noshot 0.2.5__py3-none-any.whl → 0.2.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. noshot/main.py +18 -18
  2. noshot/utils/__init__.py +2 -2
  3. noshot/utils/shell_utils.py +56 -56
  4. {noshot-0.2.5.dist-info → noshot-0.2.6.dist-info}/LICENSE.txt +20 -20
  5. {noshot-0.2.5.dist-info → noshot-0.2.6.dist-info}/METADATA +55 -55
  6. noshot-0.2.6.dist-info/RECORD +9 -0
  7. noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +0 -207
  8. noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +0 -626
  9. noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +0 -625
  10. noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +0 -287
  11. noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +0 -626
  12. noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +0 -625
  13. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +0 -83
  14. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +0 -626
  15. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +0 -625
  16. noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +0 -117
  17. noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +0 -210
  18. noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +0 -137
  19. noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +0 -179
  20. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +0 -87
  21. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +0 -179
  22. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb +0 -247
  23. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv +0 -29581
  24. noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb +0 -183
  25. noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb +0 -172
  26. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb +0 -146
  27. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv +0 -37
  28. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb +0 -173
  29. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv +0 -3651
  30. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv +0 -366
  31. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb +0 -77
  32. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +0 -3651
  33. noshot/data/ML TS XAI/TS/AllinOne.ipynb +0 -12676
  34. noshot-0.2.5.dist-info/RECORD +0 -36
  35. {noshot-0.2.5.dist-info → noshot-0.2.6.dist-info}/WHEEL +0 -0
  36. {noshot-0.2.5.dist-info → noshot-0.2.6.dist-info}/top_level.txt +0 -0
@@ -1,179 +0,0 @@
1
- alcohol,malic_acid,ash,alcalinity_of_ash,magnesium,total_phenols,flavanoids,nonflavanoid_phenols,proanthocyanins,color_intensity,hue,od280/od315_of_diluted_wines,proline,target
2
- 14.23,1.71,2.43,15.6,127.0,2.8,3.06,0.28,2.29,5.64,1.04,3.92,1065.0,0
3
- 13.2,1.78,2.14,11.2,100.0,2.65,2.76,0.26,1.28,4.38,1.05,3.4,1050.0,0
4
- 13.16,2.36,2.67,18.6,101.0,2.8,3.24,0.3,2.81,5.68,1.03,3.17,1185.0,0
5
- 14.37,1.95,2.5,16.8,113.0,3.85,3.49,0.24,2.18,7.8,0.86,3.45,1480.0,0
6
- 13.24,2.59,2.87,21.0,118.0,2.8,2.69,0.39,1.82,4.32,1.04,2.93,735.0,0
7
- 14.2,1.76,2.45,15.2,112.0,3.27,3.39,0.34,1.97,6.75,1.05,2.85,1450.0,0
8
- 14.39,1.87,2.45,14.6,96.0,2.5,2.52,0.3,1.98,5.25,1.02,3.58,1290.0,0
9
- 14.06,2.15,2.61,17.6,121.0,2.6,2.51,0.31,1.25,5.05,1.06,3.58,1295.0,0
10
- 14.83,1.64,2.17,14.0,97.0,2.8,2.98,0.29,1.98,5.2,1.08,2.85,1045.0,0
11
- 13.86,1.35,2.27,16.0,98.0,2.98,3.15,0.22,1.85,7.22,1.01,3.55,1045.0,0
12
- 14.1,2.16,2.3,18.0,105.0,2.95,3.32,0.22,2.38,5.75,1.25,3.17,1510.0,0
13
- 14.12,1.48,2.32,16.8,95.0,2.2,2.43,0.26,1.57,5.0,1.17,2.82,1280.0,0
14
- 13.75,1.73,2.41,16.0,89.0,2.6,2.76,0.29,1.81,5.6,1.15,2.9,1320.0,0
15
- 14.75,1.73,2.39,11.4,91.0,3.1,3.69,0.43,2.81,5.4,1.25,2.73,1150.0,0
16
- 14.38,1.87,2.38,12.0,102.0,3.3,3.64,0.29,2.96,7.5,1.2,3.0,1547.0,0
17
- 13.63,1.81,2.7,17.2,112.0,2.85,2.91,0.3,1.46,7.3,1.28,2.88,1310.0,0
18
- 14.3,1.92,2.72,20.0,120.0,2.8,3.14,0.33,1.97,6.2,1.07,2.65,1280.0,0
19
- 13.83,1.57,2.62,20.0,115.0,2.95,3.4,0.4,1.72,6.6,1.13,2.57,1130.0,0
20
- 14.19,1.59,2.48,16.5,108.0,3.3,3.93,0.32,1.86,8.7,1.23,2.82,1680.0,0
21
- 13.64,3.1,2.56,15.2,116.0,2.7,3.03,0.17,1.66,5.1,0.96,3.36,845.0,0
22
- 14.06,1.63,2.28,16.0,126.0,3.0,3.17,0.24,2.1,5.65,1.09,3.71,780.0,0
23
- 12.93,3.8,2.65,18.6,102.0,2.41,2.41,0.25,1.98,4.5,1.03,3.52,770.0,0
24
- 13.71,1.86,2.36,16.6,101.0,2.61,2.88,0.27,1.69,3.8,1.11,4.0,1035.0,0
25
- 12.85,1.6,2.52,17.8,95.0,2.48,2.37,0.26,1.46,3.93,1.09,3.63,1015.0,0
26
- 13.5,1.81,2.61,20.0,96.0,2.53,2.61,0.28,1.66,3.52,1.12,3.82,845.0,0
27
- 13.05,2.05,3.22,25.0,124.0,2.63,2.68,0.47,1.92,3.58,1.13,3.2,830.0,0
28
- 13.39,1.77,2.62,16.1,93.0,2.85,2.94,0.34,1.45,4.8,0.92,3.22,1195.0,0
29
- 13.3,1.72,2.14,17.0,94.0,2.4,2.19,0.27,1.35,3.95,1.02,2.77,1285.0,0
30
- 13.87,1.9,2.8,19.4,107.0,2.95,2.97,0.37,1.76,4.5,1.25,3.4,915.0,0
31
- 14.02,1.68,2.21,16.0,96.0,2.65,2.33,0.26,1.98,4.7,1.04,3.59,1035.0,0
32
- 13.73,1.5,2.7,22.5,101.0,3.0,3.25,0.29,2.38,5.7,1.19,2.71,1285.0,0
33
- 13.58,1.66,2.36,19.1,106.0,2.86,3.19,0.22,1.95,6.9,1.09,2.88,1515.0,0
34
- 13.68,1.83,2.36,17.2,104.0,2.42,2.69,0.42,1.97,3.84,1.23,2.87,990.0,0
35
- 13.76,1.53,2.7,19.5,132.0,2.95,2.74,0.5,1.35,5.4,1.25,3.0,1235.0,0
36
- 13.51,1.8,2.65,19.0,110.0,2.35,2.53,0.29,1.54,4.2,1.1,2.87,1095.0,0
37
- 13.48,1.81,2.41,20.5,100.0,2.7,2.98,0.26,1.86,5.1,1.04,3.47,920.0,0
38
- 13.28,1.64,2.84,15.5,110.0,2.6,2.68,0.34,1.36,4.6,1.09,2.78,880.0,0
39
- 13.05,1.65,2.55,18.0,98.0,2.45,2.43,0.29,1.44,4.25,1.12,2.51,1105.0,0
40
- 13.07,1.5,2.1,15.5,98.0,2.4,2.64,0.28,1.37,3.7,1.18,2.69,1020.0,0
41
- 14.22,3.99,2.51,13.2,128.0,3.0,3.04,0.2,2.08,5.1,0.89,3.53,760.0,0
42
- 13.56,1.71,2.31,16.2,117.0,3.15,3.29,0.34,2.34,6.13,0.95,3.38,795.0,0
43
- 13.41,3.84,2.12,18.8,90.0,2.45,2.68,0.27,1.48,4.28,0.91,3.0,1035.0,0
44
- 13.88,1.89,2.59,15.0,101.0,3.25,3.56,0.17,1.7,5.43,0.88,3.56,1095.0,0
45
- 13.24,3.98,2.29,17.5,103.0,2.64,2.63,0.32,1.66,4.36,0.82,3.0,680.0,0
46
- 13.05,1.77,2.1,17.0,107.0,3.0,3.0,0.28,2.03,5.04,0.88,3.35,885.0,0
47
- 14.21,4.04,2.44,18.9,111.0,2.85,2.65,0.3,1.25,5.24,0.87,3.33,1080.0,0
48
- 14.38,3.59,2.28,16.0,102.0,3.25,3.17,0.27,2.19,4.9,1.04,3.44,1065.0,0
49
- 13.9,1.68,2.12,16.0,101.0,3.1,3.39,0.21,2.14,6.1,0.91,3.33,985.0,0
50
- 14.1,2.02,2.4,18.8,103.0,2.75,2.92,0.32,2.38,6.2,1.07,2.75,1060.0,0
51
- 13.94,1.73,2.27,17.4,108.0,2.88,3.54,0.32,2.08,8.9,1.12,3.1,1260.0,0
52
- 13.05,1.73,2.04,12.4,92.0,2.72,3.27,0.17,2.91,7.2,1.12,2.91,1150.0,0
53
- 13.83,1.65,2.6,17.2,94.0,2.45,2.99,0.22,2.29,5.6,1.24,3.37,1265.0,0
54
- 13.82,1.75,2.42,14.0,111.0,3.88,3.74,0.32,1.87,7.05,1.01,3.26,1190.0,0
55
- 13.77,1.9,2.68,17.1,115.0,3.0,2.79,0.39,1.68,6.3,1.13,2.93,1375.0,0
56
- 13.74,1.67,2.25,16.4,118.0,2.6,2.9,0.21,1.62,5.85,0.92,3.2,1060.0,0
57
- 13.56,1.73,2.46,20.5,116.0,2.96,2.78,0.2,2.45,6.25,0.98,3.03,1120.0,0
58
- 14.22,1.7,2.3,16.3,118.0,3.2,3.0,0.26,2.03,6.38,0.94,3.31,970.0,0
59
- 13.29,1.97,2.68,16.8,102.0,3.0,3.23,0.31,1.66,6.0,1.07,2.84,1270.0,0
60
- 13.72,1.43,2.5,16.7,108.0,3.4,3.67,0.19,2.04,6.8,0.89,2.87,1285.0,0
61
- 12.37,0.94,1.36,10.6,88.0,1.98,0.57,0.28,0.42,1.95,1.05,1.82,520.0,1
62
- 12.33,1.1,2.28,16.0,101.0,2.05,1.09,0.63,0.41,3.27,1.25,1.67,680.0,1
63
- 12.64,1.36,2.02,16.8,100.0,2.02,1.41,0.53,0.62,5.75,0.98,1.59,450.0,1
64
- 13.67,1.25,1.92,18.0,94.0,2.1,1.79,0.32,0.73,3.8,1.23,2.46,630.0,1
65
- 12.37,1.13,2.16,19.0,87.0,3.5,3.1,0.19,1.87,4.45,1.22,2.87,420.0,1
66
- 12.17,1.45,2.53,19.0,104.0,1.89,1.75,0.45,1.03,2.95,1.45,2.23,355.0,1
67
- 12.37,1.21,2.56,18.1,98.0,2.42,2.65,0.37,2.08,4.6,1.19,2.3,678.0,1
68
- 13.11,1.01,1.7,15.0,78.0,2.98,3.18,0.26,2.28,5.3,1.12,3.18,502.0,1
69
- 12.37,1.17,1.92,19.6,78.0,2.11,2.0,0.27,1.04,4.68,1.12,3.48,510.0,1
70
- 13.34,0.94,2.36,17.0,110.0,2.53,1.3,0.55,0.42,3.17,1.02,1.93,750.0,1
71
- 12.21,1.19,1.75,16.8,151.0,1.85,1.28,0.14,2.5,2.85,1.28,3.07,718.0,1
72
- 12.29,1.61,2.21,20.4,103.0,1.1,1.02,0.37,1.46,3.05,0.906,1.82,870.0,1
73
- 13.86,1.51,2.67,25.0,86.0,2.95,2.86,0.21,1.87,3.38,1.36,3.16,410.0,1
74
- 13.49,1.66,2.24,24.0,87.0,1.88,1.84,0.27,1.03,3.74,0.98,2.78,472.0,1
75
- 12.99,1.67,2.6,30.0,139.0,3.3,2.89,0.21,1.96,3.35,1.31,3.5,985.0,1
76
- 11.96,1.09,2.3,21.0,101.0,3.38,2.14,0.13,1.65,3.21,0.99,3.13,886.0,1
77
- 11.66,1.88,1.92,16.0,97.0,1.61,1.57,0.34,1.15,3.8,1.23,2.14,428.0,1
78
- 13.03,0.9,1.71,16.0,86.0,1.95,2.03,0.24,1.46,4.6,1.19,2.48,392.0,1
79
- 11.84,2.89,2.23,18.0,112.0,1.72,1.32,0.43,0.95,2.65,0.96,2.52,500.0,1
80
- 12.33,0.99,1.95,14.8,136.0,1.9,1.85,0.35,2.76,3.4,1.06,2.31,750.0,1
81
- 12.7,3.87,2.4,23.0,101.0,2.83,2.55,0.43,1.95,2.57,1.19,3.13,463.0,1
82
- 12.0,0.92,2.0,19.0,86.0,2.42,2.26,0.3,1.43,2.5,1.38,3.12,278.0,1
83
- 12.72,1.81,2.2,18.8,86.0,2.2,2.53,0.26,1.77,3.9,1.16,3.14,714.0,1
84
- 12.08,1.13,2.51,24.0,78.0,2.0,1.58,0.4,1.4,2.2,1.31,2.72,630.0,1
85
- 13.05,3.86,2.32,22.5,85.0,1.65,1.59,0.61,1.62,4.8,0.84,2.01,515.0,1
86
- 11.84,0.89,2.58,18.0,94.0,2.2,2.21,0.22,2.35,3.05,0.79,3.08,520.0,1
87
- 12.67,0.98,2.24,18.0,99.0,2.2,1.94,0.3,1.46,2.62,1.23,3.16,450.0,1
88
- 12.16,1.61,2.31,22.8,90.0,1.78,1.69,0.43,1.56,2.45,1.33,2.26,495.0,1
89
- 11.65,1.67,2.62,26.0,88.0,1.92,1.61,0.4,1.34,2.6,1.36,3.21,562.0,1
90
- 11.64,2.06,2.46,21.6,84.0,1.95,1.69,0.48,1.35,2.8,1.0,2.75,680.0,1
91
- 12.08,1.33,2.3,23.6,70.0,2.2,1.59,0.42,1.38,1.74,1.07,3.21,625.0,1
92
- 12.08,1.83,2.32,18.5,81.0,1.6,1.5,0.52,1.64,2.4,1.08,2.27,480.0,1
93
- 12.0,1.51,2.42,22.0,86.0,1.45,1.25,0.5,1.63,3.6,1.05,2.65,450.0,1
94
- 12.69,1.53,2.26,20.7,80.0,1.38,1.46,0.58,1.62,3.05,0.96,2.06,495.0,1
95
- 12.29,2.83,2.22,18.0,88.0,2.45,2.25,0.25,1.99,2.15,1.15,3.3,290.0,1
96
- 11.62,1.99,2.28,18.0,98.0,3.02,2.26,0.17,1.35,3.25,1.16,2.96,345.0,1
97
- 12.47,1.52,2.2,19.0,162.0,2.5,2.27,0.32,3.28,2.6,1.16,2.63,937.0,1
98
- 11.81,2.12,2.74,21.5,134.0,1.6,0.99,0.14,1.56,2.5,0.95,2.26,625.0,1
99
- 12.29,1.41,1.98,16.0,85.0,2.55,2.5,0.29,1.77,2.9,1.23,2.74,428.0,1
100
- 12.37,1.07,2.1,18.5,88.0,3.52,3.75,0.24,1.95,4.5,1.04,2.77,660.0,1
101
- 12.29,3.17,2.21,18.0,88.0,2.85,2.99,0.45,2.81,2.3,1.42,2.83,406.0,1
102
- 12.08,2.08,1.7,17.5,97.0,2.23,2.17,0.26,1.4,3.3,1.27,2.96,710.0,1
103
- 12.6,1.34,1.9,18.5,88.0,1.45,1.36,0.29,1.35,2.45,1.04,2.77,562.0,1
104
- 12.34,2.45,2.46,21.0,98.0,2.56,2.11,0.34,1.31,2.8,0.8,3.38,438.0,1
105
- 11.82,1.72,1.88,19.5,86.0,2.5,1.64,0.37,1.42,2.06,0.94,2.44,415.0,1
106
- 12.51,1.73,1.98,20.5,85.0,2.2,1.92,0.32,1.48,2.94,1.04,3.57,672.0,1
107
- 12.42,2.55,2.27,22.0,90.0,1.68,1.84,0.66,1.42,2.7,0.86,3.3,315.0,1
108
- 12.25,1.73,2.12,19.0,80.0,1.65,2.03,0.37,1.63,3.4,1.0,3.17,510.0,1
109
- 12.72,1.75,2.28,22.5,84.0,1.38,1.76,0.48,1.63,3.3,0.88,2.42,488.0,1
110
- 12.22,1.29,1.94,19.0,92.0,2.36,2.04,0.39,2.08,2.7,0.86,3.02,312.0,1
111
- 11.61,1.35,2.7,20.0,94.0,2.74,2.92,0.29,2.49,2.65,0.96,3.26,680.0,1
112
- 11.46,3.74,1.82,19.5,107.0,3.18,2.58,0.24,3.58,2.9,0.75,2.81,562.0,1
113
- 12.52,2.43,2.17,21.0,88.0,2.55,2.27,0.26,1.22,2.0,0.9,2.78,325.0,1
114
- 11.76,2.68,2.92,20.0,103.0,1.75,2.03,0.6,1.05,3.8,1.23,2.5,607.0,1
115
- 11.41,0.74,2.5,21.0,88.0,2.48,2.01,0.42,1.44,3.08,1.1,2.31,434.0,1
116
- 12.08,1.39,2.5,22.5,84.0,2.56,2.29,0.43,1.04,2.9,0.93,3.19,385.0,1
117
- 11.03,1.51,2.2,21.5,85.0,2.46,2.17,0.52,2.01,1.9,1.71,2.87,407.0,1
118
- 11.82,1.47,1.99,20.8,86.0,1.98,1.6,0.3,1.53,1.95,0.95,3.33,495.0,1
119
- 12.42,1.61,2.19,22.5,108.0,2.0,2.09,0.34,1.61,2.06,1.06,2.96,345.0,1
120
- 12.77,3.43,1.98,16.0,80.0,1.63,1.25,0.43,0.83,3.4,0.7,2.12,372.0,1
121
- 12.0,3.43,2.0,19.0,87.0,2.0,1.64,0.37,1.87,1.28,0.93,3.05,564.0,1
122
- 11.45,2.4,2.42,20.0,96.0,2.9,2.79,0.32,1.83,3.25,0.8,3.39,625.0,1
123
- 11.56,2.05,3.23,28.5,119.0,3.18,5.08,0.47,1.87,6.0,0.93,3.69,465.0,1
124
- 12.42,4.43,2.73,26.5,102.0,2.2,2.13,0.43,1.71,2.08,0.92,3.12,365.0,1
125
- 13.05,5.8,2.13,21.5,86.0,2.62,2.65,0.3,2.01,2.6,0.73,3.1,380.0,1
126
- 11.87,4.31,2.39,21.0,82.0,2.86,3.03,0.21,2.91,2.8,0.75,3.64,380.0,1
127
- 12.07,2.16,2.17,21.0,85.0,2.6,2.65,0.37,1.35,2.76,0.86,3.28,378.0,1
128
- 12.43,1.53,2.29,21.5,86.0,2.74,3.15,0.39,1.77,3.94,0.69,2.84,352.0,1
129
- 11.79,2.13,2.78,28.5,92.0,2.13,2.24,0.58,1.76,3.0,0.97,2.44,466.0,1
130
- 12.37,1.63,2.3,24.5,88.0,2.22,2.45,0.4,1.9,2.12,0.89,2.78,342.0,1
131
- 12.04,4.3,2.38,22.0,80.0,2.1,1.75,0.42,1.35,2.6,0.79,2.57,580.0,1
132
- 12.86,1.35,2.32,18.0,122.0,1.51,1.25,0.21,0.94,4.1,0.76,1.29,630.0,2
133
- 12.88,2.99,2.4,20.0,104.0,1.3,1.22,0.24,0.83,5.4,0.74,1.42,530.0,2
134
- 12.81,2.31,2.4,24.0,98.0,1.15,1.09,0.27,0.83,5.7,0.66,1.36,560.0,2
135
- 12.7,3.55,2.36,21.5,106.0,1.7,1.2,0.17,0.84,5.0,0.78,1.29,600.0,2
136
- 12.51,1.24,2.25,17.5,85.0,2.0,0.58,0.6,1.25,5.45,0.75,1.51,650.0,2
137
- 12.6,2.46,2.2,18.5,94.0,1.62,0.66,0.63,0.94,7.1,0.73,1.58,695.0,2
138
- 12.25,4.72,2.54,21.0,89.0,1.38,0.47,0.53,0.8,3.85,0.75,1.27,720.0,2
139
- 12.53,5.51,2.64,25.0,96.0,1.79,0.6,0.63,1.1,5.0,0.82,1.69,515.0,2
140
- 13.49,3.59,2.19,19.5,88.0,1.62,0.48,0.58,0.88,5.7,0.81,1.82,580.0,2
141
- 12.84,2.96,2.61,24.0,101.0,2.32,0.6,0.53,0.81,4.92,0.89,2.15,590.0,2
142
- 12.93,2.81,2.7,21.0,96.0,1.54,0.5,0.53,0.75,4.6,0.77,2.31,600.0,2
143
- 13.36,2.56,2.35,20.0,89.0,1.4,0.5,0.37,0.64,5.6,0.7,2.47,780.0,2
144
- 13.52,3.17,2.72,23.5,97.0,1.55,0.52,0.5,0.55,4.35,0.89,2.06,520.0,2
145
- 13.62,4.95,2.35,20.0,92.0,2.0,0.8,0.47,1.02,4.4,0.91,2.05,550.0,2
146
- 12.25,3.88,2.2,18.5,112.0,1.38,0.78,0.29,1.14,8.21,0.65,2.0,855.0,2
147
- 13.16,3.57,2.15,21.0,102.0,1.5,0.55,0.43,1.3,4.0,0.6,1.68,830.0,2
148
- 13.88,5.04,2.23,20.0,80.0,0.98,0.34,0.4,0.68,4.9,0.58,1.33,415.0,2
149
- 12.87,4.61,2.48,21.5,86.0,1.7,0.65,0.47,0.86,7.65,0.54,1.86,625.0,2
150
- 13.32,3.24,2.38,21.5,92.0,1.93,0.76,0.45,1.25,8.42,0.55,1.62,650.0,2
151
- 13.08,3.9,2.36,21.5,113.0,1.41,1.39,0.34,1.14,9.4,0.57,1.33,550.0,2
152
- 13.5,3.12,2.62,24.0,123.0,1.4,1.57,0.22,1.25,8.6,0.59,1.3,500.0,2
153
- 12.79,2.67,2.48,22.0,112.0,1.48,1.36,0.24,1.26,10.8,0.48,1.47,480.0,2
154
- 13.11,1.9,2.75,25.5,116.0,2.2,1.28,0.26,1.56,7.1,0.61,1.33,425.0,2
155
- 13.23,3.3,2.28,18.5,98.0,1.8,0.83,0.61,1.87,10.52,0.56,1.51,675.0,2
156
- 12.58,1.29,2.1,20.0,103.0,1.48,0.58,0.53,1.4,7.6,0.58,1.55,640.0,2
157
- 13.17,5.19,2.32,22.0,93.0,1.74,0.63,0.61,1.55,7.9,0.6,1.48,725.0,2
158
- 13.84,4.12,2.38,19.5,89.0,1.8,0.83,0.48,1.56,9.01,0.57,1.64,480.0,2
159
- 12.45,3.03,2.64,27.0,97.0,1.9,0.58,0.63,1.14,7.5,0.67,1.73,880.0,2
160
- 14.34,1.68,2.7,25.0,98.0,2.8,1.31,0.53,2.7,13.0,0.57,1.96,660.0,2
161
- 13.48,1.67,2.64,22.5,89.0,2.6,1.1,0.52,2.29,11.75,0.57,1.78,620.0,2
162
- 12.36,3.83,2.38,21.0,88.0,2.3,0.92,0.5,1.04,7.65,0.56,1.58,520.0,2
163
- 13.69,3.26,2.54,20.0,107.0,1.83,0.56,0.5,0.8,5.88,0.96,1.82,680.0,2
164
- 12.85,3.27,2.58,22.0,106.0,1.65,0.6,0.6,0.96,5.58,0.87,2.11,570.0,2
165
- 12.96,3.45,2.35,18.5,106.0,1.39,0.7,0.4,0.94,5.28,0.68,1.75,675.0,2
166
- 13.78,2.76,2.3,22.0,90.0,1.35,0.68,0.41,1.03,9.58,0.7,1.68,615.0,2
167
- 13.73,4.36,2.26,22.5,88.0,1.28,0.47,0.52,1.15,6.62,0.78,1.75,520.0,2
168
- 13.45,3.7,2.6,23.0,111.0,1.7,0.92,0.43,1.46,10.68,0.85,1.56,695.0,2
169
- 12.82,3.37,2.3,19.5,88.0,1.48,0.66,0.4,0.97,10.26,0.72,1.75,685.0,2
170
- 13.58,2.58,2.69,24.5,105.0,1.55,0.84,0.39,1.54,8.66,0.74,1.8,750.0,2
171
- 13.4,4.6,2.86,25.0,112.0,1.98,0.96,0.27,1.11,8.5,0.67,1.92,630.0,2
172
- 12.2,3.03,2.32,19.0,96.0,1.25,0.49,0.4,0.73,5.5,0.66,1.83,510.0,2
173
- 12.77,2.39,2.28,19.5,86.0,1.39,0.51,0.48,0.64,9.899999,0.57,1.63,470.0,2
174
- 14.16,2.51,2.48,20.0,91.0,1.68,0.7,0.44,1.24,9.7,0.62,1.71,660.0,2
175
- 13.71,5.65,2.45,20.5,95.0,1.68,0.61,0.52,1.06,7.7,0.64,1.74,740.0,2
176
- 13.4,3.91,2.48,23.0,102.0,1.8,0.75,0.43,1.41,7.3,0.7,1.56,750.0,2
177
- 13.27,4.28,2.26,20.0,120.0,1.59,0.69,0.43,1.35,10.2,0.59,1.56,835.0,2
178
- 13.17,2.59,2.37,20.0,120.0,1.65,0.68,0.53,1.46,9.3,0.6,1.62,840.0,2
179
- 14.13,4.1,2.74,24.5,96.0,2.05,0.76,0.56,1.35,9.2,0.61,1.6,560.0,2
@@ -1,247 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "id": "6b192e2a-14e9-4707-b1c1-e8f5aa32a919",
6
- "metadata": {},
7
- "source": [
8
- "### __Import Required Libraries__"
9
- ]
10
- },
11
- {
12
- "cell_type": "code",
13
- "execution_count": null,
14
- "id": "95be04fa-500c-4308-9784-b07bb42d5232",
15
- "metadata": {},
16
- "outputs": [],
17
- "source": [
18
- "import pandas as pd\n",
19
- "import matplotlib.pyplot as plt"
20
- ]
21
- },
22
- {
23
- "cell_type": "markdown",
24
- "id": "e5ff8a35-769d-4eda-b5f3-d3c9ba7a2dce",
25
- "metadata": {},
26
- "source": [
27
- "##### __1. Importing the dataset__"
28
- ]
29
- },
30
- {
31
- "cell_type": "code",
32
- "execution_count": null,
33
- "id": "69caa184-219d-4b01-8a30-1ea9ba61dcff",
34
- "metadata": {},
35
- "outputs": [],
36
- "source": [
37
- "df = pd.read_csv('raw_sales.csv', index_col = 'datesold')\n",
38
- "print(df.shape)"
39
- ]
40
- },
41
- {
42
- "cell_type": "markdown",
43
- "id": "f8273eed-a0e9-4d52-a183-350a7393a290",
44
- "metadata": {},
45
- "source": [
46
- "##### __2. Display the first few rows to peek at the data, the last few rows__"
47
- ]
48
- },
49
- {
50
- "cell_type": "code",
51
- "execution_count": null,
52
- "id": "490892d7-df7d-4c0f-9f8a-63883ce7432f",
53
- "metadata": {},
54
- "outputs": [],
55
- "source": [
56
- "df.head()"
57
- ]
58
- },
59
- {
60
- "cell_type": "code",
61
- "execution_count": null,
62
- "id": "24ae00c8-949b-4047-80ed-4f0631992c3f",
63
- "metadata": {},
64
- "outputs": [],
65
- "source": [
66
- "df.tail()"
67
- ]
68
- },
69
- {
70
- "cell_type": "markdown",
71
- "id": "9c24bbd0-75f0-4eb6-863d-7960337bcb77",
72
- "metadata": {},
73
- "source": [
74
- "##### __3. Print the summary statistics__"
75
- ]
76
- },
77
- {
78
- "cell_type": "code",
79
- "execution_count": null,
80
- "id": "bf0037dd-41b5-4c55-ae5c-8dfa5cb11f90",
81
- "metadata": {},
82
- "outputs": [],
83
- "source": [
84
- "df.describe().T"
85
- ]
86
- },
87
- {
88
- "cell_type": "markdown",
89
- "id": "fb7299b8-90fe-4dae-93a1-496129bc928a",
90
- "metadata": {},
91
- "source": [
92
- "##### __4. Filter data for a specific year__"
93
- ]
94
- },
95
- {
96
- "cell_type": "code",
97
- "execution_count": null,
98
- "id": "6a533c7b-6786-4789-9a18-0f19125de32d",
99
- "metadata": {},
100
- "outputs": [],
101
- "source": [
102
- "df.index = pd.to_datetime(df.index)\n",
103
- "df['price'][df.index.year == 2007].mean()"
104
- ]
105
- },
106
- {
107
- "cell_type": "markdown",
108
- "id": "111029b6-fcc9-4f5e-a9d8-833ae27c039e",
109
- "metadata": {},
110
- "source": [
111
- "##### __5. Plot the average price per year__"
112
- ]
113
- },
114
- {
115
- "cell_type": "code",
116
- "execution_count": null,
117
- "id": "71212203-c3e5-49ca-aa07-bbc12a2e0de6",
118
- "metadata": {},
119
- "outputs": [],
120
- "source": [
121
- "group = df['price'].groupby(df.index.year).mean()\n",
122
- "plt.plot(group.index, group.values, color = 'r', label = 'Average_Price/Yr')\n",
123
- "plt.title('Average Price Year Wise')\n",
124
- "plt.legend()\n",
125
- "plt.show()"
126
- ]
127
- },
128
- {
129
- "cell_type": "markdown",
130
- "id": "0405f26e-b564-48a2-9fb5-6d89311a363e",
131
- "metadata": {},
132
- "source": [
133
- "##### __6. Count of properties sold per year__"
134
- ]
135
- },
136
- {
137
- "cell_type": "code",
138
- "execution_count": null,
139
- "id": "7e1cb0fb-f494-49b1-adbc-89824b7e3855",
140
- "metadata": {},
141
- "outputs": [],
142
- "source": [
143
- "group = df.groupby(df.index.year).count()\n",
144
- "plt.bar(group.index, group.values[:, 0], color = 'g', label = 'Property_Sold/Yr')\n",
145
- "plt.title('Property\\'s Sold Year Wise')\n",
146
- "plt.legend()\n",
147
- "plt.show()"
148
- ]
149
- },
150
- {
151
- "cell_type": "markdown",
152
- "id": "d9b4c518-05ec-41ba-956d-e145efc958fd",
153
- "metadata": {},
154
- "source": [
155
- "##### __7. Query for a specific date range (e.g., Jan 2010 to Dec 2015)__"
156
- ]
157
- },
158
- {
159
- "cell_type": "code",
160
- "execution_count": null,
161
- "id": "17f1f390-9e5b-4bc1-882a-88d0331e3a12",
162
- "metadata": {},
163
- "outputs": [],
164
- "source": [
165
- "df2 = df[(df.index > '1/1/2010') & (df.index <= '31/12/2015')]\n",
166
- "df2"
167
- ]
168
- },
169
- {
170
- "cell_type": "markdown",
171
- "id": "28c84984-a5f0-4c46-963f-5c6e3336aed9",
172
- "metadata": {},
173
- "source": [
174
- "##### __8. Calculate the mean price month-wise (use Groupby)__"
175
- ]
176
- },
177
- {
178
- "cell_type": "code",
179
- "execution_count": null,
180
- "id": "db344276-03ab-4fb5-bb62-5dbc0fc11852",
181
- "metadata": {},
182
- "outputs": [],
183
- "source": [
184
- "df2['price'].groupby(df2.index.month).mean()"
185
- ]
186
- },
187
- {
188
- "cell_type": "markdown",
189
- "id": "3f1afa45-d234-4f01-bf63-ea2a5a73f708",
190
- "metadata": {},
191
- "source": [
192
- "##### __9. Perform a histogram plot__"
193
- ]
194
- },
195
- {
196
- "cell_type": "code",
197
- "execution_count": null,
198
- "id": "f0d19cd6-8800-4b7b-b827-6c8fb43d72d9",
199
- "metadata": {},
200
- "outputs": [],
201
- "source": [
202
- "plt.plot(df['price'])\n",
203
- "plt.title('Price Distribution Time-Series')\n",
204
- "plt.show()"
205
- ]
206
- },
207
- {
208
- "cell_type": "markdown",
209
- "id": "b33230fa-a886-4639-926a-cb60f0398745",
210
- "metadata": {},
211
- "source": [
212
- "##### __10. Print the property price > 5Lakhs__"
213
- ]
214
- },
215
- {
216
- "cell_type": "code",
217
- "execution_count": null,
218
- "id": "42695276-9e68-4e56-90a6-02a10e78ed14",
219
- "metadata": {},
220
- "outputs": [],
221
- "source": [
222
- "df[df['price'] > 500000]"
223
- ]
224
- }
225
- ],
226
- "metadata": {
227
- "kernelspec": {
228
- "display_name": "Python 3 (ipykernel)",
229
- "language": "python",
230
- "name": "python3"
231
- },
232
- "language_info": {
233
- "codemirror_mode": {
234
- "name": "ipython",
235
- "version": 3
236
- },
237
- "file_extension": ".py",
238
- "mimetype": "text/x-python",
239
- "name": "python",
240
- "nbconvert_exporter": "python",
241
- "pygments_lexer": "ipython3",
242
- "version": "3.12.4"
243
- }
244
- },
245
- "nbformat": 4,
246
- "nbformat_minor": 5
247
- }