noshot 0.3.2__py3-none-any.whl → 0.3.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. noshot/data/ML TS XAI/ML/{1. PCA - EDA/PCA-EDA.ipynb → 1. PCA - EDA.ipynb } +2 -2
  2. noshot/data/ML TS XAI/ML/{2. KNN Classifier/KNN.ipynb → 2. KNN Classifier.ipynb } +2 -2
  3. noshot/data/ML TS XAI/ML/{3. Linear Discriminant Analysis/LDA.ipynb → 3. Linear Discriminant Analysis.ipynb } +2 -2
  4. noshot/data/ML TS XAI/ML/{4. Linear Regression/Linear-Regression.ipynb → 4. Linear Regression.ipynb } +1 -1
  5. noshot/data/ML TS XAI/ML/{5. Logistic Regression/Logistic-Regression.ipynb → 5. Logistic Regression.ipynb } +28 -14
  6. noshot/data/ML TS XAI/ML/{6. Bayesian Classifier/Bayesian.ipynb → 6. Bayesian Classifier.ipynb } +7 -5
  7. noshot/data/ML TS XAI/TS/{1. EDA - Handling Time Series Data/Handling TS Data.ipynb → 1. EDA - Handling Time Series Data.ipynb } +1 -1
  8. noshot/data/ML TS XAI/TS/{5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb → 5. Stationarity - Trend - Seasonality.ipynb } +1 -1
  9. noshot/data/ML TS XAI/TS/{6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb → 6. Autocorrelation - Partial Autocorrelation.ipynb } +1 -1
  10. noshot/data/ML TS XAI/TS/AllinOne.ipynb +140 -11400
  11. {noshot-0.3.2.dist-info → noshot-0.3.3.dist-info}/METADATA +1 -1
  12. noshot-0.3.3.dist-info/RECORD +30 -0
  13. noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +0 -626
  14. noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +0 -625
  15. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +0 -626
  16. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +0 -625
  17. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +0 -179
  18. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +0 -3651
  19. noshot-0.3.2.dist-info/RECORD +0 -36
  20. /noshot/data/ML TS XAI/ML/{1. PCA - EDA → data}/balance-scale.csv +0 -0
  21. /noshot/data/ML TS XAI/ML/{1. PCA - EDA/input.txt → data/balance-scale.txt} +0 -0
  22. /noshot/data/ML TS XAI/ML/{4. Linear Regression → data}/machine-data.csv +0 -0
  23. /noshot/data/ML TS XAI/ML/{5. Logistic Regression → data}/wine-dataset.csv +0 -0
  24. /noshot/data/ML TS XAI/TS/{2. Feature Engineering/Feature Engineering-.ipynb → 2. Feature Engineering.ipynb} +0 -0
  25. /noshot/data/ML TS XAI/TS/{3. Temporal Relationships/Exploring Temporal Relationships.ipynb → 3. Temporal Relationships.ipynb} +0 -0
  26. /noshot/data/ML TS XAI/TS/{4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb → 4. Up-Down-Sampling and Interpolation.ipynb} +0 -0
  27. /noshot/data/ML TS XAI/TS/{5. Stationarity - Trend - Seasonality → data}/daily-min-temperatures.csv +0 -0
  28. /noshot/data/ML TS XAI/TS/{5. Stationarity - Trend - Seasonality → data}/daily-total-female-births.csv +0 -0
  29. /noshot/data/ML TS XAI/TS/{1. EDA - Handling Time Series Data → data}/raw_sales.csv +0 -0
  30. /noshot/data/ML TS XAI/TS/{4. Up-Down-Sampling and Interploation → data}/shampoo_sales.csv +0 -0
  31. {noshot-0.3.2.dist-info → noshot-0.3.3.dist-info}/LICENSE.txt +0 -0
  32. {noshot-0.3.2.dist-info → noshot-0.3.3.dist-info}/WHEEL +0 -0
  33. {noshot-0.3.2.dist-info → noshot-0.3.3.dist-info}/top_level.txt +0 -0
@@ -1,36 +0,0 @@
1
- noshot/__init__.py,sha256=000R40tii8lDFU8C1fBaD3SOnxD0PWRNWZU-km49YrU,21
2
- noshot/main.py,sha256=zXegIqjJPARlPnQMS-B2dAENcvyaZkNwmue63Gm8lHU,663
3
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb,sha256=v1KdK48zSBvVF_c6O73gbbFQ_ADRp9EBMWJ0htn3Nt0,4933
4
- noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv,sha256=6doaVIoSlMTyPHqjb3QUG4iiponH0bfw1JHDa0fKxso,6941
5
- noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt,sha256=GPtYUxxyeHEcVqK6AYAZnxzGkIsmEI4lg3cdV-YCoBI,6873
6
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb,sha256=btdSexowxh_WUUBAMI6uzE5v9hdzd1tBTYZKyCuAhi0,7687
7
- noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv,sha256=6doaVIoSlMTyPHqjb3QUG4iiponH0bfw1JHDa0fKxso,6941
8
- noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt,sha256=GPtYUxxyeHEcVqK6AYAZnxzGkIsmEI4lg3cdV-YCoBI,6873
9
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb,sha256=9B5T3XXgdwaRaI3Ldilq_SlA65qwCo9y314UuAw6MhU,2199
10
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv,sha256=6doaVIoSlMTyPHqjb3QUG4iiponH0bfw1JHDa0fKxso,6941
11
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt,sha256=GPtYUxxyeHEcVqK6AYAZnxzGkIsmEI4lg3cdV-YCoBI,6873
12
- noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb,sha256=3UlZ4CcXBlIhYubX_z_OQoANpsxTplm0E2FtR6BYiac,3147
13
- noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv,sha256=ibOegRM_3qX7IDexXCE5cxvck-1Kz-iQ-A6KKZ9fExA,8956
14
- noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb,sha256=RPP2rJONJOjkmuVnjpEAMXSJjh4ol8_iXf1XNaShnHI,3526
15
- noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv,sha256=LM6dldfZUWWlkbhHQdFdMwD2hioTWijjYBJJ1C8wMFY,12440
16
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb,sha256=QzN92-n_6SfZkibXNQ01YgknzeUo9cebExQyErkCsuc,1911
17
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv,sha256=LM6dldfZUWWlkbhHQdFdMwD2hioTWijjYBJJ1C8wMFY,12440
18
- noshot/data/ML TS XAI/TS/AllinOne.ipynb,sha256=7Qgh2ls5yb-OJBJSxagVqJl-4JMMMWS7xevERrW6_Z8,1510936
19
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb,sha256=co-aprQ7Emepcb7qeQlAVvLgVCQGNCc-9ddYt_AzR-w,5478
20
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv,sha256=8QFSn6olv_VH1UOAk7ztD6I5sVurXvE65rV8fZmXkro,1180105
21
- noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb,sha256=HdDfhPowxFujZweySJRuP-Et_y_2TvZP-PZLevgXUKY,4231
22
- noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb,sha256=Fi1Aq6BhqlqY8XcHwvRdOwTTNQ5QvIS7yr41sTMkW3A,3705
23
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb,sha256=7-_k3WNgab0sIAX4vC2Ot_jbJwcLBszh4hw_F66PSms,3194
24
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv,sha256=ZLkeoLu9mTZEyFaCHNMKsBLxDjTXM4NEDqPd9rgmANs,462
25
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb,sha256=92NZLlnl56jNYdILDrCMLx3pL-F6NkpxxuY5bpg9Lyg,4607
26
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv,sha256=i53mPtZ4lJK_SXYl5_m-uWpj02e0sKIXVABvdJ-l5do,67921
27
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv,sha256=egwb2zLWj3-jWeVhpPfh_o-y_Cah6mJKQ0qXpjc13XI,6220
28
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb,sha256=6fPk4Un3MPEB-TDrN0mKqUFIMa83BT0Rijf0huw7snE,1896
29
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv,sha256=i53mPtZ4lJK_SXYl5_m-uWpj02e0sKIXVABvdJ-l5do,67921
30
- noshot/utils/__init__.py,sha256=QVrN1ZpzPXxZqDOqot5-t_ulFjZXVx7Cvr-Is9AK0po,110
31
- noshot/utils/shell_utils.py,sha256=-XfgYlNQlULa_rRJ3vsfTns4m_jiueGEj396J_y0Gus,2611
32
- noshot-0.3.2.dist-info/LICENSE.txt,sha256=fgCruaVm5cUjFGOeEoGIimT6nnUunBqcNZHpGzK8TSw,1086
33
- noshot-0.3.2.dist-info/METADATA,sha256=9_yHHfgZXjVSNnX3ArsKmADgjLmZ1-OPDHG4fBZIOWQ,2453
34
- noshot-0.3.2.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
35
- noshot-0.3.2.dist-info/top_level.txt,sha256=UL-c0HffdRwohz-y9icY_rnY48pQDdxGcBsgyCKh2Q8,7
36
- noshot-0.3.2.dist-info/RECORD,,
File without changes