noshot 0.2.5__py3-none-any.whl → 0.2.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/main.py +18 -18
- noshot/utils/__init__.py +2 -2
- noshot/utils/shell_utils.py +56 -56
- {noshot-0.2.5.dist-info → noshot-0.2.6.dist-info}/LICENSE.txt +20 -20
- {noshot-0.2.5.dist-info → noshot-0.2.6.dist-info}/METADATA +55 -55
- noshot-0.2.6.dist-info/RECORD +9 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +0 -207
- noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +0 -626
- noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +0 -625
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +0 -287
- noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +0 -626
- noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +0 -625
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +0 -83
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +0 -626
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +0 -625
- noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +0 -117
- noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +0 -210
- noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +0 -137
- noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +0 -179
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +0 -87
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +0 -179
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb +0 -247
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv +0 -29581
- noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb +0 -183
- noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb +0 -172
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb +0 -146
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv +0 -37
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb +0 -173
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv +0 -3651
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv +0 -366
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb +0 -77
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +0 -3651
- noshot/data/ML TS XAI/TS/AllinOne.ipynb +0 -12676
- noshot-0.2.5.dist-info/RECORD +0 -36
- {noshot-0.2.5.dist-info → noshot-0.2.6.dist-info}/WHEEL +0 -0
- {noshot-0.2.5.dist-info → noshot-0.2.6.dist-info}/top_level.txt +0 -0
@@ -1,183 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "ac978750-0ac5-4371-a0fb-a54f8503fc64",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import numpy as np\n",
|
11
|
-
"import pandas as pd\n",
|
12
|
-
"import matplotlib.pyplot as plt"
|
13
|
-
]
|
14
|
-
},
|
15
|
-
{
|
16
|
-
"cell_type": "code",
|
17
|
-
"execution_count": null,
|
18
|
-
"id": "1bc21b2b-ccd4-4ed9-888b-b022bd800d26",
|
19
|
-
"metadata": {},
|
20
|
-
"outputs": [],
|
21
|
-
"source": [
|
22
|
-
"np.random.seed(42)\n",
|
23
|
-
"values = np.random.randn(100)\n",
|
24
|
-
"values[:10]"
|
25
|
-
]
|
26
|
-
},
|
27
|
-
{
|
28
|
-
"cell_type": "code",
|
29
|
-
"execution_count": null,
|
30
|
-
"id": "b23f68f1-98f8-4d36-8fc8-d92eb82240ae",
|
31
|
-
"metadata": {},
|
32
|
-
"outputs": [],
|
33
|
-
"source": [
|
34
|
-
"dates = pd.date_range(start='2023-01-01',end='2023-04-10',freq='D')\n",
|
35
|
-
"dates[:10]"
|
36
|
-
]
|
37
|
-
},
|
38
|
-
{
|
39
|
-
"cell_type": "code",
|
40
|
-
"execution_count": null,
|
41
|
-
"id": "7c763c06-37fc-4070-b8ee-2241563a6ea4",
|
42
|
-
"metadata": {},
|
43
|
-
"outputs": [],
|
44
|
-
"source": [
|
45
|
-
"df = pd.DataFrame(values,index=dates,columns=['value'])\n",
|
46
|
-
"df.head()"
|
47
|
-
]
|
48
|
-
},
|
49
|
-
{
|
50
|
-
"cell_type": "code",
|
51
|
-
"execution_count": null,
|
52
|
-
"id": "3a3555e2-1925-4a94-85a2-5ca3909a4c72",
|
53
|
-
"metadata": {},
|
54
|
-
"outputs": [],
|
55
|
-
"source": [
|
56
|
-
"df['value'].plot(kind='hist',bins=20,title='value')\n",
|
57
|
-
"plt.show()"
|
58
|
-
]
|
59
|
-
},
|
60
|
-
{
|
61
|
-
"cell_type": "code",
|
62
|
-
"execution_count": null,
|
63
|
-
"id": "d6188560-d5ed-4093-b3b0-7da64bfa99b1",
|
64
|
-
"metadata": {},
|
65
|
-
"outputs": [],
|
66
|
-
"source": [
|
67
|
-
"df['value'].plot(kind='hist',bins=20,title='value')\n",
|
68
|
-
"plt.show()"
|
69
|
-
]
|
70
|
-
},
|
71
|
-
{
|
72
|
-
"cell_type": "code",
|
73
|
-
"execution_count": null,
|
74
|
-
"id": "42b76b42-0f4e-4f90-904e-ef286fa92464",
|
75
|
-
"metadata": {},
|
76
|
-
"outputs": [],
|
77
|
-
"source": [
|
78
|
-
"df['value'].plot(kind='line',figsize=(8,4),title='value')\n",
|
79
|
-
"plt.show()"
|
80
|
-
]
|
81
|
-
},
|
82
|
-
{
|
83
|
-
"cell_type": "code",
|
84
|
-
"execution_count": null,
|
85
|
-
"id": "e1975c05-f04e-445f-8ddb-30ea29f3e231",
|
86
|
-
"metadata": {},
|
87
|
-
"outputs": [],
|
88
|
-
"source": [
|
89
|
-
"plt.figure(figsize=(10,6))\n",
|
90
|
-
"plt.plot(df['value'])\n",
|
91
|
-
"plt.xlabel('Date')\n",
|
92
|
-
"plt.ylabel('value')\n",
|
93
|
-
"plt.title('Synthetic time series Dataset')\n",
|
94
|
-
"plt.show()"
|
95
|
-
]
|
96
|
-
},
|
97
|
-
{
|
98
|
-
"cell_type": "code",
|
99
|
-
"execution_count": null,
|
100
|
-
"id": "6c46e388-cba3-43ca-b5ef-b5dfd55d4418",
|
101
|
-
"metadata": {},
|
102
|
-
"outputs": [],
|
103
|
-
"source": [
|
104
|
-
"df['year'] = df.index.year\n",
|
105
|
-
"df['month'] = df.index.month\n",
|
106
|
-
"df['day'] = df.index.day\n",
|
107
|
-
"df['weekday'] = df.index.weekday\n",
|
108
|
-
"df.head()"
|
109
|
-
]
|
110
|
-
},
|
111
|
-
{
|
112
|
-
"cell_type": "code",
|
113
|
-
"execution_count": null,
|
114
|
-
"id": "a09ab128-c1a1-40da-aa23-23862def187f",
|
115
|
-
"metadata": {},
|
116
|
-
"outputs": [],
|
117
|
-
"source": [
|
118
|
-
"df['lag_1']=df['value'].shift(1)\n",
|
119
|
-
"df.head()"
|
120
|
-
]
|
121
|
-
},
|
122
|
-
{
|
123
|
-
"cell_type": "code",
|
124
|
-
"execution_count": null,
|
125
|
-
"id": "30c06285-7362-48e2-80cb-89302f8a29e0",
|
126
|
-
"metadata": {},
|
127
|
-
"outputs": [],
|
128
|
-
"source": [
|
129
|
-
"df['lag_2']=df['value'].shift(2)\n",
|
130
|
-
"df.head()"
|
131
|
-
]
|
132
|
-
},
|
133
|
-
{
|
134
|
-
"cell_type": "code",
|
135
|
-
"execution_count": null,
|
136
|
-
"id": "9734d51b-898b-4c6b-a1cd-a30a5cdab71b",
|
137
|
-
"metadata": {},
|
138
|
-
"outputs": [],
|
139
|
-
"source": [
|
140
|
-
"df['rollling_mean_5'] = df['value'].rolling(5).mean()\n",
|
141
|
-
"df['rollling_std_5'] = df['value'].rolling(5).std()\n",
|
142
|
-
"df['rollling_min_5'] = df['value'].rolling(5).min()\n",
|
143
|
-
"df['rollling_max_5'] = df['value'].rolling(5).max()\n",
|
144
|
-
"df.head()"
|
145
|
-
]
|
146
|
-
},
|
147
|
-
{
|
148
|
-
"cell_type": "code",
|
149
|
-
"execution_count": null,
|
150
|
-
"id": "44564c15-d51e-4dd8-bed9-0d5d3e340fac",
|
151
|
-
"metadata": {},
|
152
|
-
"outputs": [],
|
153
|
-
"source": [
|
154
|
-
"df['expanding_mean_5'] = df['value'].expanding(5).mean()\n",
|
155
|
-
"df['expanding_std_5'] = df['value'].expanding(5).std()\n",
|
156
|
-
"df['expanding_min_5'] = df['value'].expanding(5).min()\n",
|
157
|
-
"df['expanding_max_5'] = df['value'].expanding(5).max()\n",
|
158
|
-
"df.head()"
|
159
|
-
]
|
160
|
-
}
|
161
|
-
],
|
162
|
-
"metadata": {
|
163
|
-
"kernelspec": {
|
164
|
-
"display_name": "Python 3 (ipykernel)",
|
165
|
-
"language": "python",
|
166
|
-
"name": "python3"
|
167
|
-
},
|
168
|
-
"language_info": {
|
169
|
-
"codemirror_mode": {
|
170
|
-
"name": "ipython",
|
171
|
-
"version": 3
|
172
|
-
},
|
173
|
-
"file_extension": ".py",
|
174
|
-
"mimetype": "text/x-python",
|
175
|
-
"name": "python",
|
176
|
-
"nbconvert_exporter": "python",
|
177
|
-
"pygments_lexer": "ipython3",
|
178
|
-
"version": "3.12.4"
|
179
|
-
}
|
180
|
-
},
|
181
|
-
"nbformat": 4,
|
182
|
-
"nbformat_minor": 5
|
183
|
-
}
|
@@ -1,172 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "8fba5290-f2d4-4a0e-8ee6-54eea00d0684",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import numpy as np\n",
|
11
|
-
"import pandas as pd\n",
|
12
|
-
"import matplotlib.pyplot as plt\n",
|
13
|
-
"import seaborn as sns"
|
14
|
-
]
|
15
|
-
},
|
16
|
-
{
|
17
|
-
"cell_type": "code",
|
18
|
-
"execution_count": null,
|
19
|
-
"id": "2d6192e1-b823-40b9-bb03-0fcc1bc0ab07",
|
20
|
-
"metadata": {},
|
21
|
-
"outputs": [],
|
22
|
-
"source": [
|
23
|
-
"np.random.seed(42)\n",
|
24
|
-
"dates = pd.date_range(start='2024-01-01',end='2024-04-09',freq='D')\n",
|
25
|
-
"values = np.random.normal(loc=78,scale=16,size=len(dates)) #loc-Mean of Distribution, scale-Standard Deviation"
|
26
|
-
]
|
27
|
-
},
|
28
|
-
{
|
29
|
-
"cell_type": "code",
|
30
|
-
"execution_count": null,
|
31
|
-
"id": "db65f62d-4477-4f0f-bc49-852a55f4003a",
|
32
|
-
"metadata": {},
|
33
|
-
"outputs": [],
|
34
|
-
"source": [
|
35
|
-
"df = pd.DataFrame(index=dates,data=values,columns=['Temperature'])\n",
|
36
|
-
"df.head()"
|
37
|
-
]
|
38
|
-
},
|
39
|
-
{
|
40
|
-
"cell_type": "code",
|
41
|
-
"execution_count": null,
|
42
|
-
"id": "a0a6c6ab-e310-465c-93d4-4c0cd4f4be7c",
|
43
|
-
"metadata": {},
|
44
|
-
"outputs": [],
|
45
|
-
"source": [
|
46
|
-
"df.isnull().sum()"
|
47
|
-
]
|
48
|
-
},
|
49
|
-
{
|
50
|
-
"cell_type": "code",
|
51
|
-
"execution_count": null,
|
52
|
-
"id": "ddb04850-cfc2-4b3a-b52c-e6adca900e9d",
|
53
|
-
"metadata": {},
|
54
|
-
"outputs": [],
|
55
|
-
"source": [
|
56
|
-
"df.describe().T"
|
57
|
-
]
|
58
|
-
},
|
59
|
-
{
|
60
|
-
"cell_type": "code",
|
61
|
-
"execution_count": null,
|
62
|
-
"id": "c25aee71-9dcd-478a-b3df-2423395b948c",
|
63
|
-
"metadata": {},
|
64
|
-
"outputs": [],
|
65
|
-
"source": [
|
66
|
-
"df.plot(kind='hist',bins=20,figsize=(8,4))\n",
|
67
|
-
"plt.show()"
|
68
|
-
]
|
69
|
-
},
|
70
|
-
{
|
71
|
-
"cell_type": "code",
|
72
|
-
"execution_count": null,
|
73
|
-
"id": "5b14dc33-237b-4e11-886b-4294ded57d6c",
|
74
|
-
"metadata": {},
|
75
|
-
"outputs": [],
|
76
|
-
"source": [
|
77
|
-
"df.plot(kind='kde',figsize=(8,4))\n",
|
78
|
-
"plt.show()"
|
79
|
-
]
|
80
|
-
},
|
81
|
-
{
|
82
|
-
"cell_type": "code",
|
83
|
-
"execution_count": null,
|
84
|
-
"id": "50b9c442-24ba-4afd-a41d-4449957ab056",
|
85
|
-
"metadata": {},
|
86
|
-
"outputs": [],
|
87
|
-
"source": [
|
88
|
-
"df.plot(kind='box',figsize=(4,4))\n",
|
89
|
-
"plt.show()"
|
90
|
-
]
|
91
|
-
},
|
92
|
-
{
|
93
|
-
"cell_type": "code",
|
94
|
-
"execution_count": null,
|
95
|
-
"id": "8b9f0eaa-7d81-4e43-a12f-22da8992390a",
|
96
|
-
"metadata": {},
|
97
|
-
"outputs": [],
|
98
|
-
"source": [
|
99
|
-
"df.plot(kind='line',figsize=(8,4))\n",
|
100
|
-
"plt.show()"
|
101
|
-
]
|
102
|
-
},
|
103
|
-
{
|
104
|
-
"cell_type": "code",
|
105
|
-
"execution_count": null,
|
106
|
-
"id": "ae4b74a2-ad44-4624-bd87-98f6feef4f17",
|
107
|
-
"metadata": {},
|
108
|
-
"outputs": [],
|
109
|
-
"source": [
|
110
|
-
"plt.figure(figsize=(8,4))\n",
|
111
|
-
"plt.scatter(x=df.index,y=df['Temperature'])\n",
|
112
|
-
"plt.xticks(rotation=45)\n",
|
113
|
-
"plt.show()"
|
114
|
-
]
|
115
|
-
},
|
116
|
-
{
|
117
|
-
"cell_type": "code",
|
118
|
-
"execution_count": null,
|
119
|
-
"id": "b3e047ce-c749-44e7-b250-9749649e3c1c",
|
120
|
-
"metadata": {},
|
121
|
-
"outputs": [],
|
122
|
-
"source": [
|
123
|
-
"plt.figure(figsize=(8,4))\n",
|
124
|
-
"pd.plotting.autocorrelation_plot(df['Temperature'])\n",
|
125
|
-
"plt.show()"
|
126
|
-
]
|
127
|
-
},
|
128
|
-
{
|
129
|
-
"cell_type": "code",
|
130
|
-
"execution_count": null,
|
131
|
-
"id": "dac6bf07-c177-46cc-9206-043b77abc8d3",
|
132
|
-
"metadata": {},
|
133
|
-
"outputs": [],
|
134
|
-
"source": [
|
135
|
-
"df.corr()"
|
136
|
-
]
|
137
|
-
},
|
138
|
-
{
|
139
|
-
"cell_type": "code",
|
140
|
-
"execution_count": null,
|
141
|
-
"id": "25daff75-977a-49ab-b642-f7d74dc481fb",
|
142
|
-
"metadata": {},
|
143
|
-
"outputs": [],
|
144
|
-
"source": [
|
145
|
-
"plt.figure(figsize=(3,3))\n",
|
146
|
-
"sns.heatmap(df)\n",
|
147
|
-
"plt.show()"
|
148
|
-
]
|
149
|
-
}
|
150
|
-
],
|
151
|
-
"metadata": {
|
152
|
-
"kernelspec": {
|
153
|
-
"display_name": "Python 3 (ipykernel)",
|
154
|
-
"language": "python",
|
155
|
-
"name": "python3"
|
156
|
-
},
|
157
|
-
"language_info": {
|
158
|
-
"codemirror_mode": {
|
159
|
-
"name": "ipython",
|
160
|
-
"version": 3
|
161
|
-
},
|
162
|
-
"file_extension": ".py",
|
163
|
-
"mimetype": "text/x-python",
|
164
|
-
"name": "python",
|
165
|
-
"nbconvert_exporter": "python",
|
166
|
-
"pygments_lexer": "ipython3",
|
167
|
-
"version": "3.12.4"
|
168
|
-
}
|
169
|
-
},
|
170
|
-
"nbformat": 4,
|
171
|
-
"nbformat_minor": 5
|
172
|
-
}
|
@@ -1,146 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "6bb9403b-263b-48e3-a516-a436a771ab3d",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import pandas as pd\n",
|
11
|
-
"import numpy as np\n",
|
12
|
-
"import matplotlib.pyplot as plt\n",
|
13
|
-
"import seaborn as sns\n",
|
14
|
-
"import random"
|
15
|
-
]
|
16
|
-
},
|
17
|
-
{
|
18
|
-
"cell_type": "code",
|
19
|
-
"execution_count": null,
|
20
|
-
"id": "e62e553d-9abb-4f4a-bf47-48df2618e1ba",
|
21
|
-
"metadata": {},
|
22
|
-
"outputs": [],
|
23
|
-
"source": [
|
24
|
-
"np.random.seed(42)\n",
|
25
|
-
"dates=pd.date_range('2024-01-01','2024-12-31',freq='ME')\n",
|
26
|
-
"data=pd.DataFrame(data=[random.randint(0,1000) for i in range(len(dates))], index=dates,columns=['Values'])\n",
|
27
|
-
"data.head()"
|
28
|
-
]
|
29
|
-
},
|
30
|
-
{
|
31
|
-
"cell_type": "code",
|
32
|
-
"execution_count": null,
|
33
|
-
"id": "00fc7ac6-e20b-4203-8e76-02fb6d7cc435",
|
34
|
-
"metadata": {},
|
35
|
-
"outputs": [],
|
36
|
-
"source": [
|
37
|
-
"data.plot(kind='line')\n",
|
38
|
-
"plt.show()"
|
39
|
-
]
|
40
|
-
},
|
41
|
-
{
|
42
|
-
"cell_type": "markdown",
|
43
|
-
"id": "90d4394d-e513-49d1-9f0c-17540946e676",
|
44
|
-
"metadata": {},
|
45
|
-
"source": [
|
46
|
-
"**Up Sampling and Interpolation**"
|
47
|
-
]
|
48
|
-
},
|
49
|
-
{
|
50
|
-
"cell_type": "code",
|
51
|
-
"execution_count": null,
|
52
|
-
"id": "a5b59623-5abc-4f47-86de-f5992dd95d4b",
|
53
|
-
"metadata": {},
|
54
|
-
"outputs": [],
|
55
|
-
"source": [
|
56
|
-
"upsample=data.resample('h')\n",
|
57
|
-
"interpolated=upsample.interpolate(method='linear')\n",
|
58
|
-
"interpolated"
|
59
|
-
]
|
60
|
-
},
|
61
|
-
{
|
62
|
-
"cell_type": "code",
|
63
|
-
"execution_count": null,
|
64
|
-
"id": "b5fd4bf6-b5fd-4144-8efa-3d42d52abc72",
|
65
|
-
"metadata": {},
|
66
|
-
"outputs": [],
|
67
|
-
"source": [
|
68
|
-
"interpolated.plot(kind='line')"
|
69
|
-
]
|
70
|
-
},
|
71
|
-
{
|
72
|
-
"cell_type": "code",
|
73
|
-
"execution_count": null,
|
74
|
-
"id": "fd729d40-2b9f-4cfa-8fcb-8ab950d5051a",
|
75
|
-
"metadata": {},
|
76
|
-
"outputs": [],
|
77
|
-
"source": [
|
78
|
-
"upsample=data.resample('h')\n",
|
79
|
-
"interpolated=upsample.interpolate(method='spline',order=3)\n",
|
80
|
-
"interpolated"
|
81
|
-
]
|
82
|
-
},
|
83
|
-
{
|
84
|
-
"cell_type": "code",
|
85
|
-
"execution_count": null,
|
86
|
-
"id": "453062ab-4042-4bcd-a465-ecc4375e9cbf",
|
87
|
-
"metadata": {},
|
88
|
-
"outputs": [],
|
89
|
-
"source": [
|
90
|
-
"interpolated.plot(kind='line')\n",
|
91
|
-
"plt.show()"
|
92
|
-
]
|
93
|
-
},
|
94
|
-
{
|
95
|
-
"cell_type": "markdown",
|
96
|
-
"id": "6f6e70bf-15c7-4dfb-b9b1-3deae9a4226e",
|
97
|
-
"metadata": {},
|
98
|
-
"source": [
|
99
|
-
"**Down Sampling and Interpolation**"
|
100
|
-
]
|
101
|
-
},
|
102
|
-
{
|
103
|
-
"cell_type": "code",
|
104
|
-
"execution_count": null,
|
105
|
-
"id": "bd57a941-82c1-40c8-911c-6cca58ea549b",
|
106
|
-
"metadata": {},
|
107
|
-
"outputs": [],
|
108
|
-
"source": [
|
109
|
-
"downsample=interpolated.resample('QE')\n",
|
110
|
-
"interpolated=downsample.mean()\n",
|
111
|
-
"interpolated"
|
112
|
-
]
|
113
|
-
},
|
114
|
-
{
|
115
|
-
"cell_type": "code",
|
116
|
-
"execution_count": null,
|
117
|
-
"id": "f3427633-7ca0-4377-98d1-95099c064159",
|
118
|
-
"metadata": {},
|
119
|
-
"outputs": [],
|
120
|
-
"source": [
|
121
|
-
"interpolated.plot(kind='line')"
|
122
|
-
]
|
123
|
-
}
|
124
|
-
],
|
125
|
-
"metadata": {
|
126
|
-
"kernelspec": {
|
127
|
-
"display_name": "Python 3 (ipykernel)",
|
128
|
-
"language": "python",
|
129
|
-
"name": "python3"
|
130
|
-
},
|
131
|
-
"language_info": {
|
132
|
-
"codemirror_mode": {
|
133
|
-
"name": "ipython",
|
134
|
-
"version": 3
|
135
|
-
},
|
136
|
-
"file_extension": ".py",
|
137
|
-
"mimetype": "text/x-python",
|
138
|
-
"name": "python",
|
139
|
-
"nbconvert_exporter": "python",
|
140
|
-
"pygments_lexer": "ipython3",
|
141
|
-
"version": "3.12.4"
|
142
|
-
}
|
143
|
-
},
|
144
|
-
"nbformat": 4,
|
145
|
-
"nbformat_minor": 5
|
146
|
-
}
|
@@ -1,37 +0,0 @@
|
|
1
|
-
Month,Sales
|
2
|
-
01-01,266
|
3
|
-
01-02,145.9
|
4
|
-
01-03,183.1
|
5
|
-
01-04,119.3
|
6
|
-
01-05,180.3
|
7
|
-
01-06,168.5
|
8
|
-
01-07,231.8
|
9
|
-
01-08,224.5
|
10
|
-
01-09,192.8
|
11
|
-
1-10,122.9
|
12
|
-
1-11,336.5
|
13
|
-
1-12,185.9
|
14
|
-
02-01,194.3
|
15
|
-
02-02,149.5
|
16
|
-
02-03,210.1
|
17
|
-
02-04,273.3
|
18
|
-
02-05,191.4
|
19
|
-
02-06,287
|
20
|
-
02-07,226
|
21
|
-
02-08,303.6
|
22
|
-
02-09,289.9
|
23
|
-
2-10,421.6
|
24
|
-
2-11,264.5
|
25
|
-
2-12,342.3
|
26
|
-
03-01,339.7
|
27
|
-
03-02,440.4
|
28
|
-
03-03,315.9
|
29
|
-
03-04,439.3
|
30
|
-
03-05,401.3
|
31
|
-
03-06,437.4
|
32
|
-
03-07,575.5
|
33
|
-
03-08,407.6
|
34
|
-
03-09,682
|
35
|
-
3-10,475.3
|
36
|
-
3-11,581.3
|
37
|
-
3-12,646.9
|
noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb
DELETED
@@ -1,173 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "f01bfd82-b491-4e4c-ab74-0eb7709b20b1",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import pandas as pd\n",
|
11
|
-
"import numpy as np\n",
|
12
|
-
"import matplotlib.pyplot as plt\n",
|
13
|
-
"from statsmodels.tsa.stattools import kpss\n",
|
14
|
-
"from statsmodels.tsa.seasonal import seasonal_decompose\n",
|
15
|
-
"import warnings\n",
|
16
|
-
"warnings.filterwarnings(\"ignore\")"
|
17
|
-
]
|
18
|
-
},
|
19
|
-
{
|
20
|
-
"cell_type": "code",
|
21
|
-
"execution_count": null,
|
22
|
-
"id": "04a57fe7-20ae-4202-b5fd-7d4f60161871",
|
23
|
-
"metadata": {},
|
24
|
-
"outputs": [],
|
25
|
-
"source": [
|
26
|
-
"df = pd.read_csv(\"daily-total-female-births.csv\", parse_dates = ['Date'], index_col='Date')\n",
|
27
|
-
"print(f\"Shape: {df.shape}\")\n",
|
28
|
-
"df.head()"
|
29
|
-
]
|
30
|
-
},
|
31
|
-
{
|
32
|
-
"cell_type": "code",
|
33
|
-
"execution_count": null,
|
34
|
-
"id": "8ae68a42-dc21-4fdc-a69d-3c28ae65f146",
|
35
|
-
"metadata": {},
|
36
|
-
"outputs": [],
|
37
|
-
"source": [
|
38
|
-
"df.plot()\n",
|
39
|
-
"plt.show()"
|
40
|
-
]
|
41
|
-
},
|
42
|
-
{
|
43
|
-
"cell_type": "code",
|
44
|
-
"execution_count": null,
|
45
|
-
"id": "99bc55d6-f608-4ab3-84f0-f0b9b6e39aa8",
|
46
|
-
"metadata": {},
|
47
|
-
"outputs": [],
|
48
|
-
"source": [
|
49
|
-
"x = np.linspace(0, 12, num=200)\n",
|
50
|
-
"seasonality = 1.2 * np.sin(2 * np.pi * x / 4)\n",
|
51
|
-
"\n",
|
52
|
-
"plt.figure(figsize=(10,6))\n",
|
53
|
-
"plt.plot(x, seasonality, label = \"Seasonal Component\", color = \"g\")\n",
|
54
|
-
"plt.xlabel(\"Time\")\n",
|
55
|
-
"plt.ylabel(\"Value\")\n",
|
56
|
-
"plt.title(\"Seasonal Signal\")\n",
|
57
|
-
"plt.legend()\n",
|
58
|
-
"plt.show()"
|
59
|
-
]
|
60
|
-
},
|
61
|
-
{
|
62
|
-
"cell_type": "code",
|
63
|
-
"execution_count": null,
|
64
|
-
"id": "ea5377ec-67f4-4fc3-b20b-7792b937eb72",
|
65
|
-
"metadata": {},
|
66
|
-
"outputs": [],
|
67
|
-
"source": [
|
68
|
-
"df2 = pd.read_csv(\"daily-min-temperatures.csv\", parse_dates = ['Date'], index_col='Date')\n",
|
69
|
-
"df2.head()"
|
70
|
-
]
|
71
|
-
},
|
72
|
-
{
|
73
|
-
"cell_type": "code",
|
74
|
-
"execution_count": null,
|
75
|
-
"id": "a0d10a57-006c-4a59-b7c7-ff0c63bb6e99",
|
76
|
-
"metadata": {},
|
77
|
-
"outputs": [],
|
78
|
-
"source": [
|
79
|
-
"df2.plot(title = \"Daily Minimun Temperature\", figsize = (14, 8), legend = None)\n",
|
80
|
-
"plt.xlabel(\"Date\")\n",
|
81
|
-
"plt.ylabel(\"Temperature in °C\")\n",
|
82
|
-
"plt.show()"
|
83
|
-
]
|
84
|
-
},
|
85
|
-
{
|
86
|
-
"cell_type": "code",
|
87
|
-
"execution_count": null,
|
88
|
-
"id": "1c99e75f-5e45-4485-b54c-3b848fd428ca",
|
89
|
-
"metadata": {},
|
90
|
-
"outputs": [],
|
91
|
-
"source": [
|
92
|
-
"def kpss_test(series):\n",
|
93
|
-
" statistic, p_value, n_lags, critical_values = kpss(series)\n",
|
94
|
-
" print(f\"KPSS Statistic: {statistic:.4f}\")\n",
|
95
|
-
" print(f\"p-value: {p_value:.4f}\")\n",
|
96
|
-
" print(f\"Number of Lags: {n_lags}\")\n",
|
97
|
-
" print(\"Critical Values:\")\n",
|
98
|
-
" print(\"\\n\".join([f\"{key} : {value:.4f}\" for key, value in critical_values.items()]))\n",
|
99
|
-
" print(f\"Result: The Series is {'not' if p_value < 0.05 else ''} Stationary\")"
|
100
|
-
]
|
101
|
-
},
|
102
|
-
{
|
103
|
-
"cell_type": "code",
|
104
|
-
"execution_count": null,
|
105
|
-
"id": "67290889-aaf5-464c-8748-7f2e3f797d0c",
|
106
|
-
"metadata": {},
|
107
|
-
"outputs": [],
|
108
|
-
"source": [
|
109
|
-
"kpss_test(df)"
|
110
|
-
]
|
111
|
-
},
|
112
|
-
{
|
113
|
-
"cell_type": "code",
|
114
|
-
"execution_count": null,
|
115
|
-
"id": "421d972b-3f8a-4c54-884b-4b270bf2adfb",
|
116
|
-
"metadata": {},
|
117
|
-
"outputs": [],
|
118
|
-
"source": [
|
119
|
-
"kpss_test(df2)"
|
120
|
-
]
|
121
|
-
},
|
122
|
-
{
|
123
|
-
"cell_type": "code",
|
124
|
-
"execution_count": null,
|
125
|
-
"id": "dd286b94-3867-4045-b3ff-0b5693b0feab",
|
126
|
-
"metadata": {},
|
127
|
-
"outputs": [],
|
128
|
-
"source": [
|
129
|
-
"decomposition = seasonal_decompose(df2['Temp'], model = 'additive', period = 365)\n",
|
130
|
-
"\n",
|
131
|
-
"trend = decomposition.trend\n",
|
132
|
-
"seasonal = decomposition.seasonal\n",
|
133
|
-
"residual = decomposition.resid\n",
|
134
|
-
"\n",
|
135
|
-
"plt.figure(figsize = (14,8))\n",
|
136
|
-
"plt.subplot(411)\n",
|
137
|
-
"plt.plot(df2['Temp'], label = \"Original\", color =\"g\")\n",
|
138
|
-
"plt.legend(loc = \"upper left\")\n",
|
139
|
-
"plt.subplot(412)\n",
|
140
|
-
"plt.plot(trend, label=\"Trend\", color =\"r\")\n",
|
141
|
-
"plt.legend(loc=\"upper left\")\n",
|
142
|
-
"plt.subplot(413)\n",
|
143
|
-
"plt.plot(seasonal, label = \"Seasonal\", color =\"y\")\n",
|
144
|
-
"plt.legend(loc = \"upper left\")\n",
|
145
|
-
"plt.subplot(414)\n",
|
146
|
-
"plt.plot(residual, label=\"Residual\", color =\"lightblue\")\n",
|
147
|
-
"plt.legend(loc=\"upper left\")\n",
|
148
|
-
"plt.show()"
|
149
|
-
]
|
150
|
-
}
|
151
|
-
],
|
152
|
-
"metadata": {
|
153
|
-
"kernelspec": {
|
154
|
-
"display_name": "Python 3 (ipykernel)",
|
155
|
-
"language": "python",
|
156
|
-
"name": "python3"
|
157
|
-
},
|
158
|
-
"language_info": {
|
159
|
-
"codemirror_mode": {
|
160
|
-
"name": "ipython",
|
161
|
-
"version": 3
|
162
|
-
},
|
163
|
-
"file_extension": ".py",
|
164
|
-
"mimetype": "text/x-python",
|
165
|
-
"name": "python",
|
166
|
-
"nbconvert_exporter": "python",
|
167
|
-
"pygments_lexer": "ipython3",
|
168
|
-
"version": "3.12.4"
|
169
|
-
}
|
170
|
-
},
|
171
|
-
"nbformat": 4,
|
172
|
-
"nbformat_minor": 5
|
173
|
-
}
|