noshot 0.3.2__py3-none-any.whl → 0.3.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. noshot/data/ML TS XAI/ML/{1. PCA - EDA/PCA-EDA.ipynb → 1. PCA - EDA.ipynb } +2 -2
  2. noshot/data/ML TS XAI/ML/{2. KNN Classifier/KNN.ipynb → 2. KNN Classifier.ipynb } +2 -2
  3. noshot/data/ML TS XAI/ML/{3. Linear Discriminant Analysis/LDA.ipynb → 3. Linear Discriminant Analysis.ipynb } +2 -2
  4. noshot/data/ML TS XAI/ML/{4. Linear Regression/Linear-Regression.ipynb → 4. Linear Regression.ipynb } +1 -1
  5. noshot/data/ML TS XAI/ML/{5. Logistic Regression/Logistic-Regression.ipynb → 5. Logistic Regression.ipynb } +28 -14
  6. noshot/data/ML TS XAI/ML/{6. Bayesian Classifier/Bayesian.ipynb → 6. Bayesian Classifier.ipynb } +7 -5
  7. noshot/data/ML TS XAI/TS/{1. EDA - Handling Time Series Data/Handling TS Data.ipynb → 1. EDA - Handling Time Series Data.ipynb } +1 -1
  8. noshot/data/ML TS XAI/TS/{5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb → 5. Stationarity - Trend - Seasonality.ipynb } +1 -1
  9. noshot/data/ML TS XAI/TS/{6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb → 6. Autocorrelation - Partial Autocorrelation.ipynb } +1 -1
  10. noshot/data/ML TS XAI/TS/AllinOne.ipynb +140 -11400
  11. {noshot-0.3.2.dist-info → noshot-0.3.3.dist-info}/METADATA +1 -1
  12. noshot-0.3.3.dist-info/RECORD +30 -0
  13. noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +0 -626
  14. noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +0 -625
  15. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +0 -626
  16. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +0 -625
  17. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +0 -179
  18. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +0 -3651
  19. noshot-0.3.2.dist-info/RECORD +0 -36
  20. /noshot/data/ML TS XAI/ML/{1. PCA - EDA → data}/balance-scale.csv +0 -0
  21. /noshot/data/ML TS XAI/ML/{1. PCA - EDA/input.txt → data/balance-scale.txt} +0 -0
  22. /noshot/data/ML TS XAI/ML/{4. Linear Regression → data}/machine-data.csv +0 -0
  23. /noshot/data/ML TS XAI/ML/{5. Logistic Regression → data}/wine-dataset.csv +0 -0
  24. /noshot/data/ML TS XAI/TS/{2. Feature Engineering/Feature Engineering-.ipynb → 2. Feature Engineering.ipynb} +0 -0
  25. /noshot/data/ML TS XAI/TS/{3. Temporal Relationships/Exploring Temporal Relationships.ipynb → 3. Temporal Relationships.ipynb} +0 -0
  26. /noshot/data/ML TS XAI/TS/{4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb → 4. Up-Down-Sampling and Interpolation.ipynb} +0 -0
  27. /noshot/data/ML TS XAI/TS/{5. Stationarity - Trend - Seasonality → data}/daily-min-temperatures.csv +0 -0
  28. /noshot/data/ML TS XAI/TS/{5. Stationarity - Trend - Seasonality → data}/daily-total-female-births.csv +0 -0
  29. /noshot/data/ML TS XAI/TS/{1. EDA - Handling Time Series Data → data}/raw_sales.csv +0 -0
  30. /noshot/data/ML TS XAI/TS/{4. Up-Down-Sampling and Interploation → data}/shampoo_sales.csv +0 -0
  31. {noshot-0.3.2.dist-info → noshot-0.3.3.dist-info}/LICENSE.txt +0 -0
  32. {noshot-0.3.2.dist-info → noshot-0.3.3.dist-info}/WHEEL +0 -0
  33. {noshot-0.3.2.dist-info → noshot-0.3.3.dist-info}/top_level.txt +0 -0
@@ -31,8 +31,8 @@
31
31
  "metadata": {},
32
32
  "outputs": [],
33
33
  "source": [
34
- "df = pd.read_table('input.txt', delimiter = ',', names = ['class name', 'left-weight', 'left-distance', 'right-weight', 'right-distance'])\n",
35
- "#df = pd.read_csv('balance-scale.csv')\n",
34
+ "df = pd.read_table('data/balance-scale.txt', delimiter = ',', names = ['class name', 'left-weight', 'left-distance', 'right-weight', 'right-distance'])\n",
35
+ "#df = pd.read_csv('data/balance-scale.csv')\n",
36
36
  "df.head()"
37
37
  ]
38
38
  },
@@ -32,8 +32,8 @@
32
32
  "metadata": {},
33
33
  "outputs": [],
34
34
  "source": [
35
- "df = pd.read_csv('input.txt', delimiter = ',', names=['class name','left-weight','left-distance','right-weight','right-distance'])\n",
36
- "#df = pd.read_csv('balance-scale.csv')\n",
35
+ "df = pd.read_csv('data/balance-scale.txt', delimiter = ',', names=['class name','left-weight','left-distance','right-weight','right-distance'])\n",
36
+ "#df = pd.read_csv('data/balance-scale.csv')\n",
37
37
  "df.head()"
38
38
  ]
39
39
  },
@@ -22,8 +22,8 @@
22
22
  "metadata": {},
23
23
  "outputs": [],
24
24
  "source": [
25
- "df = pd.read_table('input.txt', delimiter = \",\", names=['class name','left-weight','left-distance','right-weight','right-distance'])\n",
26
- "df = pd.read_csv('balance-scale.csv')\n",
25
+ "df = pd.read_table('data/balance-scale.txt', delimiter = \",\", names=['class name','left-weight','left-distance','right-weight','right-distance'])\n",
26
+ "#df = pd.read_csv('data/balance-scale.csv')\n",
27
27
  "df.head()"
28
28
  ]
29
29
  },
@@ -21,7 +21,7 @@
21
21
  "metadata": {},
22
22
  "outputs": [],
23
23
  "source": [
24
- "df = pd.read_csv('machine-data.csv')\n",
24
+ "df = pd.read_csv('data/machine-data.csv')\n",
25
25
  "df.head()"
26
26
  ]
27
27
  },
@@ -25,8 +25,18 @@
25
25
  "metadata": {},
26
26
  "outputs": [],
27
27
  "source": [
28
- "wine = datasets.load_wine()\n",
29
- "type(wine)"
28
+ "wine = pd.read_csv('data/wine-dataset.csv')\n",
29
+ "print(wine.shape)"
30
+ ]
31
+ },
32
+ {
33
+ "cell_type": "code",
34
+ "execution_count": null,
35
+ "id": "c4e953da-6941-43f2-a9ce-aab907876d45",
36
+ "metadata": {},
37
+ "outputs": [],
38
+ "source": [
39
+ "wine.columns"
30
40
  ]
31
41
  },
32
42
  {
@@ -36,18 +46,19 @@
36
46
  "metadata": {},
37
47
  "outputs": [],
38
48
  "source": [
39
- "wine.data[:5,:]"
49
+ "X = wine.iloc[:, :13]\n",
50
+ "X.head()"
40
51
  ]
41
52
  },
42
53
  {
43
54
  "cell_type": "code",
44
55
  "execution_count": null,
45
- "id": "3eed721d-7956-40fb-9831-1a79f73cb906",
56
+ "id": "5cfd2fe6-3825-4d95-b606-3b3e2ef685b2",
46
57
  "metadata": {},
47
58
  "outputs": [],
48
59
  "source": [
49
- "print(type(wine.feature_names))\n",
50
- "wine.feature_names"
60
+ "y = wine.iloc[:, 13]\n",
61
+ "y"
51
62
  ]
52
63
  },
53
64
  {
@@ -57,7 +68,7 @@
57
68
  "metadata": {},
58
69
  "outputs": [],
59
70
  "source": [
60
- "X_train,X_test,y_train,y_test = train_test_split(wine.data, wine.target, test_size=0.30, random_state=7)\n",
71
+ "X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=0.30, random_state=7)\n",
61
72
  "\n",
62
73
  "log_reg_model = linear_model.LogisticRegression()\n",
63
74
  "log_reg_model.fit(X_train,y_train)"
@@ -88,21 +99,24 @@
88
99
  {
89
100
  "cell_type": "code",
90
101
  "execution_count": null,
91
- "id": "2fcd6449-feca-4b90-828f-420ba5bb8bcf",
92
- "metadata": {},
102
+ "id": "600ec8f2-34e1-4be7-8ef5-fe53ff673f41",
103
+ "metadata": {
104
+ "scrolled": true
105
+ },
93
106
  "outputs": [],
94
107
  "source": [
95
- "X = wine.data[:,:2]\n",
96
- "Y = wine.target\n",
108
+ "X = X.iloc[:, :2]\n",
109
+ "Y = y\n",
110
+ "\n",
97
111
  "log_reg_model.fit(X,Y)\n",
98
- "x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5\n",
99
- "y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5\n",
112
+ "x_min, x_max = X.iloc[:, 0].min() - .5, X.iloc[:, 0].max() + .5\n",
113
+ "y_min, y_max = X.iloc[:, 1].min() - .5, X.iloc[:, 1].max() + .5\n",
100
114
  "xx, yy = np.meshgrid(np.arange(x_min, x_max, .01), np.arange(y_min, y_max, .01))\n",
101
115
  "Z = log_reg_model.predict(np.c_[xx.ravel(), yy.ravel()])\n",
102
116
  "Z = Z.reshape(xx.shape)\n",
103
117
  "plt.figure(1, figsize = (4, 3))\n",
104
118
  "plt.pcolormesh(xx, yy, Z, cmap = plt.cm.Paired)\n",
105
- "plt.scatter(X[:, 0], X[:, 1], c = Y, edgecolors = 'k', cmap = plt.cm.Paired)\n",
119
+ "plt.scatter(X.iloc[:, 0], X.iloc[:, 1], c = Y, edgecolors = 'k', cmap = plt.cm.Paired)\n",
106
120
  "plt.xlabel('X')\n",
107
121
  "plt.ylabel('Y')\n",
108
122
  "plt.xlim(xx.min(), xx.max())\n",
@@ -10,7 +10,8 @@
10
10
  "from sklearn import datasets\n",
11
11
  "from sklearn.metrics import confusion_matrix\n",
12
12
  "from sklearn.model_selection import train_test_split\n",
13
- "from sklearn.naive_bayes import GaussianNB"
13
+ "from sklearn.naive_bayes import GaussianNB\n",
14
+ "import pandas as pd"
14
15
  ]
15
16
  },
16
17
  {
@@ -20,7 +21,8 @@
20
21
  "metadata": {},
21
22
  "outputs": [],
22
23
  "source": [
23
- "wine = datasets.load_wine()"
24
+ "wine = pd.read_csv('data/wine-dataset.csv')\n",
25
+ "print(wine.shape)"
24
26
  ]
25
27
  },
26
28
  {
@@ -30,8 +32,8 @@
30
32
  "metadata": {},
31
33
  "outputs": [],
32
34
  "source": [
33
- "X = wine.data\n",
34
- "X"
35
+ "X = wine.iloc[:, :13]\n",
36
+ "X.head()"
35
37
  ]
36
38
  },
37
39
  {
@@ -41,7 +43,7 @@
41
43
  "metadata": {},
42
44
  "outputs": [],
43
45
  "source": [
44
- "y = wine.target\n",
46
+ "y = wine.iloc[:, 13]\n",
45
47
  "y"
46
48
  ]
47
49
  },
@@ -34,7 +34,7 @@
34
34
  "metadata": {},
35
35
  "outputs": [],
36
36
  "source": [
37
- "df = pd.read_csv('raw_sales.csv', index_col = 'datesold')\n",
37
+ "df = pd.read_csv('data/raw_sales.csv', index_col = 'datesold')\n",
38
38
  "print(df.shape)"
39
39
  ]
40
40
  },
@@ -23,7 +23,7 @@
23
23
  "metadata": {},
24
24
  "outputs": [],
25
25
  "source": [
26
- "df = pd.read_csv(\"daily-total-female-births.csv\", parse_dates = ['Date'], index_col='Date')\n",
26
+ "df = pd.read_csv(\"data/daily-total-female-births.csv\", parse_dates = ['Date'], index_col='Date')\n",
27
27
  "print(f\"Shape: {df.shape}\")\n",
28
28
  "df.head()"
29
29
  ]
@@ -20,7 +20,7 @@
20
20
  "metadata": {},
21
21
  "outputs": [],
22
22
  "source": [
23
- "df = pd.read_csv('daily-min-temperatures.csv')\n",
23
+ "df = pd.read_csv('data/daily-min-temperatures.csv')\n",
24
24
  "print(df.shape)\n",
25
25
  "df.head()"
26
26
  ]