EV1VbHrdq9fUeDJJ+H669WrewcfjPv1t1hcrd/v+ywaRFpZXE2V00+GzYhJr0On3dcR21XjYWuFs93D+Lp6SFvTjLEMm4lhWeoQw1BEQa/VUJRpo6TWS4qlY4HA6PnRdBbFcqc/9vjuGg/zDitM+H7uis+xgfIZIoQQQvRau3fDz36m1o3SatUMqd/9TgJSYsDqG7/yhDhA3R0o6An9JbC2P339R3NXFPLen+4udt2u9d99N9x7r/r/Cy6A556jpCFM3e7ShOts/j6zm/UEwhHsZkPC5QEavAe+rzqracaYUa+lIN3C9koXgVCEdIcJbyBMiqXjgcDo+RGdRbFpQAqgvMHX6vu5s59j0SBvnSfArhoPBq0GrQYay2T1u88QIYQQotcqL4cpU6CyEjIz4c03YdasZLdKiKSS3qcYEHoiUNDd+kNgbX/6Q+Ctu2s+RXV3sev9rv/CC9VMqdtvV2shaDR4qmrJtu8bjmYy6tAoCtXuABGl5fss1dJ6QAogxXLg+6qzWXfNM8ZSzAbG56di0Gk4elQWqRZjpwKB0fNDgRYBKQCDTtvq+7kzn2NNg7zVLj9bKlzkOkyxoYdNA1P94TNECCGE6NVyc+Hss2HFCnj3XXWGPSEGuN79606ILtJTgYLu1B8Ca/vTnsDboDRLrx7a1901n3pS84DOIE8ttuGNs+mNHg3bt0PqvmLkGmBlcU1csKVpAKT5+2xkjoMhGVZ21XhavPaQDCsjc1oPkLQn2HSgWXfdkZEWPT/8wUiLx8wGLY7GzLFE7+eOfo41D/IGwuprljv9LN9axeHDMqh0BWLL94fPECGEEKLX8XrVGlLp6ertxx9XSx9Ye/8IACF6Qu/5JSdEN+oPgYL+EFjbn/0F3sobvHy1rarXD+2bOCiFDaVO0GhimUKdGeqVLC5fiK0VTv63vpwGbxCHSc+09/7B8Bf+QuUb/yL7rMbpipsEpFy+ECuLa6j3xb/HogGQ48bmtHifZTtMXDy9iIXLd8QFpoZkWLl4elGr9aTaE2zqqqy7phlj7QmE7W+ZaAbWim1Vcc8zG7QMz7Zj1GuBxO/njn6ONQ/yGnXa2P/LnX6UZuvoD58hQgghRK+ycyecdRZkZMB//wt6PRiN6p8QApCglBggurs4dE/oD4G1/Wkr8BYIRShv8PXqoX1NgyWBUASnL0iKxcCJ43MZmeNIevtg/0GTkloPq4pr+HRjBeVOP8aAj6tee4ijvl4CQOVr/8Iy5+SE9Y7cgTDDs+1sr3Tha5IJVO8LUpiROMPooIJUbjp5LFsrnDR4Q6RY9IzMcbQakGpvsOlAh7s23096rYbPt1S2GQhrb2bW4HQrM8fksrvGS3mDD4NOzZCKBqRaez939HOseZDXYTZgNmhjx8YfisStoz98hgghhBC9xiefwLx5UF0NWVmwbRuMGZPsVgnR6yT/F5IQPaS7i0N3t/4QWNuftgJvBp0m4ZAn6B31cJoHS4x6LZl2NbDy3e66Noei9ZT9BU2i26DXaih3+smuKuWGZ29m2O4thLU6Pr3iD6z92UXMbaPeUbT2ktMXJBiOxAIuOq2W1mQ7TO2eZa+1YFMgFGFbhYs1u2rIT7HgC4bjinlHg4SBcASjTku9J9BiHa3tp2y7kR9K6rGb9aQ0KczeNBAGdCgzK9thYt5hhR1+P3fkc6x5kNeo18YFDU16Lc52vGZr+vIsmUIIIUS3URR47DG48UaIRNTC5u+8A0OGJLtlQvRK0nsUA0p3F4fubn09sLY/bQXeDipIYcW26lafm+x6OL2tEH3zgEG6zcjHG9oOmkS3wWHSM3HDKn77/J2kuOupd6Tx2BV/InT0MWRqNLF93fQ1/MEwgVAEo14bF5CL6qqhYYmGeDb4grFAS1GWjW931qEoCoPSLJQ1+KjzBltkb+2scVOQbmkx7DNRJpYC7KrxYDZoGZ+filGvRatRZ9BTgG+Kq7EadVQ0+GPZTk21dvw7+35u7+dYoiBv04LtkwanYTboOvUZ0tdnyRRCCCG6hccDl18Or7+u3r7oInjmGbBINrIQrekfv2SFGED6emBtf1r7ob6nzhvLekkk2fVwelMh+kQBA0VRKEy3oHdoiCgtZ8eLBpcA8oo3cun/+x1aJcK2oWP5y68foDojl6LGQtlWoz5hNlGVy98imwi6ZmhYNABW6w6Q5TDF2u0LRuICTtHsn2BYYfXOWg7KT+HbXbX4ghF0Wg0jsmzkpJgJhCKs2FbNzDG6uCytRMHFaIaeL6hmW2U7TOSlmFm+tYpyp5+iTCujchysL61neLa9xfZD68e/O9/PrQV5c1JMBxQ86g+zZAohhBDd4qKL4F//UmtHPfYYXH01aDTJbpUQvZr0GoXoB/rbMJpEP9R7e02trixEfyDHs7WAQaXTj8WgY0e1mx3V+4qKZ9mMTClKZ2e1G4dZTyAUoW7UOFYdPRdPWGHB+b8naFCDNgadljSrgQybkcU/7o17jVpPgBmjs/hqWzV7vEHMBh0OsyEWADmQ87F5ra71pfWkmg1MH5nF+r0NsYBUrsNEtNtn1Guxm/XodJpYQOqQwjTW7a2ntN6Hyx9CAXbXeJh3WGEsQJMouGgy7Mt+CoYjZNqMsYBUdL+YGms1ba90xbKpmkpW0DQa5C2p9VDh9BEMK+Q6zKRZOl9gtbdlBQohRH/T3/p1vU237t+774bvvoMXX4Rjj+2adQrRz8mnmxB93EAZRtPba2p1VdDsQI9nawGDwgwrX2ypxGbUYzXqADWAsG5vPRVOP78uhF1GO1UuRa279OATfFlcS9Cl1l4yG7QMybBywvhcyut9bKtwxeozpVoMFKRa+XhDBXaTntG5DrRaDakWPYcNy+jwedi0s2gz6Ph8cyXuQBiIr4u0fGsVI3PtUK4GpKaPzKKswRdbT4rZQG6KmVMn5WM16Vi5vQatRhMLSAGUN/jisnsSBRc1qOsvd/ox6LQoEAtImQ1qzaymyzh9wbjhi8kOmtZ5A6zYXt3kvKg/oM+I3pQVKIQQ/c1A6dd1l/ZM6NKl+1dR4Icf4OCD1dsTJsCmTWqmlBCiXeTdIkQfNtCG0fTmmlpdETRrz/EEWnS2mt5X6w7EajtFNfiCWA061u9tYHi2nQqnD6tBR4bdSFiBkd8t59ib/0TJ+EPhsRdYvbuenQ1aDh+eGQvejMt3MDYvlTpvgO9217KlwhVb/0EFDj7dVEFtY7sD4Qh5qRacvhAufyXnTDG3+xg17yxm2Y18saUyFtSJFk6PFlMfk5dCutWIBihr8LUY4ukw6/lpb4AsjHEZYlEGnTYuuydRcLHaHWD6yCxW76zFYTbEhvOZDWqAzKjXxpZZvrWKYDh+VrtkBk274zOiK7MChRBiIOtM/cemn9l9JaOqp9rZVsApzWKkuMrN97tr0eu0ZNuNVLsDRJQD+E50u+HSS+Hdd+HTT3FNmdYnjocQvY28S4Tow5I5jCZZHaHeXFPrQINmbR3PBm+QrRVOvttdF7eMXgdDMmzsqHITUdQgTtPaRoGQOqRsZI4Ds1GHXqcOcKv3BXH7Q/xm1Ttc8O9n0SoRLLXV1JZWMnlwNiNy7JgNurhtaDo7X1NGvY4NpQ1kO8wY9VqGZtpwmPX4gxH0Oi0ltR7G5qfsd/sTBVCcvhC7azxUNPgZlG7BEwjHgkGZdhPpFgN7W9lvaVYDI3McbCxzJpy5MZrlBPuyexIFFyMK+EJhrj5+BP6gQnmDlx3VbhxmQyz4F1HUoNjhwzIS7rtk6Y7PiN4+lFYIIfqC1uo/DkqzoNUEW1xkaf6Z3R0ZVd3Rt+vOzK+m7TVqtWypcNLgbRnQe/e7EganWVmzc99FtaYZ1hFF7WeV1HrQaDTt2/5t2+Css2DtWtDrqfnhJ/5NQWw7A6EIBp2Go0dlkWYx9qkAVWvnQV8Jgoq+R84iIfqwZA2jkdTy1nU0aNb0Cz5RllNUps3I/9aXY9DteywQivD97nq2lLk4fFgGla4AGiDVbIjVNnL6gviCasco1WxQM6RsRnC5uP6Nhzjux88B2HLaPD789R2EjUa8rgAHDdJxyJD0uDZEAxzZdmNsqBqoRcVDEYVwJMJhRZn8tKeeKncg9rzSOi92s36/58aeOi8NXnX9CuAJhLEY1eGBNU3Otaa1m1KtxjYz1LIdak2rFduq4l6raZYTxGf37C+4OCjNwrZKd4ugTESBYERh4qC0XtNJ647PiN4+lFYIIXq71rJYyxp87Khyx77Tm2s6+21XZ8F2V5DrQNrZVhCkeXurXX4avMG4QBPs6yuljTMSaJLJXO70s3xrFYcPy6DaHSAvxcx/ftiLSa+Nza4L+zLF49r53//C+edDXR3k5uJ59Q3+bR4aa0vTWYGjxzMYUXpdP7l5UE+v01Dp9FHW4McfDMcyyTJsBqYWZbCyuCZW39PpC5JiMXDi+FxG5jjku18cEDl7hOjDkjGMpjcPGexrV3ASDVVrbQY3BfUqXtNaRdGAky/oR6OBdIsBXzDMlKJ0at1BDDoNdR61U6vXaJgyNJ3iKjfD6sq4/uk/UFRaTEin55/zbyJ02eWE3fuOaaJzJxrgaDpUTa2zpGZOjctPYVOZMzaML6rBG+TjDeXMnVhAjTvQ6vHxBEJxs9p5AiEGp1kw6rXkp5gJN7lsHA20RYNFbQWRBqdbmTkml901XsobfLEhgNGAVKLsnraCi30pKNNdnxG9eSitEEL0dq1lsRp1WnY6PbQ22XD0M7szWbBt9ZG6um8Xfa2yBi/bKlxx37n7a2dUSa2HD34sZVeNJ1bDckiGlbmT8kmzGFu0NxCOxAWaokG9aF/JH1LX0VSVO0CKxYDFqGNHlZsMm4G8FDNL15dT1qBeePtoQznTR2Qxd1I+g9Ms8NBDcOutai2pI46Af/6T3boU6taWqu0Ixc8KXO70oyTYl13RZ020DoDiKjcVTh8GnYZch5lB6dYW627aB40G0exGPSNz7azaUUuWzci04ZlsLnOi08Kzn20jN9VMKKLEbV9JjYfjxuZ0qoaoEFHSexSiDxuUZiHDZkCn0aCgTl1vMurQKArhxhTwrtZbZ97qa9lbiTqAzbOcmnfgHM0CVdErfjqtBpNex3s/lrC7Rk09z7AamDg4lRPG51Ba70MDFGZacfuC3PDHWxlaWky1I4M3//AoWScehzYcIctuxB+MkNo4w15z0QBH06FqCmA16Th6ZBZFmTa2VbrjnmM2qJlOZr2Of6zYgabJtMjNj4/FoIub1S4cUVhf2sAxo7LZWNaA1ajDH9o3097Ro7Jinaz9ZahlO0zMO6ywywJJfSUo051D7XrzUFohhOjNWstidZgNmA3a2HddU00/szuaBRvtI1U0qJNxBMIR8lPMnHHwIIbn2Lu0b7e9wsWi7/dQ1uCjMN3KxjInNpMu4QW31rJ1Xb4Q735XwuodtbHgB8DuWg/+cJiZo3NbtDcacIoGgaKifSWTXhvbv01n5f18SyU1rgDbK11MH5nFsi1VGLRaNKgXBH3BCLtq1P13XskaLLfcoq74iivgr38Fkwn3rtrY60WDYE1Fj2d0X9pMuhb9kQybgRljsvEHlXYNm6vzBlqsQ6+DvBQzH64rw+1XJ4jJdZiYNT6XiQWpBCMKvmAYjz/I5nIXep2WdIuBtXvq8AUj1Lg9VDj9jM1zsHZvPRU/+hmVbccTCLNmVy0HF6ZR05g9FY4o+ENhtlYGmTAolQ9+LOWCaUPbDLj1tYvHoufIWSBEH2Y365lalMHC5TvYVbOviPOQDCsXTy/qlg/63jjzVm/I3uroF22iDmDTDKSmM7ilWQ2My3dQ1SyVP9oBK8q08tnmCnY3ngOKolDtDrC3zscnGyuYXJhOSa0XrQYOH57Junv/guHJB/j6nscZNWIIde4gX2+vodzpjw1rc/lDLQJ6TQMcEYXYVUitG44amUWdO7590XXlp5r5ens1w7NtpFmNccHTjzeU8/ND1eMTDCvU+/btE51WQyiisGxLJYcMSee4sdlUOgOY9GpnMdXSMnDWlq4OJPWFoExfyuoSQoiB8qO1tSzW6AyzqRY9Tt++/lTzz+yOZMFG+0i7ajxxGS47qz3srfdx9fEjWvTttBpiQ9j8wQjlDd52fV/uqHbx9OfbYn3SDJuRSqePUMSY8IJba9m6xVXuFgEpGtuyrqSBYZl2Suu96DQatFoNoXAEg06LQafBF4xQ7w1SWu/FqNOi02jIdZjQED+D75B0KyuLa2LblG4zkmIx8OmmSiwGLbkpZuqbDMeraPCz69gTGXPhhXDssbguupQ9tV7cAQ/+YDhWfqHpEMEok16Ls3G/BoJh3v9xL2UNvtgMxoPSzDgsBp7+dFvsQnNYUchPMTNrXC7f7a6lpkk2++B0C8VVbqpd/lj2N8CanXWEIgqjsu1sbqydVe708+HaUnZXuynKsvG/n8px+kNsr3SRbjOSbTcxLi+F73bXEY4oVDh9zJ2YBxo162tErh2XN4RGo8EfirC3zkuqxUi9N0CoMYO93Olna4WTQ4emkZdqSRhwiw7/a/AG9z88shUS7Oq/5GgJ0Ye5fCFWFteQZTdh0msJNn4pO8wGVhbXMDTD1uUfyr1x5q1kZ291JksrUXCvaQbSkEwrDrMhFjgBWLunIe41olf8sh0m1u2pj1tX9DhtrXAzZ6gdx4ZVbBh3GJWuAJWFY6n4f69ywkF5mBozmCxGHaNy7LEU+0QBvdYCHCkWA1OGqkMGt1S44s5Do16LRgMFaRZ+LKmnoUknO1pkNHp8gpFIrLPoC0Yw6XXoG7PAXL4QVc4ATl8IJ53P8ukLgaSu1jQYV+8JEFYUrEY9Hn8Yly8kHTchRK/Q1zKeO6qy8Yd7vTeI3WRgQoE6EUcoQqxGTzSD6agRWbj84VYvoGTYjAxON1PvCcUu8lS7A7Gh7b5gmM1lTgrSLOyp81LR4I8LSEXtqvGwqriGsXmpsfu0GuKG0gPsqHazrdLd5rFw+UKsKq6Ju0jq9oXIcZipcPrQa7UtLrgl+h53+ULsqnETiYDVqAPAG1CzfuwmPcVVbuq9QTaXO6l1BzDpdQzJsOIJhMiwm9hS7sTlD7GzccbdUTk2jhmdxd46HwApjTP4plsNbGjcRxoFBqdZyLIbOXJ4BnqdevFrY1kZU7d+h2faNNZ7gxw5IoMx//gHJXVelq7ZHTtXs+1Gqlx+7GY9Rp02lkUUjqijFsJhJbZfvy+p45viGkC9+HZYUTq7a72s+X4vigLVbj/hiEK6zUil08+6PQ1MG5ER2z8NviA7ayJ8tL48NgGMQachJ8VEtStAtdvP5MFpseXDEYUNpQ1MG5bBsi3qMTXqtIQiCrWN50ylK8CIbBtOb5CjR2WxYns1X2+vQaOBbRUujhqZxchsG5GIgk6rocEXJBRRGjOmIiiKQo07wNqSBvbUtuyT6zQaFi7fQY7DREGahc82VbCnzotOqyHVYuDYUdnq8Mg23ucltR4+3lAeNzokzWZgXH4Kq3fUxAXt+tPnxkAhPVEh+rBoMMao18bVGoLuC8b0xpm3kpm91ZksLZcvhD8YxmHSx3UmIwqxDKTDhmW2OHbNA0JGvZapRelk2kxxhcBtRj1DMqy4/CHyyncx+Zz52PbsYuy//0ftuIlxHdxNZU40Gg15qS2PW6JzqK1sozRLiBE59hb7wmzQsWZXLaGw2pmJitZ+iM7MZzPqY51Fpy9IMBxhWJaVBm+Iem8wrgaUZPl0jN2sx2bS8dW2hn77g08I0XclO+O5eaZFus0YVwOx+e2OZmL8tLe+RVZ7fqqJuRMLWLWjhs3lTnzBCLmNP9o/2lDOrHG5Cftw0eBd08ynXIeJKUXpbNjr5JAhaXy2qYKIon7Gj8i2JRxSFlXvDWHQaWJ9u0ybMS4gFZ2pdn/HQr3wEd/f2tZY5HtlcQ2+UJhIRCHbbsTUmIm0t86bsHi5Lxhme5Wa6RPt00QUhd21an0pnUYd8l+n0RAIR9hd62F4lo2t5U6GZVkZm+uIXbDVasBk0GEx6HA3BreMei0Wo46Jg1NJsxjIspv4zw97+KGkjk3lTkJhhUn5Dh5Y/x9OfOtpVqybyWOX/5HyBh+VrpbD5qrdAaYOTWf1zlosRi2egNpvKUi1MDrXwRdbKzlieCard9YyMscee96ILBtfba1mbL4DTyBMjTtAMKxmXNW6A6RaDGyucDJukIOw2vTYjMrRvq8/FKasPkC1K4BRr8UbCFPvDeIPhTHpdfhDYUIRBQUorfdhNeow6DTotBoMOi2BUJjSei8TC1IoyrKxZmctRp0WXzCMRgNWk55N5Q3UeoLYTXoqnH50msbzxRukIM1CaZ2XGneA8gYf6VYDWg1xs0cqqAHQwnQL7/24l5JaLxlWA0a9joiisHZPPXXeIGdMLkhY/8rlC/HxhnLM+vgyD1ajjg9/LOP4cTlxr9kb6tyKjpGjJEQfloxgzIEMB+qu9Nqeyt5K1P6OZmk1reuwvrQ+1plsOltMa8G91gJCP5bUMirHTiiioG8M+rgDIY5Yv4JfPXcnVq+bUF4+OVY9Rc1m1IueQ9FU/VBEwelTO6gRBRo8LWf/aS3bqLVzQ6dVr9qa9LoWz4kWNIf4gGfTIGuWXb3yO2lwGmaDrt1D7iSde59k/+ATQoi2JDPjuXmGVoMviMsXYurQdCqcPnIcZlbvrMVu1sdqInUkoF/p9LcISAGU1vv5YG0pZx0yiNwUc2xoerQvkOizuelneYrZwOhcBzXuAP5QhPV7GzhyeCY7azxxP87LG3yEIwpWo45QWEHfODmJNxBGQR1a5guGY9/fCsQFpJrOVNvWsXAHQpgM8bUwwxGF73bXMSrXzqA0C2PyHKzcUYOiQEmtD6iL7cumxctNerWo+Z5aL4FwhNJ6L0MzrQRCEVLMBr7dVceIbDt13iDl9T5SLQbCioLDbGBEtoPvdtWRZjPibuzbOL1BxhekoNNq0Gk0pFqNBEIRqlwBMm1GvtlejcsXIhRRSDEb8NfU8X/P3M/MDV8BUGG0k2nW4g9G2FrhTDj7blmDj4PyU0i3qRfXKp1+Khp8sWFx4bCCxaiLZX8B2Mx69tZ7GZ5tw6DT4PQFsTQ+HoooBBprUXkDEfxBNSrl9ofRoOAPRfAFwzi9aru9wTCOxnNFp4Vad4Bsx75JYkJhBZtJx7YKN2aDFoNWgzsQIhRWCIUVnH6171fjDpDrMGPQaRmUbmFbpQt3IMQZkwqo94Wwm/TUeYLUuAOMzHEwYVAKX2yupCDVQqXLj6FKLa7edPZIfzBCOKIQjCiU1HrJTzGzp84LqO83nVZDjt3E6Bw7XxdXM2vcvveWyxdi7Z467CY932yvocodwO0PodGo5+fmCidaLcwYnR33msmscys6TnqgQvRhyRpK15naPN2Zlt8T2VuttX9Etq3N5zUNDDbtTData9B0tpjolMFtjZFv/gU7KjeFLLtJnaEG0EYinPu/lzlz0d8BKJ84hUW3PYFRm88JtZ64/W0z6mMp5Z9uqmBDaUOsRkBBqoVhWVZKmj2nLYnOjSqXn1SLIeFVWrNBrfcArQe1clJMHT5P+vswkI7a3w++4io3Rr1WAnhCdIPeECDvDW1oS7IynpsH7JvOnOZvEqiJ1lyM1kTqSEB/a4WzRUAqaluliyqXPzY0vXktp+9315FlN+INhrEZ9fhDkbjgWbStVqOO73bVkp1iwu0PxxUUr3YFCEUibKtwoW28cGXSaylMt2Iz6dAAFqM+9v39TXE1RZlWDDo1m8gbCMfqMznMhlaPhc2oR4M6ND8a1AL12C3fWsXZUwazdH05O6o9sWBXitlARYOft1bt5vBh6rA5m0nH19urGZ2jBp1Kajw06LQMzbSRajEweXAq35fUU+cJMD4/hUOHpKFBw9SidNbsqOW73XUUpltaDEMsyrSSl2qJ9QWifUcF2FvvIxRRCEcUjolU83+v/IGhlbsI6Ax8cOVtvDXpRGaNyqHaHSDbm3j7IwpsrXQxHBsmvZaCNDMZNgMTB6dhNmhx+4PsqVPi9lEwrPa39DoN4YiCVqNBp90X2NM29o8MOg0unzqDYKXTx55aI9kOE75gmFqPmlGlAFqthmFZdmpcar0nfyiMTquhIFWdGGlXtQd3IIQnqGFCQQrf7aqjzhskw2rAZtKRYTUyKsdBgy/IIUPSsJv0fLerDg0aPtlUwfmHDeHQIWlsq3TjCYQw6rSs2FZNQZqFKUPSWb6timyHqcXskSaDFn8oTCAcIcNqYE+dl1Akgieg1uKyGHXU+4Jsq3KR6zDH3lvRYu4bShtItRhY8lMZNpP6m6O0sSZXKKKwt86bcMbKZNS5FZ3Te76NhBAdlsyhdNHgSLSju7nC2WpHt7UsjQZvkFXFNdS6gwQjkU53lLu7mHNbWSblDb5YcctEmgYGmwcGmg9VG5FjZ+KgNOxmfYeCKtkOExdPL2Lh8h1U7qnkty//kUO/+wKAjT/7BUsv/wMhvRFPgk70oDQLQzKsfNT4pR9qkm9d7w3y2aZKfMEIaRZjp7OTgLhaUVHRTmmqdV/B8q4oRi5ZQS219YOvwRfk+921cYX0B3IAT4iu1BsC5CW1Hj74sVS9cBGOYNSpWSj7q+HSk5J1kS1abylazykaGNCgZgsFwhGq3AFG59ixmfVYjTrSbMbYsPv2ZGLUexNfEAA1kyg6S5peCyOyHWyrdFHnDaLTQGmDlxpXgCOGZ1LW4CPDZqTBF8Ss18V9p4YagxveQCSuoHidN8CnG2s5e8pgftrbwO4aD4bG4tqhSIQTxg+i2u2P6y9GM3mC4Qg7St2xwAmo39uzxmUn3JZBaRa+VhSmj8ri2521VDj9BMMRFEXLxEGpDM+2s3xrNaDOaFdc6WJIho2dNW58QTUw8fGGCvQ6DVOGpLNmZw3Ds2wcOiSNUFhhcmEqoZDCrlovEwelotVqqHEF+HJLFaGIwmHD0mPFvQ06LalmAx9tKI/VLooGeKJ9z1E5Dg4qSOG7XbXUugO4/CGOWPcl9y36M1afm5r0bJ749QMMO+V4Bu+tZ3uFm+wUMymW1s/FcEQh22Fi6U/lcYG5XIeJEw7KJRJR4ia1MTRmrdW4AgxOt1Lu9NOkygEKMCrHTjAcIaIo1HkCeINh1u6p55RJBWwqayCsKLj8agbTyBwbwzLt/GtNCQCRiMKwLBszRmeTYTMyJNOKxRkgEArjDYaxGLSMyXOQn2LmmFHZbKtwsbnciUajZtLZTHoUFDz+ECa9lkqXn62VLgIhBZNeS06GmWnDM3D7w2ypcDEozUIgFG4xe6QGdRImo06LQa/WFrOb9QRCkdhxURQIhtVhhnWeICW1HlZsr6bOE0Sn0eD0hYgoCk5fkNJ6te+r1WhiGWSJZqzszOdGMgL4vf2iQU9I6tZ+8cUXPPLII6xZs4bS0lLeffddzjzzTACCwSC33347H3zwAdu3byc1NZXZs2fz4IMPUlBQEFvHzJkz+fzzz+PWe+655/LGG2/05KYIkRTJnlmrvZ3tRFkaseycjRWs2VkbV/iyM531rp5Zram2skz8jUVFE2keGEwUGGhaD8xs0MUypDoaVDmoIJWbTh6L6+HFDPvuC8IGAytu+CNrZp0VN66/eTqz3aynMENNuW4akIrWcNhZ7WHCoNR2dbxbOx+OG5vNkAwrZr0uFoCLFkLPSTG1CJ4mygbryBd2sgvf90at/eCLZgUMz4rP+BvIAby+QvpQvV9PBMgTfTZ6g+FYQe0su5Evt1bxw+46PIF9P9p213rwh8NcctTwXvEeT9ZFtvIGb2woPYDTFyQUVmJ1Gb2BMIcUprGyuIa99V7SLAbsZkNs2L03wfd682NiN7W+f3VaDTaTjloPDMuy8ebqXWytcBFRwOMPMb4ghUOHpPP19mqmDE1HQa0pVJBqibvIEx2SF519zukL4jAb2FvrpdodoKzBx8TBqUwZmk4wrFCYbsFhMeANhDioQK3rGP0ONzRGRb7bVYc/FCbdZowNv081G9hd42VsXstJMuxmPbPG5fLtrlqy7SbSbUa8gTBajZp5HQpHsJv1RCLqEEKdVsOm8gbUkAWx4uCl9QHCYYVRuXbW7qlna4Xaz5palM4326tYuaOWUFjdxsIMKzPH5LC5zIleoyXXYaLeF0Sn01Dl8bO+tAFQvwPrvUFG5NjIspnYVumi0uXHpNNi0GnJSTExRtFyz5KnsPrcrC48iKtOv5ka0plf4yE/1UxQUciwGXB5Q2TZjYQbZwxu2scaX5DCl1uq4gJSoAY4v9xSxYRBqVS5ArFJbVIsBipdfty+ECeNz8UdCLG1MbCm12rItBo489BBvLmyBH84TK07gFajwWrSEwxFsBh0nDA+FyUCY/IdjMq2UecLMn96EQadlmy7kXSLkR/21LFqRy2HDElnU5mTVY2TJFW6AlhMeg4uTOPvn2/HYdaRYtazu9aLxaADRcEbUM+BUbkOzEYdK7ZXk2oxsqPazWxjDp9tqgRgZI6d0yYX8t3uuhazR4YVhflHFbFscyU5DhOby5woipoJZjZoURSYNCiNXIcJRYEsh4lKpz/2eaDVajA2nuM6rYZqd4AMmxGXP4jVqMfpD6Eo8blSnfncSMZFhN5w4aI3SOq3kNvtZvLkyVxyySX8/Oc/j3vM4/Hw7bffcscddzB58mRqa2u57rrrOP3001m9enXcsldccQX33ntv7LbF0vOFloVIlu4MxrSlI53tRMGYpoU0LU3G1x9IZ727ZlZrK8uk2h3g6FFZ/LQ3cQHpptvQ3ivBrQVVAiE1/X7NrhryUywtAjPZDhPZ99xC5fYtLD3iVMrHTiJRPnPzdGatVs1Yspn0cXWpXP6QOoQgFNlvCnRb58PnmyqZMSqbz7dUxmWUtTd42tEv7GQWvu+tWvvB5/QFSTUbSBRWHagBvL5C+lC9X9PP8ubDsvQ6LSW1nthED53R/LNRr4UxeSl8sHYvpfXqj+KDC9P4309ljMtPwRcMxH5A+4IRVu+oZeZoNxMHp7b2Ej2mtYtsNqOOQwrT2FLhxNbFGQQuX4jyBl9ccEen1VDvDbKrxsOgdAvZDhP//n4ve+vV+jfR4W/RYfeTC9Pi1pno+2pCgYP8VBNl9fv6O9HaTiOybaRY9GQGjCzbUhULSIQjEXRaDaX1PlYW1zC+IIUUizokL8tuwukPYW4cRhhsXHZEth13YyAg2Bi08QUjFKRacHpD7KjyoAEmDU5l6fpy/KEIBxWkUFLn49uddeSmmmlozOo6elQW2yvd7K0PxWoTFaSamT4yi101nla/G9IsRsrqfNR51QtQ/lCEUETNhqly+/mxpA5vIByrV5RmNRAMqdkxdpM+FvzaVethbL5aL8uo03JwYQbv/VBKMBwhGFZrKaVbjeyu8fCjqZ6zpwyi3hdg9vhctle6WF/agCXbjkmvxWbSMzTTxqgcO2t21LC1wo0nGCbNYqAgzcLRI7MIRxRqtQbu/sWdHLzifzxzypU4Q1CYamZrZQPj8tPYU+th/Z4GAuEINqMeRYFjx2RR5wnGZj0cnG5h+dYqbI3HWWFf7a7yBh8/O3QwoYjaX6x0Bah2Bzh2VDa7atzsqfNwyVHD2FPnxeULkm43kmUz8sn6SqYOSyfVbGBzhYv8FBMbypws/nEvFqOOOk+QgnQLM8Zks3R9Bduq3ADYTDrmTsjnfxvK2VOj1uZy+UKMyLXzf7NGEQiHGZZlY2+dl/IGHyV1HsIRhePH5qDRagiEItR7g+i1GgalW5g4KIVdNR5c/jChsJ+DC1MZmW3HatSTbTc11sQKMDbPwVEjMlvMHgmwt87LQYNSqXEHqXT68AbDKAocMTyDETl2Fn61g+HZdjyBMLPH5dLgU2unhcIRbEYDI7LtbCp3ElEUgmGFem+AcfkpOH0hNpY5GyfdMXbq4nx3j+royGsOxAuDSd3KOXPmMGfOnISPpaamsnTp0rj7/vrXv3L44Yeza9cuhgwZErvfarWSl5fXrW0VojdLxjT3HclGSRSMaVpI06CLH/rW2o/hZKW3thVMiiiQajG2KzDY3ivBiYIqTWtHFGXZ+HZnY3HQsdkMfusfcPHFYLGAVkvNX/5K+drSVtvcPJ3ZZtSj12rwNM5K07y0uUmv3W8KdFvnQ407SDCitLqP2jqunfnCbnq8mk6zHa2H0V3DQHqz1n7wpVgMTByUSlmDL+HzBmIAr6+QPtSB6ej3SWe+f5pOJNG0tk1UaZ0Xu1nfqavhiT4bizJtvPrNTnZUucl2mGOTTFS5/Py0t57x+SlxM7X6ghEqnD6gZ4JS+9uHzS+yhSMRdtd4+XxzZSyY1lUZBNHiyaX1PlLMemo9arFlk16HvrEAdI7D1PjDNxr008RN2FHvC8YNbWvt+2pjmZNTJhXw+aYKVhbXxs6LwgwrhwxJY1CalXpPkL11+z6HdVotNqNWLfLd4OPUyfl8vqWS0jofhxamsW5vPVsbM6aqGwLYTXrOmDyYL7aoWSsGnfrcgjQzWXYT3+2uA9ShYN/tqqPS5SfNYsBsaAwC1XhYt6eew4dlUOkKUNngZ2yegylFamZVrsOE1aiLFWFv7btBPb7hWAZ4lcuP2x/iq+3V5NiNFGZY2VzmJBiOUO1SC1YPzbThMKn9kBHZNuo9ASqcfgKhfVnVo3LtvL+2lOFZal2p/FT1/B6RY6fGHSAQinDkiCyMOi313iAH5adQkG7l+LE5BMMKg9IsbK1wUe8NUe8LYtBp0Wo1aDduoGxVJXPOO4tvd9WxMn8c7584HG0IRuc4OGpkFm5fkJU7asiyGal2B7CZ9Lj8ISxGHZvKnJw2uYC9dR4ybWaKq1yU1vvQakCj0eAJhBicZiUUiTCssWB8or4QqLXHPtpQjtWoVwOSdT50Gg2DMy14A2EsBh0ri6tp8AYZn5/CyRPyGJZlQwGc/hB1ngBmozqbnk6r5ZDCNJb8VIYnEKbOE6DGE8TjD7Gt0sXOKjcXHTGUnBQToXCETIeJ48fmUOn08/W2ag4fnkm61YjTF2REY5Bo0fd7sBh0ZNmN5KWYOWpkFsu2VDI6x8HS9eXsrfcyOtdBUZYNlz/ECePjZ490+UIMTrdQWu/j6JFZRJQIlc4AOSkmSuu9vP9jaez9ZTZoMeg0saGoBp2Wn/Y2MHtcLgadhp01HjLtxth5dObBBdR5A4zPTyPFoseg0+Lxh3H5Wmb0tfY51BOjOhK9XySzX9Wneub19fVoNBrS0tLi7n/11Vd55ZVXyM3NZc6cOdx11104HAPjAAqRLIkCJ02vBO+ocqEBCtIsCYMx/sYrk9Gphptr3uFJZnpre4JJbQUGm34BThyUwp5aL25/iLCi7odUq4HDhqXHvjibB8GaFl4FNUjkBLwV1URuuhy++gS++QYWLmx3e5tv35AMK5WN9TOazs6TYlaHHuwvBbo92UmJ9tH+jmtnvrCj2990uuyoIRlWTIbEwy37u0RZlYqisOSnsrjhB031ZABPaip0r77Wh+rO86Gj3yed/f6JfpY3zQxuqsHb+avhiT4bA+FILNPGHwrHftwC1LgDhJWWb/TWhp93tZJaD6uKa3D5Q/iDEUxGHXajjsOGZcTtw6b1Kt9es7tbMgiiNbb8oQgfrS/niOGZNJSoQ9VMeh3pNiNmg44jR2RS4fQxJMPK3novVqOOcXkObGb1szMnxUykyT5t7fsqFIEqp48xeQ6GZNjwhsJY9DqMOi1763y4/GFG5zrISTFR4/bHsrFq3OologxrY4Fqn1rXZ1O5k3H5KYzItgNwQkouu2s8LF5byqgcG8eMymZ4lo2wolDl9PPJxorYDGzR2d4AbCZ9rP8VDEdwNgZaHCY9qVb1/h9L6glHFFyNRcKjrMbEF5Sa9wUiEQWHWU9JjYeyei/nTh2CJxCmpLHwu9OnBv8OHZLeWDPLxOAMKylWA2PyHOSkmNla7mR7hRuzQYeiQLXLT0Xj9ozOcxAKK+SlmhmcbuXtNbvZWu7CpNeyeuceNpQ5afAGGZPnIBCKMGN0NsVVbvRaDUevW861L90LisIbE0Zx8EEHkZ9mpsrpBzSU1Xt5Y9VOTplUwI+765g2PIPG8kcogCcQZnO5iwqnD5Nexz/X7KYg3UJ5g6+xeLyOwelWnP4gkwanYTXqsRr1rZYo+KGkjsJ0a9xnhVGnJRiJcNqkAkAhx2Gmxh1gfWkDx9iz+e9P5ZTUetRC5wqkWw3MGJPDuj31eAJqQLq03ofZoEOrAbNRhy8QZku5i1qv2of6dlcdFoOO9aUNDMmwcuJBeWyvcuPyhwiGIlQ6/ZwyKZ/zDivEF4wwKN2MPxhRa2MNz2L5tio8gRAZNjVYlWI2xL1PATaW1bOh1AkaDUo4gsOsZ9WOGixGHf5ghC82V8XKRoQiEYZn29FrNaSaDbGhqHqdhtU7a8lNsTBxcBpWow5DkQajXtdYyN7G8m2VaNC0Gjxq67M8UaC1K0d1NH+/pNuMlDd4cZj0mIy6WJ26pv2xjlwY7Ot9qD7TUp/Px80338wFF1xASsq+VOcLL7yQYcOGkZeXx7p167jlllv44YcfWlwhbMrv9+P37+sYNDQ0dGvbheiPmgdOml8JHpVjZ32pM/Zh3zxLw2TQtphquKmmP4aTnd5qN+s5bmw2q4prqPeEYl8eYUVh1ri204MTfQFqUchNtbBudx1arQaH29B4VUnL4HRri6BSNAUf1GKZGiBj51ZOv/tq0vfsIGI2oz3++Lj2njA+N2Fh20TpzHaznumjslhfWs/GXfuKnY/MsXPqpALGFaTsd/92pkhte45rZ4bi2c16ZozK5unPt8UFpHIdJqYOTefzTZVkHWruU1/WXaV5Z9jlC5FiSc5kCU1JTYXu1VV9qJ7qP3Xn+dDR75MD+f5pOrtX84BU9IJMZ6+GJ/psjBbMBjUYEG3/4AwrJTUeAqH4oFSuw0SOw9yh101kfz+GXL4Qa3bW8unGihbFn7VaTcKJNLorg8DlC/HudyWs3lHLuPwUqt0BlvxUxoRBqQzNtJJqMWI16giHFfJSzGTYjGyvdDMix0ZuipnlW6upKFGDEDqthnpPkEy7kcHp1ja/r0IRWLenIRbYcQfCuAnHtkergRyHmSqXH19QLbhu1msZnetgSKaNTJsRNLC31su2xuFpRZk26r1BjhmVxeYKF+GIwu4aL8eNzSXNaiTdZmRzuZMjhmfG+mbhiMKkQankp1nItBtJsahF2ysbfFQ0+Nhc4WJTqZNxBQ7SbUaOy7BS6w1iN+kJhtXv0yEZVuq9AVYWV4NGE/sxrWbepsRlKAfDEcZmOZgzIY9AWEGjgZmjs9UhfHotWo2G0Xl2Smq8RJRonU0jEUWhuNLNjmoP26tcnHFwAQWpZnbWeNSsKp2WiKKQajaQYjaQZjXGzpncFFMsq6wo00pJrTp0bU+dl5U7aplc4OD4N59m3n9fAuD74ZNpcKSj+EJsKnPy4+463IEwGsCg1xIKK9hNakBJgybWZ/UGwvgbi3qv3VPPjyX15DhMjM9PYU+dF6NeSyAUwW7S4w2EYxdpE9lT58Wg1bC7xkN+moV0mzE2I9/HGyr4bFMFx43JZvrITJzeIDkpZr7bVYcnGFLPvzQrPzQGVr/ZXs3IbDuBsIJBp6XWHaAgzcKkQalk2I0Ew2qg0BsIU+cJ4jDrsRh0zB6Xg82sJ4LCwYVpFFe5CUcUrAZ1BkZvMEIgFMEXjMQmRtHpNDT4QtjNBswGLWlNJq5p8AbZWuFkZXENy7dVxfVjjxmVxVEjMjE2ZuKXNfgw6LTotRocZgNGvTZWEH5nY3H+4dl2Smo8VLr8ZNoMOL0Kq3bWUO0OcGhhGl9urUILjCvY9x3XPDjW1mf5kcMzybbvG2JtMqr1taoag8PtHdWRSPPvtAZfEJcvxLh8B59sUoPG0Tp10WxEaP+Fwf7Qh+oTPfJgMMh5551HJBLhqaeeinvsiiuuiP1/woT/z959h8lZ1vsff09v23s22fQQCARIoYuEJocqiiCCiqio6MGf0gQbYMODDRWxIlhQgWPIscA5Ir0pJCEQCIT0bDbZzfad3n9/PDuTmd3ZXmZ283ldFxeZmd2Ze2Znd+7n83zv730EixYtYuXKlaxfv57ly5fnvL/bb7+d2267bULHLDLd9Q1OMs8mZFY/ZX4gZFZpuHo/5PyReL/77nswnO/y1j2dAZ58qzW9Q080nqC2xMmFR88c9I99roOZSCzBpn3dlLb602XykL1mPZZIpBur+iPGFrpA+gPL8/e/8K7vfAF7MEBPTT17f/17Dj331H6PX13sMM5CxRI4rOYBm636QjHW7uxg5ZwKjm4oxxeOYTWbSCRhV7ufExZUDfkajaZJ7XB+rsMNu/oeFCWSSY5uKOXIWaXp52+C9If9wVQSPZh8b5YA+Q+dp7vxnENNxvxpot8PI/08GcvnT+r368m39mdd77QZ29unDtybOgMj7gWZ62+jx3HgTH6q2mZ3R4Bj55QDYLeaSG0EV1vs4PRxOGAZzsHQns4Aj29qydn8+fFNLSyuLe7XW2siegP6QjE2NHbiC8VYMqOUEqdRBdzUFWRDYxevN3Vz4oIqakqclLltHDGzDIBtrX5sZhMv9VZ6pT53nDYz0Xgy/b4c7PPK2BTlwEFtLJ7A47BiMhn9paKxBIfUFvVWu3mJxpOcsaSOZ7e0srM9gMkEjR0BGircnLyomn++2cKujgAzSpzMq/JQ7LQRiMbo9kfZ0uJl7c5OKjw2Vs6tYO3ODo6dZ1T5lHvsbNrbw95dnemle1UeO/Oq3LT7IwTDxhKrpza34gsZc4Fyt40FNcWcsrgKkrCxqYf/e6OZrkCUJAfmJvu9Ri+plp5Qese7Y+dVsG5XJ89tbcduMVHksFJV7OTEBRW82tjNrHIXiUQyqzpkVpmLc46YQVdvv6BIwqiseWl7B4lEkkg8kW6XmcTosbWwppjGzgA9oSg2i4nX93STBDr8YWaWu6krcRIIx4m2t3P9fd9j4Vpjh+IH33ERd77r45zuKcPkj+CxW1hQU8SWFh+xRBKLyXj+LruF5u4g+71hbBZzuqrHF47hsVvZsMuopHp+axtLZpayvdXHlv0+Kj32dEPzwT5TA5EYxS4bL6xvYtt+X7oCb2FNMaccUs0ruzuJJ6HdF2HF3HIqi4wqm5MW1pJIJonFk5y0oIpWX4g3mno4dm6FsZtkMondauYdi6pYu6uT57a2AUaV3OH1pRzVUMobTd2cuLCKN/f18Fazl0gswaLaImLxJO9bMYsyl4293cbSUrvVzGEzitnYZPTFSq168DgsHD+/EpfNkg50ypxW/vlmS7rnVkqLN8yzW9o4dl4FezpDHD+/IuffoUTSmLNdcFR9eikkwCu7O9jc7GNzi4/OgNHzqqLIzr93dFDiMqoKq4uc6fAw9Xc69e9cugJRuoNROvwRor3vMVvQRJffwvHzK3i1sWtYqzpy6fuZlrn6IRCOcWhdEW/s9ab71KWODYZ7YnC6zKEKfoTRaJRLLrmEHTt28MQTT2Sd4ctl+fLl2Gw2tmzZMmAodfPNN3PttdemL/f09NDQ0DCu4xaZ7voezKbOBOeqfsqcuGdO3ouc1mEdDOezcXXmH/vMnfIAnt7SSk3JwBU3uQ5mUlVPoWg4PanKtWbdbDLORi6vcNEdjLG3K4g5HmfeD2/n2D/8DICthx/Dg9d/h/OPOnrAMacfF2jzRegKRvt9QDV1BenwZ48z1ScjHBtegDOacGM4P9dFNcXpsKtvf6jZFUZVWa6Domg8wZwKdzqE8ua4bzHka7OElHyHztPZeM+hJmP+NNHvh5F+nozm8ycVkgciMdw2C3Mq3dSWGNuXexxWrBYTu9r8BHsP1Jq6gjy0rnFEZ7VznQiwW8wsrCliZ5s/3ZslCbyxr4d3LKjiqIYymntC6ZMUK+aUj+j3PNfyk+EcDLV4Q/0CqZQWb5j93lC/UGqoExJWs5nNzd5hL1VJLR/c02m8v2wWE/5QlPcum8nqV5po6goSSyTxR2L9PrfOXFLLi9uyl19mznVS78vBTs6Uuq0U+42DWl84RpHDwpNv7U8vpXutqYTFtcUcOasUZ29z7pd2dGC3mJlT6Wb97i7cdqP31brdXSyZUcJrTd3s7Q5iMsG/d7SnD/wP6f396PBHWbuzg3OW1tPhjxCKxnn8zWZMJiOUWFDlweO0EojECcYSfOj42QSjCR5/a7+xvM5kosxlY3alh8aOAPu7Q2xt9bOjt5F2hcdOZyCSPpg+c0ktf391H0tnlRKLJyh12fj39nY6/BHKXEb1SzSeoNVrNG8/tLaYUredpTNLObSulFgikQ787nl2O7s6ArjtFpo6g5S5bVxyTAMPvtxIU29A4rFbmVnm5APHzaG62EFzd4jtrT7mVnqwWszE4gkSSSPMA1jS2ciXf/VFGtr3ErHZueO91/Lo0Wcws9RFmcvKwuoigrEkW/Z7WT67nL1dIfZ1BwnHEhwzt4Jnt7Smg0V/JMbujgDLZpdhMpmYU+lh/a5OGjuD7OkKctSsMpbNKSeRTHJYXSmnLK4a9HfbZbPw5FutWYEUwNZWHxYzLKkvJRCJk0jChsYujphZyokLq/jHpha27ffhcViJxBLUlTo5ZXE1XYEoVquJumIn5W4763Z1ppdMgvHzb+wIEIrGedfhdTz1diuNHQHsFuNvQ4nThj8c4+0WLzPL3LT5wukdkw+tM35eTV1BWnqCNHYEOKSumH9vb8/6HZlb6WZxXTHtvr6dSo3f+9SzdNutA/7elLhszCp3Z/1ulzpthKNJozKqdzmlCROlLhuJpBFwekPR9Hw9EkuwpzNALJ6g3WdUCwajcRLJJB67NV3dtbsjwGtN3Wxo7CIcjad/l1bOqeCYOeUEY8l+81Cr2Xg/DFYt2vczLXP1Q5s/wrI55Wxr9ROKJtKvy0hODE6XOVRBh1KpydSWLVt48sknqaysHPJ73njjDaLRKDNmzBjwaxwOBw6HY8DbRWR4Mg9md7b5WFRTlC677SvXxH24B8OjWRo2Xsbyxz4UjVNVZE+fNTIlk+zPaCgdjhkfSrnWrCeSsLM9QFcwynlH1rO7I0B0z16O+KuxVfvfTn8/97/3M1TbPWzd76XcY0tPeEY65vEK/UYabgzn55oKux5+ZQ8bGruzyr9rS520+UM8+VZrzt1SMs84ZTKbjAngSA5oprt8bJaQot0SJ8ZEzKEmY/400e+HkX6ejPTrUyF5TzCaXtJeVWwnEkvQ2RuGFDms/ZZkj/Ssdq4TATvb/Vx+3Jys3fcA5lUVccHR9ditFmaWu0YVPOcK/2eVO9ndEaAkRwVB5mdNLJ7sd3umaI7bBwt4rBajKfTO9gMH2YMtVclcPri5xcve3qqJWRVuSlw2Tj+0hs6g0bT8hPkVHD+/ql8D9tkVxu5t0fiB5tuZc51U38SBlvofM68CXzjO/p4wyWSCF7Z2HejtZLcSiyd5vakbt93KGUtq2N7qT1c27feGMZvAbbcQiSdo6QmxdKYR4tWXuognkoSixg58yxuMXjuZfWo6/BEW1xWzudmLyWRmcV0JRQ4LL2xtZ293kGA0TiSW4JwjZnDEzBI6/RGcNgsmE5S6bOzpCLB8Tjn7uo0Kl1A0Tigap8JjZ0l9CZ3+KC29PSn3dodw2SwcO68Cl93Cro4A86o8RGMJdrb7iQKxRJKd7QHOXFJHudvG/73RQpnbximLq/EG42xo7GTxjGKKnBY2N/uYXeFmd0eANRuaeP+xDXQHojhtFupKjcDFZjbjC8WwWYweRE6b0azeZDKW+JE0+j+9d9PTNLTvxVc3k99c9z22Vc7j+CI7py6ugaRR8bazLYDZDLW9vZE+ecoC1u/qYHFtMbvaAzT3BNM/84oiOxcuq2e/11hOtq87hMlkvJ/X7upML/8LRuKctHDwivNoPElnIJIVSAGQTLKjzc/Ji6pYUOMhHE1Q4rIyu9zNb/+1k11tfuxWMxVuGyUuG5FYgg5flJVHlPPEW62ccVgNezqDrN/VicNq/EyLnUYAt353J/FkklPc1TR2BIjGjOV5hGFelYdd7QGSgNNm4a1mL/OqPJx31Iz078biumJmlrlo90XSS3PjiSThWJx4IsnerhDeUJQjZpaxvTfIzJSaAzttlhGd1JxfU8RhnSUsmVFCKJbAajZR5rYRiScocdkIx4z3ZySWoMMfZlurn0qPjcoiBzva/Oxs96d3mjabTNSWOJld4cJuNbG52Ws0wTdBMgktPWFe2NrGxcfMYm+Ln10d/qy/3Vv3ezGbYe3OjqyTu5l/j/p+pqVWP2RaMqM0vRKjvszFcfMqh/33OfP+++7y6rBbCEX7r0gpRHmdgft8PrZu3Zq+vGPHDjZs2EBFRQX19fW8733vY/369fztb38jHo/T3NwMQEVFBXa7nW3btnH//fdzzjnnUFVVxaZNm7juuutYtmwZJ510Ur6elshBJfNgdtO+7HqUzDMKoWjuXTCGczA8mqVh42W0B0h7OgM8/mYL/97Rkb6uttjB0bPL2NVhbLubalg+1E6EHf6I0SMqluDHn/g67o42njvurHTJ/O6OQFYF1EjHPJ6h30jCjeH+XMtcRr+EssPsWUvxdrb5icSMSX7fILTYaaOxM0DfQx2zCeZWeXjm7daspaNTbe39dJLP0Hkqm65zqIl+P4xmI4jhfn1mlWp10YGTDW3+CMfMLWdri4/dnQH294SZWe6i2GFN9xCBkZ/VHuhEwLLZ5Wzd76UnGKPEZWVhTTHVxaMPEwdaHtIdiKV3xxrsZFRNsROnzZy1hCfFaTPn7Gs1UPWtx26httTJzj4HuYOFens6A/zj9WZ2dwYwm0xYzCZiiSR7OgI8vnk/l6yYxSu7u6gtdvSrykgpc9uzKqX7ctutgy71n1tZxJlLzDz4ciNJLOzrCVHpsePp7VWUTCbBZKKpK2jsEheIpXfEDUXi1BQ72e81+u5E40YA1VDhZsXscrqDxs6BJ/fOB9bu6kx/9tUWO9KVU6m5wbxKNy9uaycUi1PmsuGxW+kKRtja6qPIaaWm2EF7bx8du9XMjDIXz25tY3FtMdF4gmA0jtVsosMfYXd7gJoSJ4FIPN3TzGw20eqLUOywEu4NOtx2C0fPLicWT+APxzGbodhhZV9v1ZPTauEnT2zDajalA4wqj53TD6tha4uP2lIniUSS2hIni2qKeWlHBxubDvS0K3PbOLy+hJMXVbGrPcCCmiK27Tc23Cl2Gb+n//3uj1NRZKPsizexEBclXqMheXcgwr+3d9DiDWOzmmn1hihy2ugMRPm/N5px2yxs2uflPcvqcdmt+MMxPA4rFjPsbvdjs1mYUebinCNnGDsGmk3s6w6xaV8PHoeVcredWKL/ez9TNJGguthBhceebnAPxpywxGkjEk8S6A01n9rcyumH1tDui2Axm5hb5WFvV4id7QGcNgt7u0OsmFvGRctm8da+LmqLnRxSW0w4lsBqMeGwmkmQZEapk55QjEg8QSKZTL9nKovsdAeNXmkVbjv1ZS4ayt247RbW7uxgToUn/TtS5LTSUOGiO2RUsycxlgtazSZKXVZ8kRjlHhvHziunyx9lZ0eAuRVuPE4rLpuZUpeLCo+d6mLHgLsS5jqBOKPUxcKaYryhKL5wjEgskQ4vjfd6nM6WHho7gpS6bETjSZp7QoRicXqCUcwmE06bhVA0hj8cY0G1hx1tfnqCUZx2S3ounkwm8YVjmE0m3mruwWQy+nyVu20c2VDKht1dPLuljeWzy7J+npl/j/p+ptn7zPMdVnPWSoyB/gYNJHX/A+3y2toTSve9K2R5nemtXbuWU0890AclVRJ+xRVXcOutt/KXv/wFgKOPPjrr+5588klWrVqF3W7n8ccf54c//CE+n4+GhgbOPfdcbrnlFiwWCyIyefpO3HtC0fSa6dpiB9v2+3ir2Zs+8B/JLhH57Hszlgbe0XgyayLe4g2zbmcnh9YV0eaNYDFBdZEdm8XMETNLcdvNVLoddIei6f4Ki555FOueOmZd+X7eeUg1L190HuFYgvP69EjKPJjx2K2Uu4yzRsFoHJfdgt1sTt9v3zHnK/Qb7s+1qSuYdUY8M/rsDsSyyrRT7FZjaUVfxqTFT6zPiaOptvZ+Osln6DyVTdc51ES/H0b6eTKSr8+sUs082RBPJHl5ZyfvWFjFEbNKafNFWDKjmGAkntXUFkZeCZbrRECR0zqmEKqvgapvHb2fb7n+BsOBz5p5VR5Wzi1n7c7OrGDKaTOzcm4586o8OR93pDuGDhTq7ekM8PrebmKJZLrKqStgHNDXFNnxOK0cO7ecxXUlAwZPQ70vKzx2/vba3kGX+s8qd3P6YbW80dTF4TNK2NMZYF93KN1A3NO7jMkbMg7k3XZL+gA4EIkzs8xFSe8SpSNnlTK3wkNXMMLh9aXMKHXx/Na2dHVLSos3zHNb2lgyoxS3zUJVkR2TCWZXeqjw2NnW5scbipIMgMVkIhpPpHtNJZJGtUiFx86ezQEOry9J7z4XjiWwW814wzFqeh/L47Bk9RR12HoP7DFCgvoyC9gsNPf0/l70LrXKDHBrSw68bm3+CBt2d2VVPDutFl7pbUTe92f/3JY2aksc1Jc5ufKkufx77VaOe+hXPHDBVXhjCQ6ZV8WMn/yAMpedtqYuHn+rO73kNfW7ajGbjN0Xe5uUd/gj1M4oYdnsMv69o4PO3p9/PGHsUvzB42djBna0BXh0YzPReMJ4fSs8XLhsJvt7wlR4HEOG6R67FbvFzJL6Ena3B/D2BiEAVouJulInwUiUedVuzrbUkQQW1hYxu8LNxqZuvKFoOnB12Szs6QzydrOPiiIbRa4ELrsFl91CrLeB/txKD9VFDjY0dlHqsmG3mInF45S57cztXa45o9TFtjY/h9Ub1XOpJv2ppaqpOXx3MMaC6iJaekJsb/MTjBihpVHtZ+KYORU8v6Udl8PCuUfMYM2GJroCUeZVeagvd/Vu9GMcG2T+7g7Wr25mmYua3vdKY2eA/d4wy2eXE4snCURixg6KJihxWTl2XgXesNFYfEFVEf5wnD2dAcIxYwlffamL4+dXcveTW0kkk4QicdwOa3ppYCSewGWzctphtYSjcWIJ4zH+1dvjbFurjyX1/ZfGD7Sst7i3KXzq+Chz/9PRfMal7t9mNvULpPr2vSvk+W1eR7Zq1SrjzMAABrsNoKGhgaeffnq8hyUio5A5cd/fE84KpDJ3k3j8zRZOXljN01tac37QDJTk56vvzVgaeKeCkdRrAcYk68SFlRw920YwEudfW9rwho2zzeUeO7PL3Zy0sIqWTj8n3PsDjnngl8SLS2DVsQQsZekdT7zQb217d8C4LRKL8+yWNt5qOXAWsaHCzdlH1KWfU6bJDP1yhZFD/VwHq/xy2c3Uljgoc2cvk2z3Ryhx2ji6oRy71Zy+70gskRVwZZpKa++nk0Jotj4VTdc51GS8H0b6eTLcr8/8WxXuUxUUTyTZ1e7HZjGzZb+PGaVOvKH+f9sKsTJwoL/BJoxKnGiO5SiZn49FTivvWTYLh8ViLEXvXQI3u8LNOUfOGPRn2jd0W7+7M2cgldI31Gv1hukMRKjwOLCYTURixgYr5W477zykmld2d/HYGy1YzCZaekLs7QpyzpEz+s1Fhnpfdvgjw1o277RZcPYGBEfPLiMWT2KzmGj3Rdi0r4edbX7OPKyWTXt78IdjJJOwdb+PYDSO227s+DevyoPTasVrjvG+lQ2Uuew8+vrenJ9tqYPSt5q7Wb+ri+e3tZFIwPY2H/WlLpbPKeexN5opd9sJRGPsaPNR4rKx3xvGYoIKj7EkDIzP77oSF76QF7PJhAkwm4yqs9piByVOKyvnlqdP+qTeH5kb4LT7jQPm1MG42QQuuwVvOIbdYiaZNH5XLL2JQGbvITCCrIFe52jcqNLZ0xki+dprfOG2ayjeu5t5xVbe/MJtrFpcSzgW56F1jdjMJkKROLu8ATwOC+FYPN2HrdRlY26Vh2DECCBmlrl4YWtbOpACCMfi9AQT7Gj1s6cziC8co77Mia/3ZxaKxtm638c7D6nGZjEPGTTMLHMxu8LNnk6j8qwG0kvMSl02unxhDqsv5Q//buSV3Z2cdlgNz77dxmEzSih12XqXK5qwWkyEo8aOfzvbAxw9u8zY0c5hTYcVkViCYCROdbGT846s5/CZJVxwdD37e8KYe4PJCo+dfT0hZpQ48YdiWVX8LT1BXtjWlv45VBXZaekJ8Vazl1A0js1iNhqG91b0dQaiLKwpwmox8feN+3DZLcyr8lDhcaR7svUNTYbTvPvMJbU8+HJjen79SmMXx82r4NAZJazb1UF9mYu39nlZt6uTw2cam9489mYzK+dWsKyhDDACvw5fhO5gBIfNAiYTiWSSeCKB2WLubWpvhK1d/giNnQFebzICbo/dyrwqD/EktHpDmE3mfhWjqWW9mX87UscGvlCMlXPK05Wyo/2MS93/cPreFfL8tvA++URkykpN3Dc2dVFZZO+34xkYZ+LWbGjCZDJlfe9wKlUms+9NZniydGYJjR1BdncE0s9juA28S5y2rLXiNouZRTXFzKsu4ncv7sRlt1DsshGNJ4jGk7R4w7yyYRufvecW6l96FoD2y66gy1aGjQMfdpmVaCm7OvxUFtv53Yu7jEam9gNL+Ro7AjyzuY2bzz0055gnI/Qb7KzXYD/XgarVzL39Lv61vYP9fbYZP2lhFaFYnHlVnqznsH5356BjVP+i/Mh3s3UpLJPxfhjp58lwvj7zb1WqSiRTqkrHaTOnl29nGo9KsJFUIQ/XQH+DU1u2p3a2Ssn1+Tir3M1lx81J/0ytZjM2i4lWb5hAOD7scY6kenlPZ6B3uZyxk2w0nqDYabzGdaVOXm00+jrVlTro9EXpDBi9kcLxOFeeOL/feAZ7X/57ezvtvnD6JFGunlNghA9NnQH2dAbY3HzgHTCrws2qQ6pp7gnTHYyyvrGLs4+o4+8b9+ENGZ+ZwQgsayjjhIWVvN3Sw+XHz01XxNWW9F8imTooBXhznxd/JM786qJ0w+s9ve8To3ovTKc/ij8c5z3LZvHEW/vTc5ZUoNQdiHLEzBJCsTh7OgK4bBaKnVYW1xZx3pH1LKwp5rD60vTnfOr9sXZXJ0VOK3arGbvFnLVbX12JsRTz7RbjtZhT6cEXjmHpnSKazab0MsYyt23A0NZsgpllRo+p2kf/wonfuhFrKEh33Uy2nnsxJyyowmWzpKvZzCY4aWEVz29tw2Qy0emPUF3sxOOwML+6CLfdmn6smeVOfH3mBg6rhdpiY9nifm+YUDTOwpqidJWTy2YhFE1Q7rZxwoKqId/bRU4r5xw5g3A8nlVRWF7s4Nh5FcwsdXHvCzvYst9HqctGhy9CXamTQCRGc0+ICredcDyBKQHzqj14HFYSiSSxRJLuYDT9XFOhRTSeyDoZXOa089Ont7G7t7l8uz9CfamLY+dV8GZzD4trjUqgSMzoaZY5jzNhzHXbvGHcvbs8p4Lq+jIXDquZoxvKiMQT6WrAWJ8dF/uGJsPtjXrmYbXMqXTjD8fxOI2dl9/c18U/NrWwanE1L+/qwAQsnVWK1WIiFk+yYXeX0Surt9IPjD5MRzeUEk8maeoMkkway+wSySQLa4pYu7ODv2/cR2WRg5MXVfPsllb8kRh7OgNUuG1YzEavwGKnNesEaeo9lOtvR2qp5nh8xg23710h02xPRMZVkdOKw2bBG4r1m3BD75KGnlC6DDhToST5ucITj93CKYdUA+AaYQPvvqX8pW7jg8hkMqVfB7vVzPZWH7U7NvP5n91MbdteInYna7/yHV4+/l0k3mxlbqUbqwUC4US/QKq22EE4mmDjnm62t/mxmk3MLDfuO3W2LUGSVm+YhTUDb18+Ua/9WLasHahardJj55m32yh32+nJ2M2kxRtm7a5OPnPagoJqmi+Dy2ezdSk8U/H9kPpb1ROMUuayMbfSzd6uEFaLKSuoWDm3nCKHNV35CuNTCTZY8D+WfiID/Q1OJCEUi/OhE+YO6+Aq9TMdyziHW72c+sxp7gnhsJg5bEYJb+7rwRuK0tQFy2aX8czbrdSXGwfNxU6j2bjZZOL1PT3saPOzdFbpgM8h057OALs7/GzZ70tflwqEUk3gMz9bXtjWhsVsothpSwdOezuDbPfYec/ymWxp8RJPJGn1hakucrD4aKNZvN1qpq7EiT8cJ4nR0+lAKOXqdwIs9X5r94UBo29XidOoAuoORukKRvGHY9SWOHlldxeW3obRm/b2UFfqZMWccpo6g8ytdNPqDbNhj7Hb35IZJRw/r4Iyj536UierFtemx1HktPY7+D7tsNr0+wPg9d4dzhoq3DzzdisNlcbP3Go2EQjHKHVZae4OYeqt2vGGozisZs5cUpvuW5Up1Uvnxc3NXLT6p5y85j4Adiw7Ed+9v+WMxXMoclrZ3OxNv28SSeOE6bHzKihx2Wj1hSFp9D/LPJAvc9sodzv6vbZJYNt+H5F4Mh2wdPqj6SqnYqexg92cCs+wf/dmlbu58sT5rDrE39s/zJTut/bGvm627PeR6G3avq3VqMJq6Q6xo82P026h2GyE0KsW1/B2s5ckRr8ib+jAc01iLL08vL6EpTPL0r+n82uK+MxpC3h5RwfRWJLls8vZ3xPizeYe5lR60q+JrbcSK5MRPlayYU8X7b4wiYSRKDZUuLl4xSxWv9JEkcOK1Wxme5uPQ+tKeNeS2kGXLvsjsZxNu1OV8IHeQOixjN6tqSWV5x85w+h55osws8zF7o4Ae7uClLqszKpwGzvw9f7cwtEERU4ruzsDHDevEm8wxuxyN7FEgngiSXWxk6MbSnn8rf147NZ0oJva/dIfibNidjnVRQ6e29qOL3zgOcyucHPiggMN7nP97RjPZdbD6XtXyAp7dCIyJQ124B+OJvo1886U7yR/oPDEH4nzSmMX5x1pbK389n7vgGehhzNpfnt/dmRX4rRx0dvP8R8/+DL2SAhffQNP3f4zttUvTH9o7+4IMLfKw7b93n6BVOYSyXAsjsVuJRgx+klZzcbZIavFlHO5yGQYyy6GAy2bcNjMeHonfh6Htd9kPBwd2Y5O6l8kImOR+lu1blcnT7y1n/oyF9tb/ezvCFFf5iIUi1NT4uDMJbWUueyDVoKNtOJpLMH/cJ9XriDp9MOMQGK4B1djHedIehF2BaLYLWa2tflZ3lBGIplkX3eIRNLoLVVVZGdOhZvtrf50xQQYc5i9XcGcoVSu5/P4my1UuO28Y2EVXUHjMX2hKLva/SyuLaGmxJH+bGnqChKMJnDZLCzqXdIExgG1yWSi1RuhssiJ0+YlHEvyWlM3YAQ25R5jF8fUyazM+VKqx06uhvMlLltW3xq33crhM0vZuKeb3YEI3lCMI+pLmNPbZ6orGMUbjNITiOINxXir2ct/HFGHx2Flb3eIUCzB3q4QM0pdnLCgqt/PfqCD79QGME6rBX84Rk8oyut7uylyWWmocBOMxOkMRIgnocJto67USbHLxiE1xcQTScpcdspc9PsMr/TYeeWVrXz8RzdxxKaXAXj5ko/z/JWfp9RnZl7v1/VdhppIQqsvQrs/wrFzKtjVEcian6beU/5wvN/JxUgsgcNmVPtZzSYiGCddA5E4HoeF5Q3lWCwmvOEYbzd7h10JWOS09r7vDrz3jN0jO4gljH5HiWSSQAT+9tpeLl7RwNxqDw6LmZoSJyagzWdULM2ucKd/7qnnmnpemYFUytzKIqo8Tpq6gnQHIzy3pY2ijGqbVDP5F7e193sdI/EEi2uLqZxfidVqvP9LnDZWv9LE7t5lhKkeWfu9oZy7I2eGJh67NWfT7tR812Y29+vdGo7F2dcd4enNrbxjYRWv7O7iXUfUpXe2PHfpDM49oo7nt7WzrztEKBqnptjBYTOKqStxsuaVPVy4fBYmE4QiCSLxBL5QlFd2d3HywirMJhPhWMLYjbK3sXlNkYPzj5rBb17YRZs/nH4OTpuZIqc13U9uMqq+p/r8dtiv0GuvvTbsOz3yyCNHNRgRmR4G+8NY6rZS7O+/fXRKvpP8wcKT3R0Bntrcwp7OUPq6XGd3hzNpzhXczXljHfZIiC1Hn8j6b/+EvWY3mc0UEkljxzljEujM2okuFUh5HBYSiSQmoMhhZXdHIGsi1tITYk9nYNJ34RjrNu+5Sp+7ApH0z6LvhHGg+1T/IskHzaEOHmUuOy3dITwOK53+CKceWoO7t8FwqcuaVVUyUBA/mkqisQT/KYMFYeO1pHI8xjmcsaQ+c4qdNmwWE+sbu1hYXcRRDWVE40kOqS3itT1GaNj388kfidHcE8y5Y3Cu5+O0Wvjnmy34w/H0Z25q6ZPNYsr6bGnpCbKr3U9jR4BY7xknj90IEIxlayacVjNLZpRS7rZR5rJhNptwWI1+UpmhSeZ8abDPtmUNZTy2qYXuYDRreaHR48qo3Hvizf28sK2NjkCUZG/z5+PmV3ByTRWv7+1hW6ufpTNLOWKmEZYcNqOYQ+tKh/3zzwwjzaYox86rSDdc7w5EOW/pDJ5+u5U2nxFAtPsjLKor5tg5Fexo85NIcmDJVp/nmQQS7e0s3PkmUYeLf1z/Ld4+5Ryg/yYwuaSqpi44qh6TydTvPeULxfrNaVN9gdw2CzXFDho7gyyo8lDusVNT4qDLH6UjEKa5O8Rre7rHVLFY5DR+F+OJJImMXoEmTDz51n5OXFBJ0kZW5WVNiYPzjprB2p0dWfc11FwnM1BcMqO03+9YU1cwZ0+3YCSOy2ZhY1M3HoeVps4gx8wrZ3d7gKpiB2aTiURvH6ZEEna0+1k+pzxrXJmhSYXHztpdnVmBFByohD+yobRf71ZvyBjYpmYvnzm0hkQSXt7RwaF1xRwzr5xDaovpCUR47/JZdAcjBCNxLGYTFpOJB9c2ckhtMX9/bR8zSp20+sK0Zix13Nnu57wjZ9AViJDE2LTg/KPq8YdidAQi2K1mjqgvTQfeqSrFyVwBMtXnt8Me3dFHH43JZCKZTPbrBdNXPN6/tFJEDh6D/WE8Zl4FvnC8YJP8gcKTSMxYMtd3fAOd3R1q0pwruHvq6i/SNncR6//jEmaUeCBjgpGSKt3ObHieyW7pbaAYjvULpBoq3MTztAvHeCyb63v2NbMfx0juU/2LZLJpDnXwMEKdeDokD8cShHsbRXtDsawlV7mMtpJorMH/cIKw8VhSOdZxpgw1ltRnTuZB69sZy+uOn19OTamT7W3+ft87s8yF02ZhY1MXDptl0Eq1UDSeruYwQday+TZfmA8dN4cyl53NvU2gd7UHjF5DHjud/gixRBJ/xPi8nlflYemsUt5q7sFuNeO2W4xdzXoPjjN3tss1Xxros63NH2K/N8zujgON0J02M3OrPMwsc/HKrk5e3dOVdV/dwSjPbmnjypPmjXsYmaraqSoyKr8isQRbWnwsnVXKgpoior3N35fMKEkHUnDgvdH3eXb4I+xdtpS/f+VHBMoraZt/aNZjZ/bzGuiEaYnLxqxyd1aj7cyA9tRDq3l6cysd/gPfO7vCzSmHVOMNRnljbw9Pbt7P7g5jR8VwLM5hM0o4dXENzb09mMYy96ordXLUrDK2tfpIJJPpqqNANE5jV5AbzlqM2WTu9zOaU+EZdUVmrt+xgV7DNl+EExZU0lDhZm9XkMoiO06rEdjNqfTQ7o8QiSVYWFPEtlYfvnCMfd1BIvEksyvc/UKTDn+EIqc1Z5+0Iqc1HRjBgd6t+4uM97nVbIIkHDGzhCX1JYRjCWqKHWzd78VkMtO+38/63Z10B40dqWtLnCybXU6Z20ZjZ5C9XcF0YAxgMZvZ0uKjuTvMgpoi/rWtne6gUUFVW+wgFk9SX+5KL9XtazJXgEzl+e2wR7hjx470v1955RWuv/56brjhBk444QQAXnzxRb73ve9xxx13jP8oRWTKGewP45lLzAWb5A8Unnh7exblak470JmQwSbNRU4r58T20X3nD3jkmttIWqwkbHZ2X/oRzmwo4+m3WwccY02xkzJ3IOfEqisY4aqT5/Onl3enG4eCEUids3QGnf5I1hnHviaiSS5MTFnxWO4z9bNJPd/BlmOKjJXmUAePsYYuo60kGkvwP5FL/8ZznCOR+fnQd8OR2hInS2aUEoom2N0WYG93MOv7Llo+i+e3tLHebkkvlUvNUVLLLlOfkZF4nDa/cZIotXwrpbEzSE8kykPrGukKRKkqsvN2s9douJygt+I5TiKRxGw2sbCmiMPrS5lZ7uKxTS3pRuHPb22jOxRN76Q12Hyp77zDF4rx9OZWVs4pJxyNpwOuUDRBMBznPcvruf2Rt7LuI1W51dITIhpPTlgYmbk7XygWZ39PON2Xq8pjp8Rpo6krmK7syqoMs8Li794GZ5/N5sOP5bU93execVLOx05933ArSQYKaE9ZVE00kcxZSfXvHR3Ulhi773UEIpS4bHQGolnL1LoCUXa0+bFbzSOeY4WjCS5aPpMH1jaydb+PeG8Z/cKaIt63fBaRaIKjZg+vB1rKaCoyB3oNS1w2ls8p57RDa9Pzfn84RiiWIBKNYzIZQW1nIEJ979xsfnURZhNZ1aMp/kgs50ZBqQqkaDy7XMtuNVNT7KTNFyYQiRNLJrMqx0pdVqJxsFuN6skih5XuoNHwvtUb4vj5FUTjSYqdVvZ1hyh2WrFGjZ0lzSZw2i10BaOUu+0cUV9KidPGijnlvGtJLRazmaauEAOZ7BUgU7EfI4wglJozZ0763xdffDE/+tGPOOecc9LXHXnkkTQ0NPCVr3yFCy+8cFwHKSJT00B/GAs5yR8o6IjEE+ktjHMZ6EBjwJDn/vup/fjHqQ2FKD9yCXuu/lz6dQBja9uBwpZ5VR7KPbZ+k4IKj42TD6kmHE3yriW1HDmrjEAkRiKRxGo2pwOpgcab6vdgMZnSjSVL3TaOmVfO3MqioV+8QUxEWfFY73M0E7KJCu1ketMc6uAx1tBltKHWWEL68VhSN1yT1fck1zbslUWO9N/4meVumruDLJ1Vwoq55enqnEqPjWe2tNLmi7Co5sDnXk8wyrpdnbR0h/BnBE+haJxj5pbz8s5O4n3WNR1aV8Qzm9uMreYxPlO3tflZMbucdbs7icUP7M5VW+zglMXVFDmtWc3Cg5FYeslhLJEY8XypqStIh//AkrlUo+vU0v9gJMGyOeXs7QwSiiWMKhMglkgwr7qIWCIx6P0PV67fi8zQLXNnSpfNwsK6Ip7b2pZ+TWdXuHHYemdgra1w6aXwxBPwm98w8/W3hv2eGmr+OVhA+/SW1pwBbWZ1ZCSeyPodb/GG010YekJRNjR25tzgYKhlfS67lW2tPiOAiieM3eYcFuwWM2/u66HcY2f97s5hz0vGEkQP9Rqm/lb4QjG27Pexbb+Pns4DwW8gEqe22EE0lqDVF8lZPZpZ6ZireXeuk7OpqkhfKJY1Vy9z26gtcWa1ezi0rgRfOEZ30Pj+aDxJmcsIPpPJJA6rhXKPKV3NaDWbKHXZqPI4OO3QGkpd9kGXd2Y+dr5XgEwVo5pJb9y4kXnz5vW7ft68eWzatGnMgxKR6a9Qk/yBgo66Eiczy1w09+Q+G5LrQCNX6FFuN3HRn35I8c9+Ylxx9tlU3/g5qsvLs753qLAl1w43NrOJJ99qNbZi9hlnHPs2QR9ovKlmrU6rpV9jyZd2dHD1KQuYXzO2YGoiwsjR3udoJmQTtbOVHFw0h5rexhq6jDbUGktIP15L6oZjMvueDH3wXMq6XV3s7gikKzHqSpy0+SJZS+XAaKb9+KYWSly2rINkfzjGrvYwh9YV8cbeA9XJTpuZ+jI3O9v86VDKYTMTTyR5pbGLRdVFNFS4e/tFGQFRqcue9TqNxxwp9bPNbHQNB5b+z650U+ay47b13yzEWEI4/pVrKaleTqceWsPCmmJiiQSrFlfz7+3t/GtHRzqQqi12sHJOOU9vbqXGtAn3pRfD7t3g8cBPf0pRbSVn2l3Dfk8N9tpmBrSRWAJv6EAfrkgskTOgzfz9sefYyCfcu0Rxe6uP+VWerNuGW41ovG9tbG09sNy03W8EXb5QjG37fVmNzIeal4w1iB7O+zP1u97apy9U5rwUcv99Gerv6EAnZ1NLKqPx7Iq2pq4g0JX+unKPnWPmVaTD2CUzirFbzOzrDtLuDxu9psyWdDVjTbGTUpeN4+ZX9tsAYar3cioUo3qVDjvsML7xjW9wzz334HQaW1WGw2G+8Y1vcNhhh43rAEVEJrs6JddEtsJj55GNe3M2eMx1oJEKPXqCUaqLjC1tTa2tnHHTZyle/y/ji770JbjtNrBYhjWGvmFL5hK0HW1+XmrsxGoxU11kJxZP4LSZafGG++1ykmu8TV1BLCZTv0AKjAbvazY08Yl3Lhjz6z4RYeRo7rOpK8j+nnDWhHOwxpTZTVqztyl+cVs7qxZbxnVrX5m+NIea3sZ6gDKWUGu0If14L6kb6jN7Mqulh1xGf+SMrJ9VrHc3r9RSuZQkRtWLy579eV3stNHYGWB2hYdILJkV6jis2cFW5nK1t/f7iMSNnfS8TFxFxVA/W6PixHi/9a1ImcjKtZQSl9FrNBWgbG72UuGxc/YRdf02c1n82BqcP7oFQiFYuBDWrIHDDwfG7z2VCph6QlG2t/r69TM6YUFFv/dT5mucqvbK/D6H1Yw3FKXUactZbT/cEKjv6xeJJfCFYqycU551wnQ4QddkBdGzyt1ccFQ9M0pzb84Duf++DOfvaK6TswP9zHP9XU2FsTaLiYU1xThtFg6pK+FXz25P91+zmE3Mq/Rw0sIqQrE48/qEipnPs1BXgEwVo3qlfvazn3H++efT0NDAUUcdBcCrr76KyWTib3/727gOUEQObvmqTsk1kT39sOEfaDR1BekJRtNb2rreeI0bfnoTVZ0thJxu9t35U+Z98sMjHkNfqddn235fuhdD6ixUKJZg635vVvn4QOP1R2LpSXcuLT2hSdtBZDwMdVDU0hNk077ufhPO+dVFOK0W9nQGsr43dVbRbCLnNsWNHQEuOaZBFVMyJM2hpr+xHKCMNdQaTUg/nkvqhvuZXSjV0n1/VqFonHZ/JCuQAuMEBJC1+x0cWDJkMZuyQp0yt43DZhRnLdXKXK7W4g2n72siKyqG+tnOKndz5hJrQVSugTEX6VvRZYrHeecvvs3yh39rXHnOOXD//VBWlnX/4/Ge8tit6aqmzPkBGH24WnpC/XZlzHyNMxvrh6IH2j6UuGwsnVk6YLX9cEKgXO/Vbft9/SrhYeiga7J6u4Ex7he3t+MNxfr1ZB3s78tITs4OZaC/qzUljn5/mz5z2gJe3tFBdzCWDtFCsTinHzb470Oh/E2bqkb1jjv22GPZsWMHv//973nrrbdIJpO8//3v57LLLsPjyZ0gioiM1GQ2Xx2OkRxoBCIx5ld5eG5rG52BKKVOO0WBHvbVNPCdT32bujnL+fQwtpseTObrE4kfmDxlVkfZLcYZuppiJ8fOqxxwvB67NT3pzsVmMY/ozFk+ey8NdVDkC8Vo6Qn1m3CGown2dQXxhWPUlzl5bU93+nsXVBufbZUee85qspaeUF7ekzL1aA51cBjLAcpkn3Ufr+UnhfaZPVyZPytfKMZbzd5+z8FhM/db0pdS4rRxdEM5dmv27mcAG5t6snada+4Jcey8Chw2M3MqPJS67Xn/2Y6k4mQ8xjOcXRMzJc1mnN4eANo+fyNV370dzP2XyY2HmWUubBZTv/kBGCf8wtH+S/j6vsapBt02i4l3LKqi1GUnmUzyf28056y2h+GHQJmv3/rdnVkBXl+Dzdkmq7cbjO3vy3gGPcP9uzq3sogqj1NVT5Ns1K+u2+3mE5/4xHiORUQEOBBo7OkMpJejtWc06Qaj6eiezgAmk2nI4GM8A5LhfkCagJ1tfp7b2gbAdlst4Y9/m9qTj6W2pBRX73bTS2eW9RvLcMeb2ROgbx+DVHVUqknk3CrPoOOeWeai1J39GPFEknAsjsNqLFewDnMSmM/eS8M5KGrqChLuPYOZGS657Ba2t/qZU+nOKrHvCkRp6QkRiSUGrCazWXIv+xPJRXMoGcpkn3UfjyBsMhumT5SBDqCLHFZWzi0nFu//PakeN7leq773lUhCNJFk1YKqSausHc+Kk4mWFZYkk2AygcnEP//fbTSe8x5OuvqyCQukwHgd3rGoip1t/qzP+sw+SLnCnuE0UC9xjW8INJZqp8nug1Qoy9tGUllVCL8PB5NRvxN+97vf8fOf/5zt27fz4osvMmfOHH7wgx8wf/583v3ud4/nGEXkIJIZaOzrDrKrPdCvWXdqCdVfXt2bVUqfuWVvKtCx20w8vbmVDv/kBSS+UIyN697mvK99njeOez8b5x6B1WzCdcZptETjuMJxQrEErzV20dwdyuqnMJJAJ7MnQK4+BuFYIv39Q014ipxWjplXwUs7OtndESAci9Ppj+CwWqgtduINRdm630u5xzbo65bvM+XDOSjyR2L9llGkGI0sK2j3Z599DEcT2CymnNVkmWfPx7MhsExfmkNJIRrrgdhkNkyfSAMdQHcFIyM+iJ9qB+P5lgpLdnz3J9Q++zh//9KdYDZTXF7M4R9536S8bqUue86dClNz0ME2Gxisf9l4h0BjrXbKR0XmVHgPSn6M6l3305/+lK9+9at87nOf4xvf+AbxuHHaoLy8nDvvvFMTKhEZlb6BRqr6p2+z7tQSqr674OzuCPDTp7dx1KxSWn0RIrEEbb4wK+eUYzZF05VWwwlIxlJd1f7Uc1z4iQ9Q3NbMF/c0cvnn72FpQyU2q4nntnXSHYzisJqp8NiZV+nBbDZR1rvrzkgCncyzZH37GIDRXNMyggnP3Moirj5lAX9ev4dN+3oodxtj8jgsnLigit0dAbqC0UFft3yfKR/OQZHHbs1aRpGaeBY7rLze1E1je5Ayjz3r+9r9Ed6xqIpd7f6s6/s2xB3PPgwyPWkOJdPVZPapmWi5DqBHu8xNB+MjEI0y66tfYNZddwFgf/NpwpdeNqlB3swyFy8kkum5TGYfpLEsbRvvEGg8gi69N6VQjOq34Mc//jG//OUvufDCC/n2t7+dvn7lypVcf/314zY4ETm49A00Mqt/Mpt1J4HuUJSZGRU7mY0pj+zdrtUbihpVP9F41u5zMHhAMqblZ/feS8PVV2MOh+mePZ/7PnMHZS4XRzeU8dC6PbT0hHDZLFjNJhxWCy3eMI9vamFxbTEmk2lEgU7fs2SpPgbeUNTY0WauUYE12MQkV/h2/lH11A2wU8pQwVK+z5QP56Ao83XLfE84rGZ2dwZYMqO03/clksbZ01WLi2jsCNLSE8raNhsmbvckmV40h5LpajL71OSLDuInUEsLXHwxPPuscfnWW5n72asmdLleLhO5tG283z8TXe2Uz/6gcnAZ1btqx44dLFu2rN/1DocDv9+f4ztERIbWN9DoW/2TWo4G9Nuu2RuKpiuEUl+Xav6dGWhlyhWQjHr5WSQCn/883H03ZmDbCafxjy98h8Uzqmjb2obZbGJvVxATRv+hco8di9mUHt9+b4ii3iVgkVgCb8hoXm7PCD76jjfXxMluNbOgpmhYAdpA4dvh9SV09Pbw6rtTykCvW0q+z5QP56BotD1DUt97yTENk9aHQaYfzaFkuprsPjUyuSY0oPj3v+Gii6CpCUpK4He/gwsuGJ/7HoVCWXY5HBMVlOazP6gcfEb1mzVv3jw2bNjAnDlzsq5/9NFHWbJkybgMTEQOPrkCjczqn0Nqi6gtcRGJJejwG8v4khj9fpxWE5FYgreae0gkkkRiiazm35mBVkqugGRUy8+8Xjj7bHj+eTCZCH/lFp4544OEQvH0EjGb1QiirGYTZW57v22lo/EkHruVnlC031bEqSViucY70MQJYHOzd8DJ42Dh23Nb2qgpduTc1cVsApfNMuB9F8KZ8mUNZfxjUws9wWg60Ot7UDSWniFTabIqhUdzKJnO9PdxeprQgOJPf4IrrjBO7h16KKxZA4sXj+0+x8HBXBWX7/6gcvAZ1bvphhtu4DOf+QyhUIhkMslLL73EH//4R26//XZ+9atfjfcYReQgMVCgkar+OWxGKR3+CMlkkroSJ8+83UqbP0I4FqcnGMVhs3Dq4mr2dgbZ0eFnToUHl81MMGosQxtOX4Bcy8/MJtIB2M42HybIDnmKimDGDOPs3v334zjvPM7MmMC1+iLMrnBR5LBit5r7BVJOm5maYicVHju+UKzfVsShaAJfKEZFnz5HKX0nTsOZPA4WvkXjSRy2/uXyZhPMrfLwzNut+CMHyoky73skZ8rH+6xr6nn3BKPUlzqZUeoE4LAZxRxaV9rvvsfSM+RgnqzK2GgOJdOd/j5OLxMeUCxcaOyyd+GF8JvfGHMpyat89weVg8+o/oJceeWVxGIxbrzxRgKBAJdddhkzZ87khz/8IZdeeul4j1FECtR4hwqDBRrHzqvgkY176fBHqSm283pTDzva/dgsZroCEUwmE4FwjN3tASqLHISiCXZ1+Jlb5SEQjmPKeJzBlhL0rdZK7fSX2qVtUU0Rm/Z5jftYVMGsmlJjMnXvvbBvHyxaBPQ/W+yyWThrSS3rG7v6VUGtnFvOvCoPTV1BVs4pJxyN99uKeOWccjr8EaqLHQxmuJPHwXo/2a1makuc+MLxrPuZXeFmd4e/3/K2vvc9nDPl433Wte/zzqzy2tjUw6F1/ftEDUQHVDKRNIcSkalkQgKKaBRsRssCVq40lu8tXTrp/aMkt3z3B5WDz6iPHq+66iquuuoq2traSCQS1NTUjOe4RKTATVQpd65Ao8JjTwdSYDSd3tHmp7bEid1qpthpxWYx47JZ2Lrfx6wK4/FD0QSlThtXnDCXaDw5rKUEqWqt/T1hvKEoNSUO/vlmC52BKB6HhWKnDUskwoo7v0o06MX39zUUuWxGtVRvIJXSN9woclpx2a3s7ggQjSewWczMrnBzzpEz0kFR3x3hrGYTgUicDY1dVBc7hlwGMdzJ41C9n2pLXCyfXZH1c4jEEuxsDwx537mee6aJOOuqs3oylWgOJSJTxbgHFC++CB/8IDz4IKxYYVx31FGjHJ1MhHz3B5WDz6jeUaeddhqrV6+mrKyMqqqq9PU9PT1ceOGFPPHEE+M2QBEpPBNdyt030Njc7E0HUmD0kEoCgUicWDxJdzCK224lGIlTW2Is23ItrMRltbByTjnzq4tG9NjHzqvgvud3srsjQJHTyqZ9PZS6bBxSW0R5dyvnff3/Ub/pFZImE7sff5qi887Iuo+BKshmlbu57Lg5A1YQeexWEskDVT59+0s1dQV5aF3joMHfcCePw20InvlzWL+7c1j3PZSJCJB0Vk+mCs2hRGQqGdeA4he/gP/8T6NS6stfhkcfHePoZCIUQn9QObiM6qjxqaeeIhLp3wA3FArxbGobTxGZtia7KiUzcDCboNxjw223EIsncdnNxBJWkkkIxeLs6w6yrzvEK7u7AONra0qdw67e8oVirN3ZwVGzSjlyVinJJCyuLcZhNVOy/mUu/clNlHS1ESoq4dGbvsvcI1eQ2a54qAqywSqIMicBkVgiK5CqLXZgYujgb7iTx9HskjQeE1NfKMaezgD7uoNZOwtmGk2ApLN6MlVoDiUiU8m4BBThMFxzDfzyl8bliy4y2h5IQdJOmjLZRvSOeu2119L/3rRpE83NzenL8Xic//3f/2XmzJnjNzoRKUiTXZWSChxS/Z12tPrxhWLs7Q5is5ixW8zMKnfR3BOiptiJP2Q8fm2xg3A0MaLqraauYFZVVnWxHTNw6F/+yKcf/hG2eIzG+nn86D/voOiIw1iSEXaMtYIscxKwbX92IHXSwiqae0Lp+xso+BvJ5HGkuySNdWKaCuysZhO7epcBpnYWLHHa0l83mgBJZ/Wk0GkOJSJT0ZgDir17jRDqX/8yenB+85tw003Gv6VgaSdNmUwjelcdffTRmEwmTCYTp512Wr/bXS4XP/7xj8dtcCJSmCa7KiUVONjMJp7f2kabP8Kx8yp4aUcH+70hnDYLezqDHFJTxKLaYl5p7EoHOfu9IcrddjY2deGwWYZsyN43cCt12rjwobs479HfAfDcUafwiyu/QtjpZnafHfGauoL0BKNUFxk79YWjCRx2C6ZkknZ/ZFgVZKlJwLrdHcyt8uCwmjEBzT0hEskDXzdQ8DfSyeNImnqPZWKaGdhVF9mpLXbQ4g0TihoVYUtmlGK3mkcdIB0sZ/XGe3MBmTyaQ4nIVDXqgGLHDjjxRGhuhrIy+OMf4T/+Y1LGLGOnjV9ksoxoJrtjxw6SySTz58/npZdeorq6On2b3W6npqYGi8Uy7oMUkck11IHvcKpSxvPgORU4vLitLb0r3SuNXSydVUJ9WR0AsUSSeZVumrqCnH1EHSZgv9eonHp+axsbm7qpK3WlxzhQX6a+gVtPKIrptLOIPPYAvzrjwzx69odwO2w5d8QLRGJZO/WlpAKy4DAryIqcVupKXKzf1YV3gK8ZLPgbbPI41p/LaCemmUs+2/0RTlpYlX6dQtEE3lCUBTVFYwqQpvtZvYnaXEAmh+ZQIjKVjSqgmDPHaGa+axesWQMLFkzI2ERkahvRTH3OHKNzSiKRGOIrRWSqGs6B71BVKV3BCC/v6MAXjqWrhYrsFo6ZVzHqg+dZ5W5mV3hYVFOU3rnOYbXi7V2q1+4LYzWb0pcBqovs6eBjUc2BZueDLadLBW6B1g4inmKCkQRPlC5gz88ewdwwk/McRj+rVPVSZsWSy2bpF0gBtHjDPL+1jaMayob9fMe6HC3X5HG8Qo3RTEwzK9ASSfrtMnhIbRHLZ1cMGCANN0ybrmf1JnpzAZl4mkOJyEEhZLQawOkEsxnuvx8sFmOXYhGRHEY1g7399tupra3lox/9aNb1v/71r2ltbeULX/jCuAxORCbGQAf4IznwHagqBeDxt1p48q39/aqFzGYTZS77qA+ey9x2KoscOW8rdtoodVmzQqkkRiDktBkNtfs+p1zL6YocFi58YQ3ur93KA9+7H9PSI4gnkrxhKWJ+OI7FZCYQiae/PrNiKRpP0h3K3QC+OxQlGk/mvC2X8V6Olu9Qo28FWuYugwC1JQNXNKlCaPI3F5CJozmUiExbe/bAe98LS5YYjcxNJigtzfeoRKTAmYf+kv5+/vOfc+ihh/a7/vDDD+dnP/vZmAclIhNnT2eAh9Y18sjGfTy9uZW/b9zHQ+sa2dMZGNaBb6ZUVcqy2eUsriumyGllT2eAxze15KwWenxTC3s6AwOOzReKsbnZy/rdnbzd7MUXyl7ulqoeyqWmxMEx8yqybg9HE+lG2n13eIMcfZlCIfjYxyi/8Vocvh7O2/AYR84q47h5FSyZUZrVjBv6VyxFEwnmVxfhtGU/VmoMsRFWSKSCv3OWzmDV4mrOWTqDi1c0jCqIGenPdrwN9rMbrPJrqDCt73tkuprszQVk4mgOJSLT0jPPGEv1Xn4Z/vIXaGzM94hEZIoY1Wnx5uZmZsyY0e/66upq9u3bN+ZBicjEGOoAf/ns8kG/fzgHvi3eUL9A6sBtYfZ7Qxw6o6TfbeOxbHBWuZvzjrSxdb+XnmAUm8VMizc0YP+lrOsbG42ze2vXGuXm//VfVFx3HRUmE5VF9mFVLHnsVkqcNpbMKMUbiqaXGRY7bdit5lE1gB+v5Wj5DjVGW/mlCiHDZG8uIBNHcygRmVaSSfjJT+Dzn4dYDI48Eh5+GGbPzvfIRGSKGNUstqGhgeeff5558+ZlXf/8889TX18/LgMTkfE31AH+UMHEcA58Y71L1CxmEwuqPHicVqLxJHaLGV8omr4903gsG0xVaWXeT3WRna5AlFgiOXiV09NPw8UXQ2srVFTAAw/AGWekv3a4DbQz+0D1XWY42l3lxkshhBqjaUSe7zCtUIy1x5gUDs2hRGTaCAbhU5+C3/7WuPyBD8AvfwkeT37HJSJTyqiOQj7+8Y/zuc99jmg0mt7W+PHHH+fGG2/kuuuuG9cBisj4GeoA32IyjXlXvZpiJx6HhcPqSnhpRwd7uw8sC2uocPPuZTP73fdIq2FyVQ/lCrba/RFWziln7a5OnFZLeglfVnXOs8/C6adDPA5HHw2rV0Ofg8WBHjPX14xnH6jxVCihxkgrvwohTCsEhfzekpHRHEpEpo33vAf+7/+MCvPvfMeoljKZ8j0qEZliRjWLvfHGG+no6ODTn/40kYjRqNbpdPKFL3yBm2++eVwHKFJIhrsDWKEa6gC/1G0fcle9oZbYzavycOaSGv5nw76sQMpqNmEC1u/q5NC6kqzXbTyqYXIFW6ld3o6aVcqCmiKcNkv/6pwTToBVq6CuDn7xC3CPrXH2aKqBJsNUDTUKJUwrBIX63pKR0RxKRKaN66+HDRvgD3+A3pBdRGSkTMlkcvjbQfXh8/l48803cblcLFq0CIcj965Yha6np4fS0lK6u7spKenf60YEpscOYL5QjIfWNQ54gJ9aJpcK3/ruqpf5vWYTVHrspP6ALGsoZ26VhyKnlbU727nzn1voDkZJJJKYzSZKXTYW1RZT4rRxztIZWdUym5u9PLJx4F4qfb8+l/W7O3l6c+uAt69aXM2yVM+sPXugpgbsduNyIAAu10Fxdi/Xz7bQQ43BfvfKXPYpHRRLfhTC5/50mEMVwusoIpMomYQdO2D+/APXBQJjPqEnIlPDRH3uj2nmXlRUxDHHHDNeYxEpWCPpeVQoBqrqGk61TK4lVpubvVmBVF2Jkxe2tdHTu/vZyzs7mFfp4d1Hz8RqNrN0ZlnOZt/Qv/JpPKphhr3M64kn4JJLjP/uvrv3xoNnMjVejdMn00AVQl3BSL+QdaoFxXLw0hxKRKaUQAA+8Qn461+NHfYOOcS4/iCaQ4nIxBj2UfR73/te7rvvPkpKSnjve9876NeuXr16zAMTKSRTbQewoaq6RrMEKHOJXaXHzgvb2vCH4zR1GsFXmctGS0+Yvd0hPnT8HJw2M3Zr7jP/ffsAjcfSsiGDrVInfP/7cMMNkEjAv/8Nfv+ImnH2DfrKPXY6/BFV6UyCvmHaVAyK5eClOZSITGk7dxr9ozZsAIsFXnrpQCglIjJGw56xl5aWYupd2lJaWjphAxIpRFNpB7DhHqyPNETLrERKAj2hWDqQAjCbjb8PuzsCbNrXw+wKN7s7AuklfuFoAofdQpHdkrPyabhh2UAVYIMFW++aW0zRx66AP/7RuPLDH4af/cxYsjdMfYO+nlAUXyjGyjnlNPeESCRVpTOZplpQLAc3zaFEZMr65z/h0kuhvR2qq+HBB41enCIi42TYodS9996b898iB4OptAPYRB2sZ1YihaMJ4EBYZzWbcFgt6a/1hWMsrCnFbDbx+KYWWrxhAJw2MyvnltMVjOSsYhkqLBuqAixXsDWrqxnPuWfAq6+StFjYf9vtNH3wYxR1x6g3xYZVTdM36IvEEmxv9RGKJghH4xw7r4JWX0RVOpNoKgXFIppDiciUk0waFeY33mhUmK9YYexQPHt2vkcmItOMjppEhmEq7QA22MF6JJZgT2dgVMvNMiuRrGYTsbjR4txqNlHusWMxH2gS7rCaSSSgpTtEicuGy25J95WKxRlVcDPcCrCsYCsahZP+A7ZvJ15Vxf/d8mM2L14Ob7cBw69s6hv0eUNRQr3BXIs3TOZuEarSmRxTKSgWERGZcu67z9hdD+CKK+CnPx1RhbmIyHANe9a+bNmydOn5UNavXz/qAYkUovHoeTRZBjpY7wlF2d7qo77MyWt7uoGRLzdLVSLt6Qywq91PVzCCw2rJCqRqix2YgHgyiT8Sp7Kof1+p0QQ3o6oAs9nghz8k/rWv8+ebvk9TcXW/7xtOQNY36IvEE1mXw7Hsy6rSmXhTKSgW0RxKRKacyy+H3/4W3vc++PSnD4odikUkP4Z9JH3hhRem/x0Khbj77rtZsmQJJ5xwAgD/+te/eOONN/j0pz897oMUKQSjbRA+2XIdrKeWm5U6bWROKUaz3KzIaeXQGSVcduwcuoMxdncE0rfVFjs4aWEVoVh8yEqVVHAzUI+ovoa9XMvvh7ffhmXLjMvnncfW5SfT9EZLzu8bTkDWN+izW8xZlx1WM96My6rSmXhTKSgW0RxKRKaEf/0LVq4EqxXsdnj8cTCbh/4+EZExGPas/ZZbbkn/++Mf/zif/exn+frXv97vaxobG8dvdCIFZjQNwidbroN1byhKqdPGSQuraO4JZX39aJebza8p4jOnLeDlHR10B2M4rGZMQCgW5/TDavGH44N+v9tuHbJHVKZhLdfats3YHWbvXli7FubOBcDfp5Kpr6Eqm/oGfcVOG06bmVA0ka4Myxy/qnQmx1QJikU0hxKRgpZMwh13wBe/CJ//PHz3u8b1CqREZBKMaub+0EMPsXbt2n7Xf/CDH2TlypX8+te/HvPARGT0+h6s94SiNLYH0rvE9TXa5WZzK4uo8jhzhgK+UGzQ5VUVHjt/e23vkD2iUjKDoUgsgTcUJRJPYLeYmV3hZvbLz8IVH4TOTqithf3706HUWPsP9Q367FYz86uLsnbfSz2vQqvSGW4l2lQ1FYJikUyaQ4lIQfH54KMfhYceMi53dRmNzRVIicgkGdWRicvl4rnnnmPRokVZ1z/33HM4nc5xGZiIjE3mwfrmZi/rd3UN+LUjXW7WN+jIVZ0y1PKqDn9kRD2iUvf38Ct72NDYnW40Xltk5x1P/gHnXf9lnOk77jj4859h5sz0945H/6FcVTkVHjsd/kjBVumMpBJNRCaH5lAiUjC2bjUqzF9/3ejD+aMfwSc/qf5RIjKpRnX09LnPfY6rr76adevWcfzxxwNGP4Rf//rXfPWrXx3XAYrI2I1nU+iRBB2DLa9av7tz0MfJVb1V5rIzq8xN2WF2wrEEnkiQE795A3OefBSA6JUfxfbTu8GR3Vw9FWg9/mYLFpOJJBCOJih12zhmXnm/IGmg6qJcVTnVxf0buReC4e5WKCKTS3MoESkIjz4Kl11mVEbV1cF//zecdFK+RyUiB6FR1WXedNNN/Pa3v+WVV17hs5/9LJ/97Gd55ZVXuO+++7jpppuGfT/PPPMM559/PvX19ZhMJtasWZO+LRqN8oUvfIGlS5fi8Xior6/nwx/+MHv37s26j3A4zDXXXENVVRUej4cLLriAPXv2jOZpiUxbqVCmzG3Lun6ky80GCzoeeW0fb+3rYf3uTt5u9uILxdKPvbiumGWzy1lcV5x+rNEsqWvqCrKzPUCbL4I3FGP+PXcx58lHiVtt/PP/fY3t37qzXyCVMqvczckLq9nvDfN6Uzc72/1sb/Xz5Fut7Ok80Kx9T2eAh9Y18sjGfTy9uZW/b9zHQ+sas75mKhjOboUiMvk0hxKRvOvogPe/3wikjj8e1q1TICUieTPq0+SXXHIJl1xyyZge3O/3c9RRR3HllVdy0UUXZd0WCARYv349X/nKVzjqqKPo7Ozkc5/7HBdccEFWL4bPfe5z/PWvf+VPf/oTlZWVXHfddZx33nmsW7cOi8UypvGJTCfj0RR6oKCjJxRlQ2MnLruFNl8EGHqZ2Giqt/ruwPfvy66mevtmXrr0E+w7fDmVg/TG8oViPL2lFZPJRF3pgfvOrBwCpk110bB3KxSRSac5lIjkVUUF/OpXxu56P/rRgCf0REQmgymZTOZoezy0rq4u/vu//5vt27dz/fXXU1FRwfr166mtrWVmRi+XYQ/EZOLhhx/O2ja5r5dffpljjz2WXbt2MXv2bLq7u6muruZ3v/sd73//+wHYu3cvDQ0NPPLII5x11lnDeuyenh5KS0vp7u6mpKRkxGMXmQ6G0xB7/e5Ont7cmnVdJJZg0z6jx9OZS2rxhg6EHWVu26BBzkh7Hm3e283Wu37N26ecnbMB5zlLZwzY9Hpzs5dHNu4b8Pmfs3QGwJBfM1Waag/n+U6V5yIy3vL9uT9d5lD5fh1FZAS2bDE2gzn22HyPRESmqIn63B/VKf/XXnuNM844g9LSUnbu3MnHP/5xKioqePjhh9m1axe//e1vx22Ambq7uzGZTJSVlQGwbt06otEo73rXu9JfU19fzxFHHMELL7ww4IQqHA4TDofTl3t6eiZkvCJTxXDDoVxL7ryhaLrpuMNqxptxW66G5ZlGVL3l9bLg6o+w+C9rqGzcxosf/mzWzUP1xhpO5dBQCf1Uqi4azz5iIjJ+pvIcSvMnkSnq73+Hyy8Hl8tYqldfn+8RiYikjaqn1LXXXstHPvIRtmzZkrVTzNlnn80zzzwzboPLFAqFuOmmm7jsssvSqVxzczN2u53y8vKsr62traW5uXnA+7r99tspLS1N/9fQ0DAhYxZJ8YVixg54ffotFYKhGmJnjjUVdGSKxHt3wSt2kGuvlkAkNujzH6jnVJbNm+G447D+ZQ1Ju53YzFlZNw+nN9ZweliNps9VoRqvPmIiMr6m8hxK8yeRKSaRgK9/Hc4/H7q7Yf587awnIgVnVEclL7/8Mj//+c/7XT9z5sxBw6DRikajXHrppSQSCe6+++4hvz6ZTGIa5A/uzTffzLXXXpu+3NPTo4mVTJiRLlGbbMNpiJ2qdEoFHZnPx24xU1vs4KSFVTT3hPrdRzyR4KF1jaN//n/9K3zwg9DTA/X1mFav5uijVlA9wt5Yw60cmk7VRePRR0xExtdUnkNp/iQyhfT0wIc/DP/zP8blq6+GO+8Euz2vwxIR6WtURyZOpzNnyfbmzZuprq4e86AyRaNRLrnkEnbs2METTzyRtXaxrq6OSCRCZ2dn1pm+/fv3c+KJJw54nw6HA4ca+skkGKoKKR+Ns/v2jgpF45hNkBhg7VrfJWt9gw6r2czW/V52dwT63YfHbqGxo3/oNaznnzq7d+utxuV3vAMeegjq6iiCEfdDyhWoQf/KoeF8zVSSqkQTkcIwledQmj+JTBFvvQXveY/xf7sd7r4bPvaxfI9KRCSnUR1hvfvd7+ZrX/saDz74IGA02Ny9ezc33XRTvx1gxiI1mdqyZQtPPvkklZWVWbevWLECm83GY489lt7FZt++fbz++uvccccd4zYOkdEaSRXSZMhVtZVMJplZ5qK5J5QzmMq1ZK1v0FHusdEVjPYLcpY1lPH02639vh+G8fy3bIHbbzf+/ZnPwPe/P+aze8OpHFJ1kYhMJM2hRGTC/dd/GYHUzJmwerWam4tIQRvVUdZ3v/tdzjnnHGpqaggGg5xyyik0Nzdzwgkn8M1vfnPY9+Pz+di6dWv68o4dO9iwYQMVFRXU19fzvve9j/Xr1/O3v/2NeDyeLmuvqKjAbrdTWlrKxz72Ma677joqKyupqKjg+uuvZ+nSpZxxxhmjeWoi42o4zbUny0BVW9F4krW7OjlqVimtvkjWbcNdsjZQkLNlv3fACiwY4vkvXgy//CXEYnDllUOOYbiGUzmk6iIRmSiaQ4nIhPvxj8FqhW98A2pr8z0aEZFBmZLJ5FAbTg3oiSeeYP369SQSCZYvXz7iScxTTz3Fqaee2u/6K664gltvvZV58+bl/L4nn3ySVatWAUbzzhtuuIE//OEPBINBTj/9dO6+++4R9TjQlsYyUTY3e3lk474Bbz9n6YxhhR99l9zV96ncGer2ocbSE4qyZEYxezpDmE1Q6bHjsJmpLXFSV+LKeX/DMeLnv2YNNDTAihUjfiwRkeEqhM/96TCHKoTXUUQwmpj/6ldw7bVqZC4iE2aiPvdHHErFYjGcTicbNmzgiCOOGLeB5JMmVTJRfKFYvybfKWVu27B6Sg3VKH24jdTX7+7k6c25l9IBnLSgklK3ne5ghOe2tBGNJ7Fbzf3ubzgB2IiffyJh9I76+teNUGr9eqiqGvR1EREZrXx97k+3OZTmTyIFYNMmo3/U228by/ZuvDHfIxKRaWqiPvfNI/0Gq9XKnDlziMfj4zYIkekq1Vy7zG3Lun64jbOHapTe6g2nbzeboLrITlWRnXg8yYvb2mn1htPf48nRGypTqdvOzDIXb+ztwWQypQOp1OM9/mYL2/f7eGhdI49s3MfTm1v5+8Z9PLSukT2dgdE//64uuOACI5ACY2JVWjroWEVEpiLNoURkXK1eDccdZwRSDQ1w2mn5HpGIyIiNqqfUl7/8ZW6++WZ+//vfU1FRMd5jEplWxtI4e6hG6Vv3e9OBVF2Jk+e3ttGSEUQ1dgS45JgGZpW7mVnmosxtG7BqaWaZa9DHs5hMrNnQ1G+r8KF20hv0+b/xBlx4IWzdCk4n/OIX8KEPDfm6iIhMVZpDiciYxeNwyy2Q6kO3ahU88ADU1OR1WCIiozGqUOpHP/oRW7dupb6+njlz5uDxeLJuX79+/bgMTmS6GG3j7KEapfcEjdsrPfZ+gRRAS08oKzA6c0ntgEv9ipzWQR8v2Xt/daVG4/NILIE3FCUST9DuC7Ojzc/SWbkrnHI+/z//Ga64Avx+mD0bHn4Yli8f9PmKiEx1mkOJyJh0dsLll8OjjxqXP/95uOMOo7G5iMgUNKq/XhdeeCEmk4kx9EgXkWEYasldicu4PQn9AikAm8VMVyBKU1eQxXXFQ1ZtDfZ44WgCm8VY0tcTirK91UcomkjfvqGxk3KPLauP1YCSSfjNb4xA6rTT4E9/gurqob9PRGSK0xxKRMZk82Z47DGjwvxXvzICKhGRKWxEoVQgEOCGG25gzZo1RKNRTj/9dH784x9TpYbEIhNiqCV3C2uKeavZSzgjHEpx2swUO41eToGMCqjBqrYGe7xSt5Viv41ILNEvkEoZbBlfFpMJfvtbuPtuoyGnzu6JyDSnOZSIjIvjj4d774XDD4dly/I9GhGRMRtRo/NbbrmF++67j3PPPZcPfOAD/POf/+Tqq6+eqLGJHPSGahReXezgzCW1lLqzQx2nzcz86qJ0s3L3EBVXw3m8Y+ZVUFPiwBuK9gukaosdmCBdlZXTxo3wpS8ZVVIAZWXwxS8qkBKRg4LmUCIyKvE4fOUrxjwq5YMfVCAlItPGiI4GV69ezT333MOll14KwOWXX85JJ51EPB7HYrFMyABFDnYDLbkD2NzsJRCJsXRmKTvbArT5wtgsRoVUKpBKNTEf6+MZgZU5a0c/MAKpkxZW0dwTArKrstIefBCuvBICAZg/Hz72sVG+GiIiU5PmUCIyYh0d8IEPwD/+YbQ62LjRWLYnIjKNjCiUamxs5OSTT05fPvbYY7Farezdu5eGhoZxH5xIofOFYjR1BfFHYhTZrdQPc1e9keq75G5PZyCrYbnZBIfUFePsMBPL2Gk8s4n5WB4vZVa5mwuOqmdGqZNwLIHDasYENPeESPQWQGVVZcXjRjXUHXcYl88809htbwJM1s9CRGQ0NIcSkRF57TV4z3tg+3ZwueDrX1cgJSLT0oiO2OLxOHa7PfsOrFZiscF3CBOZjvoGQ3AgBBpWs+9R8oVi/R43kYSdbX5mV7hZWFNMLJHo18R8vMwqd/Pi9na8oRjePrdlVWVlnt0DuOEG+Na3JmS5Xr5+FiIiw6U5lIgM2wMPwEc/alSYz5tn7FB81FH5HpWIyIQY0dFhMpnkIx/5CA6HI31dKBTiU5/6VNaWxqtXrx6/EYoUoFzBEBg9lYbd7HuUj7uxqYt4PElVsQNTMkm7P0Ii2RtMtQdYUl/K0rrScX/slFTfqYFCoCKnFV591Ti7t2MHuN3w61/D+9+ffg7jWdGUr5+FTB2qopNCoDmUiAwpHoebb4bvfMe4fOaZ8Mc/QmVlfsclIjKBRjQrv+KKK/pd98EPfnDcBiOSqZAPJJu6gjl3qIMDzb4H2uEuZaTPL1UN9Oa+Hna1B4Dsfk6p5XM5ezqNs8H6TgHQ2gq7dhn9ox5+GI48Mus5jGdF03j8LGT6UhWdFArNoURkSMkkrFtn/PsLX4BvfhPUc05EprkRHeHfe++9EzUOkSyFfiDpHyL4GSoYGunzy6wGslsObJrZ4g3z/NY2jp1XQasvAgx/p72xGqjvFABnnGE0Nz/1VKioACauommsPwuZvlRFJ4VEcygRGZLVaizde/ZZo+JcROQgYB76S0Qm11AHkr5Q/kMGzxDBz2DB0GieX2Y1ULHThtOWHUz1FkmNeKe9cdPWBhddBG+/feC6iy5KB1KQu6IpEkvQ7gvz5r4eNjZ1jepnO5afhUxvw6miExERyas//AGuv/7A5aoqBVIiclBRKCUFZyocSM4sc1HmtuW8bahgaDTPL7MayG41M7+6KCuYCscSo95pb8xeeQVWroTVq+FDHzJKz3PoW9HUE4qyaV83W/b72NUe4I29PTy0rpE9nYERPfxYfhYyvamKTkREClYsBtddB5dfDt/7Hjz6aL5HJCKSFwqlpOBMhQPJVLPvvmHIcIKh0Ty/VDVQqrIoEI7RUO5mfpWHuZVuDq8v4eIVDZO/tPH3v4cTTzT6Ry1YAPfcAyZTzi/NrGiKxBJsb/URiibS1zms5lFVw43lZyHTm6roRESkILW2wllnwfe/b1z+4hfhXe/K75hERPJEM3IpOIVyIDlUI/Ihm30PYDTPb2aZC6sFNjR2ZwU5TpuZlXPLWTqzbHLDl2gUbrwR7rzTuHz22XD//VBePuC3pCqaugJRvKFo1vOoLXaQirJG05x8tD8Lmd4y33N9qYpORETyYv16Y3ne7t3g8cBvfmO0PBAROUjpiE0KTiEcSA63Efmgzb4HMNrnN7vCw5ZmH6FoGAATUFfiZFF1EW/u7abEZSMSTxJNJCZ2t8LOTnjve+Gpp4zLX/4y3HrrkLvDpCqaHtvUwr7uA0sUM3cQTBlNNdxofhYyvWW+53L9Liu0FBGRSfXHP8JHPwqhECxaZOxQfPjh+R6ViEheaUYuBSffB5ITvWPXaJ5fU1eQnW1+jp1XQRJj+Vulx87W/T7uf6mRUxdXs2F3F92hKPOriyhx2vDYLemv94xnSOXxQCQCRUXw29+OqBlnqqJpY1MXb+ztwWE1YwKae0IkMlpRaVmVjBdV0YmISMEoLjYCqXPPNVoglJXle0QiInmnWbkUpHweSA6nEflYK3JG+vz8kRiJJLT6IgBUF9l54q39tHjDHFJTxPNb2/GFjeqiHa0+Zld42NDo5/Wmbo6dV0GrL5Kz0mtEkkmjX5TdDv/930bF1JIlI76bIqeVpTPLeKvZS1vv88mkZVUy3lRFJyIieZOaPwGcdx48+SS8851gVmtfERFQo3MZhC8UY3Ozl/W7O3m72Tui5tPj8dipfk6eSa5smKxG66kD5WWzy1lcVzzo8+vbhyoJtHiNZXwep5X93gNL30wmE2819xCKJmjxhkkVII2miThg9I+65hqjh1TKjBmjCqRS1JxcREREpr2XX4bly2HnzgPXrVqlQEpEJIOO/CSn4fZUmi6PnRmChaNxqovstPsjWUvKUvKxtKxvH6pwRpPwZDKJw5rdz8kfjlHkNAKfcOzA14640qulBS6+GJ591jjL95GPjFvvAy2rEhERkWnrvvvgU5+CcBi+8AV44IF8j0hEpCDp6E/6meieSoX22H1DsEgsQZsvzMo55f16HeVraVnfPlQOm3GGzWkzU13sxGI2pb82Fk9izrjssJrxAmYTVHrstPQMvKNglpdeMhqaNzVBSQn87nfj3oxTy6pERERkWolE4Npr4Sc/MS5fcAH88pf5HZOISAFTKCX9TEZPpUJ57FwhmN1qpshpZe2uTo6aVZru45TvpWWZlUWhaJxWb5hoPInTaqa22JFezue0mXFEjcqp2mIHJoxAqq7EyfNb23ir2UtlkSPrOfWrQPv1r+Hqq42J1aGHwpo1sHjxmMafWY02obsDioiIiORDc7NRYf7cc8bl224zdinWcj0RkQHpiFD6mayeSoXw2AOFYCVOG06rhQU1RRw+01IwS8syK4sqi+w8tqmFdn+EkxZW8fzWNrpDUerLXUTiCUqdNk5aWEVzT4hKjz19+8yMACpnBdr118P3vmf8+8IL4Te/MSqlxiCfy0FFREREJtzmzXDaabB3rzFvuv9+o7G5iIgMSqGU9NO3qXZfE9lTabIfe7AQzG4147RZWDa7fFwfc7xkVk4FIzGOaigjGk8SSySIJxI0dgTZ3REgkTQao3eHosyvLsJuzT5b168C7bjjjP5RX/safPGLYz67l8/loCIiIiKTYvZsYyOY0lKjwvyQQ/I9IhGRKUFHgtJP36bamSa6p9JkP3Y+A7jxMFhPpkPrYukm4h3+CEtmlPYLpFKCPT5I3c/FF8ORR455uV5KPpeDioiIiEyYSASsVuMEnssFf/kLFBcb/4mIyLBogbP0k2qqXea2ZV0/GT2VJvuxUyFYLmMJwXyhGJubvazf3cnbzV58oYlb8jiQVGC1bHY5s8rdAwZSRzzyIIefdpzR0DxlnAIpyO9yUBEREZEJsW8fnHqq0Tcqpb5egZSIyAgVdhmI5E3m0rBAJDapPZUm87H77mqXMpYQrBD7J+WqQLNEIqy6+xsc+YixRXHk7p+x45obx70R+VSvRhMRERHJ8sIL8L73GcHUm2/CNddAVVW+RyUiMiXpaFAGNNjSsPE00K5sk7WkazxDsELtn9Q3fPO0t3De1z5L/ZsbSJpM9Hz5Fla/60N0bdyX/p7xCtLyuRxUREREZFz9/OdGCBWNwuGHG/2jFEiJiIyaQinJq0KpKhqvEKyQ+yelwreOfzzJjM9+CFtrC8myMkK/+T2rK5dMWJA2EdVoIiIiIpMqHDbCqF/+0rj8vvfBvfdCUVF+xyUiMsXpaFDyplCrisai0PsnFT3zBEXvO884u3fEEZjWrGG3pyarQirTeAVp+VwOKiIiIjImyST8x3/AU08ZOxTffjvceKPxbxERGRMdEcqIDLTUbjQKuapotAq+f9KJJxpbFB9+ONxzDxQV4d/dOei3jFeQNplLMkVERETGjckEV1wBr74Kf/wjnHVWvkckIjJtKJSSYRvvpXYTVVU0nsHZSO+/IPsntbYavQ5MJqPE/OmnoaIifXav4IM0ERERkcmWTEJbG1RXG5c/8hE47zz1jxIRGWc62pRhmYildhMRhkx0j6qh7r/g+ic9+6zR8+C664wyc4DKyqwvKcggTURERCRfQiH49Kfhn/+EdesOBFMKpERExp053wOQqSHXUrtILEG7L8yb+3rY2NSFLzSyyqZUGJLLaMKQoYKzkY5vtPef6p90ztIZrFpczTlLZ3DxioZJbdxOMgk/+Qmcdhrs3w8PPGD0kcohFaT1/VmoEbmIiIgcdBob4Z3vNJqYNzXBk0/me0QiItOajjZlWPoutesJRdne6iMUTQDwxt4e3mr2jqgiabyriia6R9VI7j+v/ZNCIbj6arjvPuPyBz5g7BRjyx0AghqRi4iIiPDMM3DxxcYJvYoK46TeGWfke1QiItOajjhlWDKX2kViiaxACsBhNdPmi4x4Kd94hiETvfNdoe+sBxhn9977Xli7Fsxm+M534POfH9buMGpELiIiIgelZBLuuguuvRZiMTj6aFi9GubNy/fIRESmPYVSMiyZfYe8oWhWIFVb7CAVeYymImm8wpCJbthd8A3BAwE44QSj1Lyy0ji7d/rp+R2TiIiISKG76y747GeNf192mVFh7p7EtgsiIgcx9ZSSIaV2mzu8vgSSSWKJZDqEqi12cNLCKtr9kfTX56tiaLx7VE32/Y+Z2w1f/CIsW2ZUSimQEhERERnahz4Ehx0G3/8+/P73CqRERCaRKqVkUJm7zZlNUF3soKrYwdENZcQSCUhCc0+IRPLA9+SrYmiid74ruJ31AIJBaG4+UF5+9dXwsY+BwzGuD5MKJv2RGEV2K/XqNyUiIiJT2aZNRhBlMkFZGbzyyrjPn0REZGg6qpQB9d1tLpGEVl+ESCxBmy/MUbNKafVFsr4n3xVDE92wu6Aagu/cafSP6umBl1+G8nJjYjXOE6rMYDIlFcRN6o6CIiIiImOVTMKdd8INNxj//8//NK5XICUikhcKpWRAA+02Z7eaKXJacdiyV3/mtWIow0Q37C6IhuCPPw7vfz+0t0N1NWzfDitWjPvD9A0mU7oC0RE3tRcRERHJq0AArroK/vAH4/KGDUZINYwNYUREZGLoaFIGNNhucyVOG3MqPBw5qzz/FUMHk2TS6Hdw442QSBhB1OrVMHv2hDzcQMEkjK6pvYiIiEhe7NhhVJhv2AAWC/zgB0aVlAIpEZG8ymuj82eeeYbzzz+f+vp6TCYTa9asybp99erVnHXWWVRVVWEymdiwYUO/+1i1ahUmkynrv0svvXRynsA0N9Ruc6VuO4vrilk2u5zFdcUKpCZaIACXXw7XX28EUldcAc8+O2GBFAweTEL+mtqLiBzsNIcSGYF//hNWrjQCqepqo+L8mmsUSImIFIC8hlJ+v5+jjjqKu+66a8DbTzrpJL797W8Pej9XXXUV+/btS//385//fCKGO+X5QjE2N3tZv7uTt5u9+EKDBwoFv9vcwebGG+GPfwSr1di6+N57wTWxP4Ohgsl8NbUXETnYaQ4lMkx79sC550JHBxxzDKxbB6ecku9RiYhIr7weUZ599tmcffbZA97+oQ99CICdO3cOej9ut5u6urrxHNq0M5pm1YW429xBvQvcrbcaDc2/+104+eRJechUMJlrCZ+CSRGR/NEcSmSYZs2Cb37T2G3v7rvB6cz3iEREJENeK6XGy/33309VVRWHH344119/PV6vN99DKihDNaserGIqtdvcOUtnsGpxNecsncHFKxrysuvans4AD61r5JGN+3h6cyt/37iPh9Y1sqczMOljmRTJJPzjHwcuV1XBv/41aYEUHAgm+1bMFUpTexERGRvNoWRa2r4dtmw5cPm66+CeexRIiYgUoCl/RHn55Zczb9486urqeP3117n55pt59dVXeeyxxwb8nnA4TDgcTl/u6emZjKHmzVibVRfCbnMH3S5wfj989KPw4IPGJOqjHzWuz0Pvg1Qw2dQVVFN7EZFpZKRzqINt/iRT1P/9H3zgA1BXB//+NxQXq3eUiEgBm/JHlVdddVX630cccQSLFi1i5cqVrF+/nuXLl+f8nttvv53bbrttsoaYd9OhWfVBtQvctm3wnvfAxo1gs0E8nu8RFUQwKSIi42ukc6iDbf4kU0wyCXfcAV/8orEhzCGHGCf5ijV/EREpZNNi+V6m5cuXY7PZ2JJZstvHzTffTHd3d/q/xsbGSRzh5JtqzapzNWQfKjibCsHasPzv/xq7w2zcaJzhe/JJyDhoEBERmShDzaEOtvmTTCE+H1xyCdx0kxFIffzj8PTTxlxKREQKWmGlEePgjTfeIBqNMmPGjAG/xuFw4HA4JnFU+TWVmlUP1JB9WUMZZhMkkrm/r9CCtRFLJuH22+HLXzb+fcIJ8N//DfX1+R6ZiIgcJIaaQx1s8yeZIrZsMSrM33jDqDC/6y74xCfyPSoRERmmvB7J+3w+tm7dmr68Y8cONmzYQEVFBbNnz6ajo4Pdu3ezd+9eADZv3gxAXV0ddXV1bNu2jfvvv59zzjmHqqoqNm3axHXXXceyZcs46aST8vKcClEh7qKXy2B9o17a0cHsCjc72/s3NS+0YG1UXn4ZvvQl49+f/CT88Iegib+IiAxAcyiRXp//vBFIzZgBf/6zcWJPRESmDFMymRyg9mTiPfXUU5x66qn9rr/iiiu47777uO+++7jyyiv73X7LLbdw66230tjYyAc/+EFef/11fD4fDQ0NnHvuudxyyy1UVFQMexw9PT2UlpbS3d1NSUnJmJ5TIfOFYiNqVp36en8kRpHdSv0EN7fe3OzlkY37Brz95EWVbGzqyRms5WM3wHF3++3GDntariciMqGmw+d+IcyhpsPrKNPAvn1wzTXw4x8bwZSIiEyIifrcz2soVSg0qepvoGV0ExkArd/dydObWwe8fdXiahbVFE+fXeAeeQSWLIG5c/M9EhGRg4o+98eHXkfJC68X1qyBD30o3yMRETmoTNTn/rRrdC5jN9gyusc2teALTUxT8eE0ZE/tArdsdjmL64qnZiCVSMDXvw7nnWf0QAj0X5IoIiIiIn28/TYcdxx8+MPwxz/mezQiIjIOFEpJP01dwZxN0cEIppq6ghPyuKmG7LlMi75RAD09cNFF8NWvGg3NTzwRrFMwWBMRERGZTH/7GxxzDLz5JsycCfPn53tEIiIyDhRKTWG+UIzNzV7W7+7k7WbvuFUw+SOD309giNtHK9WQvW8wVWgN2Udt82bj7N6aNWC3wz33wE9+YvxbRERERPpLJOBrX4PzzzdO7r3jHbB2rTGnEhGRKW+KH+UfvCay59NwltFNlFnlbi5e0ZCzb9RkN14fV3/5i9H7oKfHOLu3ejUce2y+RyUiIiJSuHp6jKV6//M/xuXPfAa+/32d0BMRmUamyBG9ZBqq59PFKxrGFNakltHlWsI3GcvoUn2jMuWj8fq4SfWQ6umBk0+Ghx6C2tp8j0pERESksD39tBFIORzw059Cjh0lRURkatPyvSloons+Fdoyunw1Xh83ZjP8+c9w003w+OMKpERERESG4/zz4b/+C559VoGUiMg0pUqpKWgyej4Ntoxusg0nhOtbWZV3b74JTzxhlJkDzJ4Nt9+e3zGJiIiIFLJEAr7zHfjgB412BwA33pjfMYmIyIRSKDUFTVbPp1zL6PIhX43XR23NGqN/lM8Hc+fCuefme0QiIiIiha2ry5g//e1vxlzquefAYsn3qEREZIJp+d4UlOr5lMtk9HyabPlsvD4iiQR85SvwnvcYgdQppxhbF4uIiIjIwDZtMjaA+dvfwOmEq69WICUicpBQKDUFFVrPp4k2JUK4ri6j78E3vmFc/tzn4LHHoKYmn6MSERERKWyrV8Nxx8GWLUa7g+eeM3bcExGRg8L0Si8OIoXU82mipUK4gXbfy/tzfv11ozpq61bj7N4vf2n0QhARERGR3OJx+OpX4VvfMi6feio88ABUV+d3XCIiMqmmX4JxECmUnk+ToaBDuPXrjUBqzhx4+GFYtizfIxIREREpbKEQ/OUvxr+vvdbYZc9aAPM6ERGZVPrLL1NGwYZwH/4w+P1w8cVQVZXv0YiIiIgUPo/HOJn38svwgQ/kezQiIpIn6iklMlIdHfDRj8L+/Qeuu/pqBVIiIiIig3noIbjzzgOXFy5UICUicpBTpdQE8oViNHUF8UdiFNmt1BfKcjMZvddeM/pHbd9uhFJ/+1u+RyQiIiJS2OJx+NKXjCV6ZjMcf7zxn4iIHPSUkEyQPZ2BARtzzyp353FkMmoPPGBUSAUCMG8efPOb+R6RiIiISGHr6DCqof7xD+PyddfBypX5HZOIiBQMLd+bAL5QrF8gBdAViPLYphZ8oVieRiajEovBjTfCpZcagdSZZxr9D446Kt8jExERESlcr75qBFD/+Ae43fCnP8Edd6ihuYiIpCmUmgBNXcF+gVRKVyBKU1dwkkcko9bRAWefDd/5jnH5C1+ARx+Fysr8jktERESkkD3wAJxwAuzYAfPnw4svwvvfn+9RiYhIgdFpigngjwxeCRUY4nYpIGYz7NplnN2791645JJ8j0hERESk8HV0QDAIZ50Ff/gDVFTke0QiIlKAFEpNAI998JfVPcTtUkDKymDNGqNB59Kl+R6NiIiIyNTwqU9BTQ1ceCFYLPkejYiIFCgt35sAM8tclLltOW8rc9uYWeaa5BHJsMViRgPOH//4wHVLliiQEhERERnMK6/AGWdAZ6dx2WSCiy5SICUiIoNSKDUBipxWzlxS2y+YSu2+V+RUpVRBam01Ssy//30jmNq1K98jEhERESl8998PJ54Ijz8ON92U79GIiMgUonRkgswqd3PxigaauoIEIjHcdiszy1wHXSDlC8Vo6grij8QoslupL9TXYP16eM97YPdu8HjgN7+BOXPyPSoRERGRwhWLwQ03wJ13GpfPPhu+/e28DklERKaWAkwHpo8ip5XFdcX5Hsa4GE24tKczwGObWrJ2IkxVi80qd0/0kIfvd7+DT3wCQiFYtAgefhgOPzzfoxIREREpXK2txgYwTz1lXP7yl+HWW7VcT0RERkShlAxpNOGSLxTr9z0AXYEoj21q4eIVDYVRMXX99fC97xn/Pvdc+P3vjebmIiIiIpLbG28YVVGNjVBUBL/9rVFxLiIiMkLqKSWDGipc8oViOb+vqSvY73syv7epKzjuYx2Vujrj/1/5CvzlLwqkRERERIZSWwtmMxxyCPz73wqkRERk1AqgVEUK2XDCpVxLFP2R3GFVSmCI2ydUPH6gtPy66+Dkk+G44/I3HhEREZFClzl/qqqC//1fmDEDSkvzOy4REZnSVCklgxptuOSxD553uoe4fcLcdx8ceyx4vcZlk0mBlIiI/hijTwAAI9NJREFUiMhgWlrg1FPh178+cN2hhyqQEhGRMVMoJYMabbg0s8xFmduW87Yyt42ZZa4xj21EolH4z/+EK680dtr72c8m9/FFREREpqKXXoIVK+DZZ+Gmm8Dny/eIRERkGlEoJYMabbhU5LRy5pLaft+bapA+qU3OW1rg9NPhJz8xLt92m7FsT0REREQGdu+98M53QlOTURn1zDNGY3MREZFxop5SMqhUuDTQ7nuDhUuzyt1cvKKBpq4ggUgMt93KzDLX5AZS//43XHSRMZkqKTF21zv//Ml7fBEREZGpJhKBz38e7r7buPzudxs77JWU5HdcIiIy7SiUkiGNJVwqclpzNkKfFH/9K7zvfcbE6tBDYc0aWLw4P2MRERERmQpiMTjzTKMqymQyKsy/9CVjtz0REZFxplBKhiWv4dJorVwJlZVGI/Pf/EZn90RERESGYrUabQ82bID774fzzsv3iEREZBpTKCXTi893oNfBjBnwr3/BrFk6uyciIiIymMw51Je/bGwO09CQ3zGJiMi0pyN1mT5eeAEOOQT+9KcD182erUBKREREZCDhMHzyk3DyyRAIGNeZzQqkRERkUuhoXaaHn/8cVq2Cffvg+9+HRCLfIxIREREpbHv3GvOnX/wCXn0V/vnPfI9IREQOMgqlZGoLh+ETn4BPfQqiUaOx+RNPqDpKREREZDDPPw8rVhitDsrK4O9/hwsuyPeoRETkIKMjd5m6mprglFPgl780dof59rfhwQcP9EMQERERkWzJJPzsZ3DqqdDcDEccAWvXwtln53tkIiJyEFKjc5maOjuN3fWam6G8HP74RzjrrHyPSkRERKSw3XEH3HST8e9LLoF77tEJPRERyRtVSsnUVF4OV1wBS5fCyy8rkBIREREZjg98AGpr4b/+y9gcRoGUiIjkkSqlZOoIhcDrhepq4/I3vwlf+Qp4PPkdl4iIiEgha2w8sJve7Nnw9ttQUpLfMYmIiKBKKZkqGhuNrYovuMBobg5gsSiQEhERERlIMgl33QULFsD//M+B6xVIiYhIgVAoJYXvmWeM/lFr1xpn9t5+O98jEhERESlsoRB89KNwzTXGDsV//3u+RyQiItKPQikpXMkk/PjHcPrpsH8/HH20EUwtXZrvkYmIiIgUrlSF+X33gdkM3/se/Pzn+R6ViIhIP3kNpZ555hnOP/986uvrMZlMrFmzJuv21atXc9ZZZ1FVVYXJZGLDhg397iMcDnPNNddQVVWFx+PhggsuYM+ePZPzBGTiBIPwkY/AZz8LsRhcdhk8/zzMm5fvkYmIiOSd5lAyoKefhhUrjBN5lZXwj3/AtdeCyZTvkYmIiPST11DK7/dz1FFHcddddw14+0knncS3v/3tAe/jc5/7HA8//DB/+tOfeO655/D5fJx33nnE4/GJGrZMhk9+En77W6Nv1Pe/D7//Pbjd+R6ViIhIQdAcSnLavNmoMG9tPVBhfvrp+R6ViIjIgPK6+97ZZ5/N2WefPeDtH/rQhwDYuXNnztu7u7u55557+N3vfscZZ5wBwO9//3saGhr45z//yVlnnTXuY5ZJ8tWvwosvGqXmp52W79GIiIgUFM2hJKfFi+Hqq6GzE37xC53QExGRgjele0qtW7eOaDTKu971rvR19fX1HHHEEbzwwgsDfl84HKanpyfrP8mzZNI4m5eycCG8+aYCKRERkQkwmjmU5k8FatcuozIq5c474Xe/UyAlIiJTwpQOpZqbm7Hb7ZSXl2ddX1tbS3Nz84Dfd/vtt1NaWpr+r6GhYaKHKoMJBOBDH4LjjjP6HqRY81rIJyIiMm2NZg6l+VMBeuIJo3/UJZcYPTjBaH2g/lEiIjJFTOlQaiDJZBLTIB/GN998M93d3en/GhsbJ3F0kmXnTjjpJLj/fmMCNcAyA5Hx4AvF2NzsZf3uTt5u9uILxfI9JBGRgjLYHErzpwKSTBo9N888E9rboafHWLInIiIyxUzpUpS6ujoikQidnZ1ZZ/r279/PiSeeOOD3ORwOHA7HZAxRBvPPf8L73w8dHVBdDQ8+CKtW5XtUMk3t6Qzw2KYWugLR9HVlbhtnLqllVrmWOIjIwWU0cyjNnwpEIAAf/zj88Y/G5Q9/GH72M3C58jsuERGRUZjSlVIrVqzAZrPx2GOPpa/bt28fr7/++qChlORZMgnf/S6cdZYRSK1cCevWKZCSCeMLxfoFUgBdgSiPbWpRxZSIHHQ0h5qiduyAE080AimrFX78Y7jvPgVSIiIyZeW1Usrn87F169b05R07drBhwwYqKiqYPXs2HR0d7N69m7179wKwefNmwDi7V1dXR2lpKR/72Me47rrrqKyspKKiguuvv56lS5emd5KRAvSPf8ANNxj//shH4Kc/Baczr0OS6a2pK9gvkErpCkRp6gqyuK54kkclIjJ6mkMdhJJJuOwyePVVqKmBhx6Cd74z36MSEREZk7xWSq1du5Zly5axbNkyAK699lqWLVvGV7/6VQD+8pe/sGzZMs4991wALr30UpYtW8bPfvaz9H384Ac/4MILL+SSSy7hpJNOwu1289e//hWLxTL5T0iG513vgk9+Eu66C379awVSMuH8kcEroQJD3C4iUmg0hzoImUxwzz3GzsRr1yqQEhGRacGUTCaT+R5EvvX09FBaWkp3dzclJSX5Hs709MQTsGwZ9NnlR2QybG728sjGfQPefs7SGaqUEjmI6HN/fOh1nAR+Pzz7LPzHf+R7JCIicpCbqM/9Kd1TSqaAZBL+67+M3WEuvxzi8XyPSA5CM8tclLltOW8rc9uYWaZeHCIiUmC2bYMTToDzz4dnnsn3aERERCaEQimZOD4fXHIJ3HQTJBJQX69QSvKiyGnlzCW1/YKp1O57Rc4pvRGpiIhMN//7v8ZGMBs3QmWl0dRcRERkGtInnEyMrVvhwgvhjTfAZjN2h/nEJ4x+CCJ5MKvczcUrGmjqChKIxHDbrcwscymQEhGRwpFMwre/DV/6kvHv44+H//5vmDkz3yMTERGZEDoak/H36KPG7jBdXVBXB3/+s7F9sUieFTmt6h0lIiKFyeuFK6805k0AV11lnNRzOPI7LhERkQmkUErGVzgMn/mMEUidcIJxdq++Pt+jEhERESlsDzxgBFI2m7FD8Sc+ke8RiYiITDiFUjK+HA5jQvXrX8N3v6uzeyIiIiLD8bGPweuvw/vfb5zYExEROQio0bmM3dtvHyg1B1i2TOXmIiIiIoNJJOAnPzGW7YHRd/POOxVIiYjIQUWhlIzN3/4Gxxxj9JB66aV8j0ZERESk8PX0wEUXwX/+J1xxhdHUXERE5CCkUEpGJ5GAr30Nzj/fmFgdcwzMnp3vUYmIiIgUts2b4bjjYM0asNvh3HO1O7GIiBy01FNKRq6nBz78Yfif/zEuf/rT8IMfGBMrEREREcntL3+BD33ImEvNnGm0PzjuuHyPSkREJG9UKSUj89ZbcOyxRiBlt8M99xj9EBRIiYiIiOSWSMBtt8G7320EUu94B6xdq0BKREQOegqlZGRWrzbKzmfOhGefhY9+NN8jEhERESlsHR3w858b//7P/4THH4e6uvyOSUREpABo+Z6MzE03QThsLNmrrc33aEREREQKX1WVsVRv82b4yEfyPRoREZGCoUopGVx3N1x/PQQCxmWz2Sg/VyAlIiIiMrA1a+Chhw5cPuEEBVIiIiJ9qFJKBrZpE1x4IWzZAp2dRv8oERERERlYIgG33ALf+Aa4XLB0KRx6aL5HJSIiUpAUSkluq1fDFVeAzwcNDcZyPREREREZWFcXXH45PPKIcfkTn4AFC/I6JBERkUKm5XuSLR6HL38ZLrrICKRWrYJ162DFinyPTERERKRwvfEGHHOMEUg5nfDb38Kdd4LNlu+RiYiIFCxVSskBnZ3G2b1HHzUuf/7zcMcdYNXbRERERGRAf/6zUWHu98Ps2fDww7B8eb5HJSIiUvCUNsgBXi+8/LLR/+CXvzQCKhEREREZ3EsvGYHUaafBn/4E1dX5HpGIiMiUoFBKDpg92+glVVQEy5blezQiIiIiU8O3vgXz58PHPqYKcxERkRFQT6mDWTwON90E//M/B647+WQFUiIiIiKDee01uOwyCIeNyxYLfPKTCqRERERGSJ+cB6uODvjAB+Af/4DiYti2TaXmIiIiIkN54AH46EchEIC5c40qKRERERkVVUodjF59FVauNAIplwt+8QsFUiIiIiKDicXgxhvh0kuNQOrMM+G66/I9KhERkSlNodTB5k9/ghNOgB07YN48ePFFY3IlIiIiIrm1t8PZZ8N3vmNcvvFGeOQRqKzM77hERESmOC3fO1gkk8YE6rvfNS6/613wxz9CRUV+xyUiIiJSyDZuhAsugJ07we2Ge++FSy7J96hERESmBVVKHSxMJgiFjH/fdJNxdk+BlIiIiMjgXC7o6jJ21/vXvxRIiYiIjCNVSk13yaQRSAF8//vGmb4zz8zvmEREREQKWeb8aeFCePRROOQQndATEREZZ6qUms7uvx/OOw+iUeOyzaZASkRERGQwra1w1lnGhjApxx+vQEpERGQCKJSajmIx+Pzn4YMfNJbp/frX+R6RiIiISOFbv97Yofixx+CqqyASyfeIREREpjUt35tuWluNXgdPPWVc/tKX4OMfz+uQRERERAre734Hn/iE0YNz4UJYswbs9nyPSkREZFpTKDWdrFsH73kPNDZCURH85jfw3vfme1QiIiIihSsahRtugB/+0Lh8zjlGC4SysrwOS0RE5GCgUGq6WL0aLrsMwmFYtMg4u7dkSb5HJSIiIlK4gkE4+2x4+mnj8le+ArfeCmZ1uBAREZkM+sSdLhYvNhqZn3cevPSSAikRERGRoTidMH++UWG+ejV87WsKpERERCaRKqWmsmjUCKIADj8cXnzRCKM0mRIREREZWGoOZTLB3XfDTTfBIYfke1QiIiIHHaUXU9XLLxvVUc88c+C6I45QICUiIiIykGgUrrkG3v1uiMeN65xOBVIiIiJ5ogRjKrr3Xjj5ZNixw+h9kEzme0QiIiIiha2lBU4/He66Cx599EAfKREREckbhVJTSSQCn/kMfPSjRkPzCy6Av/7VKD0XERERkdz+/W9YsQKefRZKSuB//gdOOy3foxIRETnoKZSaKpqbjcnT3Xcbl2+7DR5+2JhYiYiIiEhu99wD73wnNDXBoYcaG8JccEG+RyUiIiKo0fnU0NQExx4Le/caIdT99xu77ImIiIjIwG67DW691fj3hRfCb36jE3oiIiIFRJVSU0F9vXGG77DDjAbnCqREREREhnb++eB2w9e/Dn/+swIpERGRAqNKqUIVDkMsBh6P0TPqV7+CRAKKi/M9MhEREZHC1dkJ5eXGv5cvh23boK4uv2MSERGRnFQpVYj27oVTT4UPf/jAznoejwIpERERkcH84hcwZ47RNypFgZSIiEjBUihVaF54wdgd5sUX4fHHYevWfI9IREREpLCFw/CJT8AnPwleL/z2t/kekYiIiAxDXkOpZ555hvPPP5/6+npMJhNr1qzJuj2ZTHLrrbdSX1+Py+Vi1apVvPHGG1lfs2rVKkwmU9Z/l1566SQ+i3GSTMLPfw6rVhk77R1+OKxdC4sW5XtkIiIiUmA0h8qwd68xf/rlL42WB9/6Fvz4x/kelYiIiAxDXkMpv9/PUUcdxV133ZXz9jvuuIPvf//73HXXXbz88svU1dVx5pln4vV6s77uqquuYt++fen/fv7zn0/G8MdPKARXXQWf+hREo/C+98G//gULF+Z7ZCIiIlKANIfq9dxzRt+of/0LysrgkUfg5puNcEpEREQKXl4bnZ999tmcffbZOW9LJpPceeedfOlLX+K9730vAL/5zW+ora3lD3/4A5/85CfTX+t2u6mbyv0CPvABWLMGzGa4/Xa44QZNpkRERGRAmkNh7Eh86qnGxjBLl8LDD8OCBfkelYiIiIxAwfaU2rFjB83NzbzrXe9KX+dwODjllFN44YUXsr72/vvvp6qqisMPP5zrr7++31nAgnfjjUYTzkcfNf6tQEpERERG6aCZQ61YAeeeC5dcYvTiVCAlIiIy5eS1Umowzc3NANTW1mZdX1tby65du9KXL7/8cubNm0ddXR2vv/46N998M6+++iqPPfbYgPcdDocJh8Ppyz09PeM8+iEkk0YD81S/qBNOgO3bweWa3HGIiIjItDNRc6i8z58AmpqgvBzcbqPC/E9/AodDJ/RERESmqIINpVJMfSYZyWQy67qrrroq/e8jjjiCRYsWsXLlStavX8/y5ctz3uftt9/ObbfdNjEDHkooBFdfDQ88YJzVO+oo43oFUiIiIjKOxnsOldf5E8Azz8DFF8OZZ8LvfmcEUU5n/sYjIiIiY1awy/dS/Q1SZ/tS9u/f3+/MX6bly5djs9nYsmXLgF9z8803093dnf6vsbFxfAY9lMZGOPlkuO8+Y+vitWsn53FFRETkoDFRc6i8zZ+SSbjrLjj9dNi/H15/Hbq7J+exRUREZEIVbCiVKifPLCGPRCI8/fTTnHjiiQN+3xtvvEE0GmXGjBkDfo3D4aCkpCTrvwn39NNG74O1a6GyEv7v/+BjH5v4xxUREZGDykTNofIyfwoG4cor4ZprjIbmH/gAvPCCsdOeiIiITHl5Xb7n8/nYunVr+vKOHTvYsGEDFRUVzJ49m8997nN861vfYtGiRSxatIhvfetbuN1uLrvsMgC2bdvG/fffzznnnENVVRWbNm3iuuuuY9myZZx00kn5elrZkkn48Y/h2mshHoejjzZ2h5k7N98jExERkSnqoJhD7d4N730vrFtn9I/6znfg859X/ygREZFpJK+h1Nq1azn11FPTl6+99loArrjiCu677z5uvPFGgsEgn/70p+ns7OS4447jH//4B8XFxQDY7XYef/xxfvjDH+Lz+WhoaODcc8/llltuwWKx5OU59fPgg/D//p/x78svh1/8wmjOKSIiIjJK034OlUjA2WfDpk1GhfmDD8Jpp+V7VCIiIjLOTMlkMpnvQeRbT08PpaWldHd3j38pejwOF1xgNOX8f/9PZ/dERETybEI/9w8iE/46PvUUfOELRiA1Z87437+IiIgM20R97hf87ntTnsUCf/2rUXYuIiIiIsOzapWxU7HmUCIiItOWPuUngyZTIiIiIiOnOZSIiMi0pk96ERERERERERGZdAqlRERERERERERk0imUEhERERERERGRSadQSkREREREREREJp1CKRERERERERERmXQKpUREREREREREZNIplBIRERERERERkUmnUEpERERERERERCadQikREREREREREZl0CqVERERERERERGTSKZQSEREREREREZFJp1BKREREREREREQmnUIpERERERERERGZdAqlRERERERERERk0imUEhERERERERGRSWfN9wAKQTKZBKCnpyfPIxEREZGJlvq8T33+y+ho/iQiInLwmKj5k0IpwOv1AtDQ0JDnkYiIiMhk8Xq9lJaW5nsYU5bmTyIiIgef8Z4/mZI6TUgikWDv3r0UFxdjMpkm7XF7enpoaGigsbGRkpKSSXvcQqXXI5tej/70mmTT65FNr0d/ek2ypV6P3bt3YzKZqK+vx2xWJ4PR0vypcOg1yabXI5tej/70mmTT65FNr0e2iZ4/qVIKMJvNzJo1K2+PX1JSojd7Br0e2fR69KfXJJtej2x6PfrTa5KttLRUr8c40Pyp8Og1yabXI5tej/70mmTT65FNr0e2iZo/6fSgiIiIiIiIiIhMOoVSIiIiIiIiIiIy6RRK5ZHD4eCWW27B4XDkeygFQa9HNr0e/ek1yabXI5tej/70mmTT6zE96OfYn16TbHo9sun16E+vSTa9Htn0emSb6NdDjc5FRERERERERGTSqVJKREREREREREQmnUIpERERERERERGZdAqlRERERERERERk0imUGmfPPPMM559/PvX19ZhMJtasWZN1ezKZ5NZbb6W+vh6Xy8WqVat44403sr5m1apVmEymrP8uvfTSSXwW42eo12P16tWcddZZVFVVYTKZ2LBhQ7/7CIfDXHPNNVRVVeHxeLjgggvYs2fP5DyBCTAer8nB8h6JRqN84QtfYOnSpXg8Hurr6/nwhz/M3r17s+5jOr1HxuP1mE7vDxj6d+bWW2/l0EMP/f/t3X9MVXUcxvHnKj8yFzd+KBdsQkNkDQs1/qjcxBSdI8aWkTGT2eZctRXZgFZ/NMtNZ24lbcSyBrYam9WmztG0IXMGc4ETr0ltZo1gFgw0MkCNX9/+aN48XhRRONx7z/u13a17zuFwzqcn9/S9B9HMmTMVHR2t7OxsNTY2Wo5xSkak25tHKGVkrHlc78UXX5TL5VJZWZlleyjlI5jRoazoUFb0J390KCs6lBX9yYr+5C9QOhSLUhOsv79fGRkZKi8vH3X/zp079cEHH6i8vFwnTpyQx+PRypUr1dvbazlu06ZN6ujo8L12795tx+VPuLHm0d/fryVLlmjHjh03PcfmzZu1f/9+7d27Vw0NDerr61Nubq6Gh4cn67In1UTMRHJGRi5fvqzm5ma9/fbbam5u1r59+/Tzzz8rLy/PclwoZWQi5iGFTj6ksf+bmT9/vsrLy3XmzBk1NDQoOTlZq1atUnd3t+8Yp2REur15SKGTkbHmcc2BAwfU2NioxMREv32hlI9gRoeyokNZ0Z/80aGs6FBW9Ccr+pO/gOlQBpNGktm/f7/v/cjIiPF4PGbHjh2+bVevXjVut9t8/PHHvm1ZWVnmtddes/FK7XHjPK7X2tpqJJlTp05Ztv/1118mPDzc7N2717ft999/N9OmTTOHDx+exKu1x53MxBhnZuSapqYmI8m0tbUZY0I7I3cyD2NCNx/G3N5MLl26ZCSZI0eOGGPIyI3zMCZ0M3KzeZw/f97MmTPHtLS0mKSkJLNr1y7fvlDORzCjQ1nRoazoT/7oUFZ0KCv6kxX9yd9UdiielLJRa2urOjs7tWrVKt+2yMhIZWVl6fjx45Zjq6urFRcXp/T0dJWUlPh9CugUJ0+e1ODgoGVmiYmJWrBggd/MnMapGbl06ZJcLpfuv/9+SWTkxnlc49R8DAwM6JNPPpHb7VZGRoYkZ2dktHlc45SMjIyMqLCwUKWlpUpPT/fb7+R8BBM61PiR7dE5OR90KCs61P/oT1b0p//Y1aHCJuRqcVs6OzslSfHx8Zbt8fHxamtr871//vnn9eCDD8rj8ailpUVvvfWWTp8+rdraWluvNxB0dnYqIiJC0dHRlu3x8fG+eTqRUzNy9epVvfnmm1q3bp2ioqIkOTsjo81DcmY+ampqVFBQoMuXLyshIUG1tbWKi4uT5MyM3GoekrMy8t577yksLExFRUWj7ndiPoIRHWr8yLY/J+eDDmVFh/oP/cmK/mRlV4diUWoKuFwuy3tjjGXbpk2bfP+8YMECpaamKjMzU83NzVq8eLFt1xnIbpyZ0zgxI4ODgyooKNDIyIgqKirGPD7UM3KreTgxH08++aS8Xq8uXLigTz/9VGvXrlVjY6Nmz559068J5YyMNQ+nZOTkyZP68MMP1dzcPO5/16Gcj2BGh7p7Ts62U/NBh7KiQ/2P/mRFf/qfnR2KH9+zkcfjkSS/VcOuri6/T/6ut3jxYoWHh+vcuXOTen2ByOPxaGBgQD09PZbtY83MaUI9I4ODg1q7dq1aW1tVW1tr+UTLiRm51TxGE+r5kKSZM2dq3rx5euyxx1RZWamwsDBVVlZKcmZGbjWP0YRqRurr69XV1aW5c+cqLCxMYWFhamtrU3FxsZKTkyU5Mx/BiA41fmR7bE7IBx3Kig5lRX+yoj/9z84OxaKUja496nf9430DAwM6duyYnnjiiZt+3Y8//qjBwUElJCTYcZkB5dFHH1V4eLhlZh0dHWppabnlzJwmlDNyrTycO3dOR44cUWxsrGW/0zIy1jxGE8r5uBljjP755x9JzsvIaK6fx2hCNSOFhYX64Ycf5PV6fa/ExESVlpbq22+/lUQ+ggUdavzI9thCPR90KCs61NjoT1ZO7U+SvR2KH9+bYH19ffrll19871tbW+X1ehUTE6O5c+dq8+bN2r59u1JTU5Wamqrt27fr3nvv1bp16yRJv/76q6qrq5WTk6O4uDj99NNPKi4u1qJFi7RkyZKpuq07NtY8/vzzT7W3t+uPP/6QJJ09e1bSf6uuHo9HbrdbGzduVHFxsWJjYxUTE6OSkhI9/PDDys7OnpJ7ult3OxMnZSQxMVH5+flqbm5WTU2NhoeHfZ+Sx8TEKCIiIuQycrfzCLV8SLeeSWxsrLZt26a8vDwlJCTo4sWLqqio0Pnz5/Xss89KkqMycjvzCLWMjPVn6o3/0xEeHi6Px6O0tDRJoZePYEaHsqJDWdGf/NGhrOhQVvQnK/qTv4DpUOP7RYEYy9GjR40kv9eGDRuMMf/9SuMtW7YYj8djIiMjzdKlS82ZM2d8X9/e3m6WLl1qYmJiTEREhElJSTFFRUXm4sWLU3RHd2eseezZs2fU/Vu2bPGd48qVK+aVV14xMTExZsaMGSY3N9e0t7dPzQ1NgLudiZMycu3XOo/2Onr0qO8coZSRu51HqOXDmFvP5MqVK+bpp582iYmJJiIiwiQkJJi8vDzT1NRkOYdTMnI78wi1jIz1Z+qNbvx1xsaEVj6CGR3Kig5lRX/yR4eyokNZ0Z+s6E/+AqVDuYwxRgAAAAAAAICN+DulAAAAAAAAYDsWpQAAAAAAAGA7FqUAAAAAAABgOxalAAAAAAAAYDsWpQAAAAAAAGA7FqUAAAAAAABgOxalAAAAAAAAYDsWpQAAAAAAAGA7FqUAYAK4XC4dOHBgqi8DAAAgqNChAGdjUQpA0Dl+/LimT5+u1atXj+vrkpOTVVZWNjkXBQAAEODoUAACDYtSAIJOVVWVXn31VTU0NKi9vX2qLwcAACAo0KEABBoWpQAElf7+fn311Vd6+eWXlZubq88++8yy/+DBg8rMzNQ999yjuLg4rVmzRpK0bNkytbW16fXXX5fL5ZLL5ZIkvfPOO1q4cKHlHGVlZUpOTva9P3HihFauXKm4uDi53W5lZWWpubl5Mm8TAABgQtGhAAQiFqUABJUvv/xSaWlpSktL0/r167Vnzx4ZYyRJ33zzjdasWaOnnnpKp06dUl1dnTIzMyVJ+/bt0wMPPKCtW7eqo6NDHR0dt/09e3t7tWHDBtXX1+v7779XamqqcnJy1NvbOyn3CAAAMNHoUAACUdhUXwAAjEdlZaXWr18vSVq9erX6+vpUV1en7Oxsbdu2TQUFBXr33Xd9x2dkZEiSYmJiNH36dN13333yeDzj+p7Lly+3vN+9e7eio6N17Ngx5ebm3uUdAQAATD46FIBAxJNSAILG2bNn1dTUpIKCAklSWFiYnnvuOVVVVUmSvF6vVqxYMeHft6urSy+99JLmz58vt9stt9utvr4+/i4GAAAQFOhQAAIVT0oBCBqVlZUaGhrSnDlzfNuMMQoPD1dPT49mzJgx7nNOmzbN9+j6NYODg5b3L7zwgrq7u1VWVqakpCRFRkbq8ccf18DAwJ3dCAAAgI3oUAACFU9KAQgKQ0ND+vzzz/X+++/L6/X6XqdPn1ZSUpKqq6v1yCOPqK6u7qbniIiI0PDwsGXbrFmz1NnZaSlVXq/Xckx9fb2KioqUk5Oj9PR0RUZG6sKFCxN6fwAAAJOBDgUgkPGkFICgUFNTo56eHm3cuFFut9uyLz8/X5WVldq1a5dWrFihlJQUFRQUaGhoSIcOHdIbb7whSUpOTtZ3332ngoICRUZGKi4uTsuWLVN3d7d27typ/Px8HT58WIcOHVJUVJTv/PPmzdMXX3yhzMxM/f333yotLb2jTxQBAADsRocCEMh4UgpAUKisrFR2drZfmZKkZ555Rl6vV1FRUfr666918OBBLVy4UMuXL1djY6PvuK1bt+q3335TSkqKZs2aJUl66KGHVFFRoY8++kgZGRlqampSSUmJ5fxVVVXq6enRokWLVFhYqKKiIs2ePXtybxgAAGAC0KEABDKXufEHgQEAAAAAAIBJxpNSAAAAAAAAsB2LUgAAAAAAALAdi1IAAAAAAACwHYtSAAAAAAAAsB2LUgAAAAAAALAdi1IAAAAAAACwHYtSAAAAAAAAsB2LUgAAAAAAALAdi1IAAAAAAACwHYtSAAAAAAAAsB2LUgAAAAAAALAdi1IAAAAAAACw3b9ssTlIQm0WcwAAAABJRU5ErkJggg==",
204
+ "text/plain": [
205
+ "<Figure size 1200x500 with 2 Axes>"
206
+ ]
207
+ },
208
+ "metadata": {},
209
+ "output_type": "display_data"
210
+ }
211
+ ],
212
+ "source": [
213
+ "plt.figure(figsize=(12, 5))\n",
214
+ "\n",
215
+ "plt.subplot(1, 2, 1)\n",
216
+ "sns.scatterplot(x=y_test, y=y_pred_original, alpha=0.5)\n",
217
+ "plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], '--', color='red')\n",
218
+ "plt.xlabel(\"Actual\")\n",
219
+ "plt.ylabel(\"Predicted\")\n",
220
+ "plt.title(\"Linear Regression on Original Data\")\n",
221
+ "\n",
222
+ "plt.subplot(1, 2, 2)\n",
223
+ "sns.scatterplot(x=y_test, y=y_pred_pca, alpha=0.5)\n",
224
+ "plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], '--', color='red')\n",
225
+ "plt.xlabel(\"Actual\")\n",
226
+ "plt.ylabel(\"Predicted\")\n",
227
+ "plt.title(\"Linear Regression on PCA-Reduced Data\")\n",
228
+ "\n",
229
+ "plt.tight_layout()\n",
230
+ "plt.show()"
231
+ ]
232
+ }
233
+ ],
234
+ "metadata": {
235
+ "kernelspec": {
236
+ "display_name": "Python 3 (ipykernel)",
237
+ "language": "python",
238
+ "name": "python3"
239
+ },
240
+ "language_info": {
241
+ "codemirror_mode": {
242
+ "name": "ipython",
243
+ "version": 3
244
+ },
245
+ "file_extension": ".py",
246
+ "mimetype": "text/x-python",
247
+ "name": "python",
248
+ "nbconvert_exporter": "python",
249
+ "pygments_lexer": "ipython3",
250
+ "version": "3.12.4"
251
+ }
252
+ },
253
+ "nbformat": 4,
254
+ "nbformat_minor": 5
255
+ }
@@ -0,0 +1,12 @@
1
+ Apply PCA and apply linear regression on original dataset and reduced dataset
2
+ Attribute Information:
3
+
4
+ This problem has the following inputs:
5
+ 1. Frequency, in Hertzs.
6
+ 2. Angle of attack, in degrees.
7
+ 3. Chord length, in meters.
8
+ 4. Free-stream velocity, in meters per second.
9
+ 5. Suction side displacement thickness, in meters.
10
+
11
+ The only output is:
12
+ 6. Scaled sound pressure level, in decibels.