nkululeko 0.93.11__py3-none-any.whl → 0.93.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,1487 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: nkululeko
3
- Version: 0.93.11
4
- Summary: Machine learning audio prediction experiments based on templates
5
- Home-page: https://github.com/felixbur/nkululeko
6
- Author: Felix Burkhardt
7
- Author-email: fxburk@gmail.com
8
- Classifier: Programming Language :: Python :: 3
9
- Classifier: License :: OSI Approved :: MIT License
10
- Classifier: Operating System :: OS Independent
11
- Classifier: Development Status :: 3 - Alpha
12
- Classifier: Topic :: Scientific/Engineering
13
- Requires-Python: >=3.9
14
- Description-Content-Type: text/markdown
15
- License-File: LICENSE
16
- Requires-Dist: audeer
17
- Requires-Dist: audformat
18
- Requires-Dist: audinterface
19
- Requires-Dist: audiofile
20
- Requires-Dist: audiomentations
21
- Requires-Dist: audmetric
22
- Requires-Dist: audonnx
23
- Requires-Dist: confidence_intervals
24
- Requires-Dist: datasets
25
- Requires-Dist: imageio
26
- Requires-Dist: matplotlib
27
- Requires-Dist: numpy
28
- Requires-Dist: opensmile
29
- Requires-Dist: pandas
30
- Requires-Dist: praat-parselmouth
31
- Requires-Dist: scikit_learn
32
- Requires-Dist: scipy
33
- Requires-Dist: seaborn
34
- Requires-Dist: sounddevice
35
- Requires-Dist: torch
36
- Requires-Dist: torchvision
37
- Requires-Dist: transformers
38
- Requires-Dist: umap-learn
39
- Requires-Dist: xgboost
40
- Requires-Dist: pylatex
41
-
42
-
43
- - [Overview](#overview)
44
- - [Confusion matrix](#confusion-matrix)
45
- - [Epoch progression](#epoch-progression)
46
- - [Feature importance](#feature-importance)
47
- - [Feature distribution](#feature-distribution)
48
- - [t-SNE plots](#t-sne-plots)
49
- - [Data distribution](#data-distribution)
50
- - [Bias checking](#bias-checking)
51
- - [Uncertainty](#uncertainty)
52
- - [Documentation](#documentation)
53
- - [Installation](#installation)
54
- - [Usage](#usage)
55
- - [ini-file values](#ini-file-values)
56
- - [Hello World example](#hello-world-example)
57
- - [Features](#features)
58
- - [License](#license)
59
- - [Contributing](#contributing)
60
- - [Citing](#citing)
61
-
62
-
63
- ## Overview
64
- A project to detect speaker characteristics by machine learning experiments with a high-level interface.
65
-
66
- The idea is to have a framework (based on e.g. sklearn and torch) that can be used to rapidly and automatically analyse audio data and explore machine learning models based on that data.
67
-
68
- * NEW with nkululeko: [Ensemble learning](http://blog.syntheticspeech.de/2024/06/25/nkululeko-ensemble-classifiers-with-late-fusion/)
69
- * NEW: [Finetune transformer-models](http://blog.syntheticspeech.de/2024/05/29/nkululeko-how-to-finetune-a-transformer-model/)
70
- * The latest features can be seen in [the ini-file](./ini_file.md) options that are used to control Nkululeko
71
- * Below is a [Hello World example](#helloworld) that should set you up fastly, also on [Google Colab](https://colab.research.google.com/drive/1GYNBd5cdZQ1QC3Jm58qoeMaJg3UuPhjw?usp=sharing#scrollTo=4G_SjuF9xeQf), and [with Kaggle](https://www.kaggle.com/felixburk/nkululeko-hello-world-example)
72
- * [Here's a blog post on how to set up nkululeko on your computer.](http://blog.syntheticspeech.de/2021/08/30/how-to-set-up-your-first-nkululeko-project/)
73
- * [Here is a slack channel to discuss issues related to nkululeko](https://join.slack.com/t/nkululekoworkspace/shared_invite/zt-2v3q3yfzk-XfNGoqLfp3ts9KfCZpfTyg). Please click the link if interested in contributing.
74
- * [Here's a slide presentation about nkululeko](docs/nkululeko.pdf)
75
- * [Here's a video presentation about nkululeko](https://www.youtube.com/playlist?list=PLRceVavtxLg0y2jiLmpnUfiMtfvkK912D)
76
- * [Here's the 2022 LREC article on nkululeko](http://felix.syntheticspeech.de/publications/Nkululeko_LREC.pdf)
77
-
78
- Here are some examples of typical output:
79
-
80
- ### Confusion matrix
81
- Per default, Nkululeko displays results as a confusion matrix using binning with regression.
82
-
83
- <img src="meta/images/conf_mat.png" width="500px"/>
84
-
85
- ### Epoch progression
86
- The point when overfitting starts can sometimes be seen by looking at the results per epoch:
87
-
88
- <img src="meta/images/epoch_progression.png" width="500px"/>
89
-
90
- ### Feature importance
91
- Using the *explore* interface, Nkululeko analyses the importance of acoustic features:
92
-
93
- <img src="meta/images/feat_importance.png" width="500px"/>
94
-
95
- ### Feature distribution
96
- And can show the distribution of specific features per category:
97
-
98
- <img src="meta/images/feat_dist.png" width="500px"/>
99
-
100
- ### t-SNE plots
101
- A t-SNE plot can give you an estimate of whether your acoustic features are useful at all:
102
-
103
- <img src="meta/images/tsne.png" width="500px"/>
104
-
105
- ### Data distribution
106
- Sometimes, you only want to take a look at your data:
107
-
108
- <img src="meta/images/data_plot.png" width="500px"/>
109
-
110
- ### Bias checking
111
- In some cases, you might wonder if there's bias in your data. You can try to detect this with automatically estimated speech properties by visualizing the correlation of target labels and predicted labels.
112
-
113
- <img src="meta/images/emotion-pesq.png" width="500px"/>
114
-
115
- ### Uncertainty
116
- Nkululeko estimates the uncertainty of model decisions (only for classifiers) with entropy over the class probabilities or logits per sample.
117
-
118
- <img src="meta/images/uncertainty.png" width="500px"/>
119
-
120
-
121
-
122
- ## Documentation
123
- The documentation, along with extensions of installation, usage, INI file format, and examples, can be found [nkululeko.readthedocs.io](https://nkululeko.readthedocs.io).
124
-
125
- ## Installation
126
-
127
- Create and activate a virtual Python environment and simply run
128
- ```
129
- pip install nkululeko
130
- ```
131
- We excluded some packages from the automatic installation because they might depend on your computer and some of them are only needed in special cases. So if the error
132
- ```
133
- module x not found
134
- ```
135
- appears, please try
136
- ```
137
- pip install x
138
- ```
139
- For many packages, you will need the missing torch package.
140
- If you don't have a GPU (which is probably true if you don't know what that is), please use
141
- ```
142
- pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
143
- ```
144
- else, you can use the default:
145
- ```
146
- pip install torch torchvision torchaudio
147
- ```
148
-
149
- Some functionalities require extra packages to be installed, which we didn't include automatically:
150
- * the SQUIM model needs a special torch version:
151
- ```
152
- pip uninstall -y torch torchvision torchaudio
153
- pip install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
154
- ```
155
- * the spotlight adapter needs spotlight:
156
- ```
157
- pip install renumics-spotlight sliceguard
158
- ```
159
-
160
-
161
- Some examples for *ini*-files (which you use to control nkululeko) are in the [tests folder](https://github.com/felixbur/nkululeko/tree/main/tests).
162
-
163
-
164
- ## Usage
165
-
166
- ### [ini-file values](./ini_file.md)
167
-
168
- Nkululeko works by specifiying
169
-
170
-
171
- Basically, you specify your experiment in an ["ini" file](./ini_file.md) (e.g. *experiment.ini*) and then call one of the Nkululeko interfaces to run the experiment like this:
172
- * ```python -m nkululeko.nkululeko --config experiment.ini```
173
-
174
- A basic configuration looks like this:
175
- ```
176
- [EXP]
177
- root = ./
178
- name = exp_emodb
179
- [DATA]
180
- databases = ['emodb']
181
- emodb = ./emodb/
182
- emodb.split_strategy = speaker_split
183
- target = emotion
184
- labels = ['anger', 'boredom', 'disgust', 'fear']
185
- [FEATS]
186
- type = ['praat']
187
- [MODEL]
188
- type = svm
189
- [EXPL]
190
- model = tree
191
- plot_tree = True
192
- ```
193
- Read the [Hello World example](#hello-world-example) for initial usage with Emo-DB dataset.
194
-
195
- Here is an overview of the interfaces/modules:
196
-
197
- All of them take *--config <my_config.ini>* as an argument.
198
-
199
- * **nkululeko.nkululeko**: do machine learning experiments combining features and learners
200
- * **nkululeko.ensemble**: [combine several nkululeko experiments](http://blog.syntheticspeech.de/2024/06/25/nkululeko-ensemble-classifiers-with-late-fusion/) and report on late fusion results
201
- * *--config*: which experiments (INI files) to combine
202
- * *--method* (optional): majority_voting, mean (default), max, sum, uncertainty, uncertainty_weighted, confidence_weighted, performance_weighted
203
- * *--threshold*: uncertainty threshold (1.0 means no threshold)
204
- * *--weights*: weights for performance_weighted method (could be from previous UAR, ACC)
205
- * *--outfile* (optional): name of CSV file for output (default: ensemble_result.csv)
206
- * *--no_labels* (optional): indicate that no ground truth is given
207
- * **nkululeko.multidb**: do [multiple experiments](http://blog.syntheticspeech.de/2024/01/02/nkululeko-compare-several-databases/), comparing several databases cross and in itself
208
- * **nkululeko.demo**: [demo the current best model](http://blog.syntheticspeech.de/2022/01/24/nkululeko-try-out-demo-a-trained-model/) on the command line
209
- * *--list* (optional) list of input files
210
- * *--file* (optional) name of input file
211
- * *--folder* (optional) parent folder for input files
212
- * *--outfile* (optional) name of CSV file for output
213
- * **nkululeko.test**: predict a [given data set](http://blog.syntheticspeech.de/2022/09/01/nkululeko-how-to-evaluate-a-test-set-with-a-given-best-model/) with the current best model
214
- * **nkululeko.explore**: perform [data exploration](http://blog.syntheticspeech.de/2023/05/11/nkululeko-how-to-visualize-your-data-distribution/)
215
- * **nkululeko.augment**: [augment](http://blog.syntheticspeech.de/2023/03/13/nkululeko-how-to-augment-the-training-set/) the current training data
216
- * **nkululeko.aug_train**: augment the current training data [and do a training](http://blog.syntheticspeech.de/2023/03/13/nkululeko-how-to-augment-the-training-set/) including this data
217
- * **nkululeko.predict**: [predict features](http://blog.syntheticspeech.de/2023/08/16/nkululeko-how-to-predict-labels-for-your-data-from-existing-models-and-check-them/) like SNR, MOS, arousal/valence, age/gender, with DNN models
218
- * **nkululeko.segment**: [segment a database](http://blog.syntheticspeech.de/2023/07/14/nkululeko-segmenting-a-database/) based on VAD (voice activity detection)
219
- * **nkululeko.resample**: check on all [sampling rates and change](http://blog.syntheticspeech.de/2023/08/31/how-to-fix-different-sampling-rates-in-a-dataset-with-nkululeko/) to 16kHz
220
- * **nkululeko.nkuluflag**: a convenient module to specify configuration parameters on the command line. Usage:
221
-
222
- ```bash
223
- $ python -m nkululeko.nkuluflag.py [-h] [--config CONFIG] [--data [DATA ...]] [--label [LABEL ...]] [--tuning_params [TUNING_PARAMS ...]] [--layers [LAYERS ...]] [--model MODEL] [--feat FEAT] [--set SET] [--with_os WITH_OS] [--target TARGET] [--epochs EPOCHS] [--runs RUNS] [--learning_rate LEARNING_RATE] [--drop DROP]
224
- ```
225
-
226
- There's my [blog](http://blog.syntheticspeech.de/?s=nkululeko) with tutorials:
227
- * [Introduction](http://blog.syntheticspeech.de/2021/08/04/machine-learning-experiment-framework/)
228
- * [Nkulueko FAQ](http://blog.syntheticspeech.de/2022/07/07/nkululeko-faq/)
229
- * [How to set up your first nkululeko project](http://blog.syntheticspeech.de/2021/08/30/how-to-set-up-your-first-nkululeko-project/)
230
- * [Setting up a base nkululeko experiment](http://blog.syntheticspeech.de/2021/10/05/setting-up-a-base-nkululeko-experiment/)
231
- * [How to import a database](http://blog.syntheticspeech.de/2022/01/27/nkululeko-how-to-import-a-database/)
232
- * [Comparing classifiers and features](http://blog.syntheticspeech.de/2021/10/05/nkululeko-comparing-classifiers-and-features/)
233
- * [Use Praat features](http://blog.syntheticspeech.de/2022/06/27/how-to-use-selected-features-from-praat-with-nkululeko/)
234
- * [Combine feature sets](http://blog.syntheticspeech.de/2022/06/30/how-to-combine-feature-sets-with-nkululeko/)
235
- * [Classifying continuous variables](http://blog.syntheticspeech.de/2022/01/26/nkululeko-classifying-continuous-variables/)
236
- * [Try out / demo a trained model](http://blog.syntheticspeech.de/2022/01/24/nkululeko-try-out-demo-a-trained-model/)
237
- * [Perform cross-database experiments](http://blog.syntheticspeech.de/2021/10/05/nkululeko-perform-cross-database-experiments/)
238
- * [Meta parameter optimization](http://blog.syntheticspeech.de/2021/09/03/perform-optimization-with-nkululeko/)
239
- * [How to set up wav2vec embedding](http://blog.syntheticspeech.de/2021/12/03/how-to-set-up-wav2vec-embedding-for-nkululeko/)
240
- * [How to soft-label a database](http://blog.syntheticspeech.de/2022/01/24/how-to-soft-label-a-database-with-nkululeko/)
241
- * [Re-generate the progressing confusion matrix animation wit a different framerate](demos/plot_faster_anim.py)
242
- * [How to limit/filter a dataset](http://blog.syntheticspeech.de/2022/02/22/how-to-limit-a-dataset-with-nkululeko/)
243
- * [Specifying database disk location](http://blog.syntheticspeech.de/2022/02/21/specifying-database-disk-location-with-nkululeko/)
244
- * [Add dropout with MLP models](http://blog.syntheticspeech.de/2022/02/25/adding-dropout-to-mlp-models-with-nkululeko/)
245
- * [Do cross-validation](http://blog.syntheticspeech.de/2022/03/23/how-to-do-cross-validation-with-nkululeko/)
246
- * [Combine predictions per speaker](http://blog.syntheticspeech.de/2022/03/24/how-to-combine-predictions-per-speaker-with-nkululeko/)
247
- * [Run multiple experiments in one go](http://blog.syntheticspeech.de/2022/03/28/how-to-run-multiple-experiments-in-one-go-with-nkululeko/)
248
- * [Compare several MLP layer layouts with each other](http://blog.syntheticspeech.de/2022/04/11/how-to-compare-several-mlp-layer-layouts-with-each-other/)
249
- * [Import features from outside the software](http://blog.syntheticspeech.de/2022/10/18/how-to-import-features-from-outside-the-nkululeko-software/)
250
- * [Export acoustic features](http://blog.syntheticspeech.de/2024/05/30/nkululeko-export-acoustic-features/)
251
- * [Explore feature importance](http://blog.syntheticspeech.de/2023/02/20/nkululeko-show-feature-importance/)
252
- * [Plot distributions for feature values](http://blog.syntheticspeech.de/2023/02/16/nkululeko-how-to-plot-distributions-of-feature-values/)
253
- * [Show feature importance](http://blog.syntheticspeech.de/2023/02/20/nkululeko-show-feature-importance/)
254
- * [Augment the training set](http://blog.syntheticspeech.de/2023/03/13/nkululeko-how-to-augment-the-training-set/)
255
- * [Visualize clusters of acoustic features](http://blog.syntheticspeech.de/2023/04/20/nkululeko-visualize-clusters-of-your-acoustic-features/)
256
- * [Visualize your data distribution](http://blog.syntheticspeech.de/2023/05/11/nkululeko-how-to-visualize-your-data-distribution/)
257
- * [Check your dataset](http://blog.syntheticspeech.de/2023/07/11/nkululeko-check-your-dataset/)
258
- * [Segmenting a database](http://blog.syntheticspeech.de/2023/07/14/nkululeko-segmenting-a-database/)
259
- * [Predict new labels for your data from public models and check bias](http://blog.syntheticspeech.de/2023/08/16/nkululeko-how-to-predict-labels-for-your-data-from-existing-models-and-check-them/)
260
- * [Resample](http://blog.syntheticspeech.de/2023/08/31/how-to-fix-different-sampling-rates-in-a-dataset-with-nkululeko/)
261
- * [Get some statistics on correlation and effect-size](http://blog.syntheticspeech.de/2023/09/05/nkululeko-get-some-statistics-on-correlation-and-effect-size/)
262
- * [Automatic generation of a latex/pdf report](http://blog.syntheticspeech.de/2023/09/26/nkululeko-generate-a-latex-pdf-report/)
263
- * [Inspect your data with Spotlight](http://blog.syntheticspeech.de/2023/10/31/nkululeko-inspect-your-data-with-spotlight/)
264
- * [Automatically stratify your split sets](http://blog.syntheticspeech.de/2023/11/07/nkululeko-automatically-stratify-your-split-sets/)
265
- * [re-name data column names](http://blog.syntheticspeech.de/2023/11/16/nkululeko-re-name-data-column-names/)
266
- * [Oversample the training set](http://blog.syntheticspeech.de/2023/11/16/nkululeko-oversample-the-training-set/)
267
- * [Compare several databases](http://blog.syntheticspeech.de/2024/01/02/nkululeko-compare-several-databases/)
268
- * [Tweak the target variable for database comparison](http://blog.syntheticspeech.de/2024/03/13/nkululeko-how-to-tweak-the-target-variable-for-database-comparison/)
269
- * [How to run multiple experiments in one go](http://blog.syntheticspeech.de/2022/03/28/how-to-run-multiple-experiments-in-one-go-with-nkululeko/)
270
- * [How to finetune a transformer-model](http://blog.syntheticspeech.de/2024/05/29/nkululeko-how-to-finetune-a-transformer-model/)
271
- * [Ensemble (combine) classifiers with late-fusion](http://blog.syntheticspeech.de/2024/06/25/nkululeko-ensemble-classifiers-with-late-fusion/)
272
-
273
-
274
- ### <a name="helloworld">Hello World example</a>
275
- * NEW: [Here's a Google colab that runs this example out-of-the-box](https://colab.research.google.com/drive/1Up7t5Nn7VwDPCCEpTg2U7cpZ_PdoEgj-?usp=sharing), and here is the same [with Kaggle](https://www.kaggle.com/felixburk/nkululeko-hello-world-example)
276
- * [I made a video to show you how to do this on Windows](https://www.youtube.com/playlist?list=PLRceVavtxLg0y2jiLmpnUfiMtfvkK912D)
277
- * Set up Python on your computer, version >= 3.8
278
- * Open a terminal/command line/console window
279
- * Test python by typing ```python```, python should start with version >3 (NOT 2!). You can leave the Python Interpreter by typing *exit()*
280
- * Create a folder on your computer for this example, let's call it `nkulu_work`
281
- * Get a copy of the [Berlin emodb in audformat](https://zenodo.org/records/7447302/files/emodb.zip?download=1) and unpack inside the folder you just created (`nkulu_work`)
282
- * Make sure the folder is called "emodb" and does contain the database files directly (not box-in-a-box)
283
- * Also, in the `nkulu_work` folder:
284
- * Create a Python environment
285
- * ```python -m venv venv```
286
- * Then, activate it:
287
- * under Linux / mac
288
- * ```source venv/bin/activate```
289
- * under Windows
290
- * ```venv\Scripts\activate.bat```
291
- * if that worked, you should see a ```(venv)``` in front of your prompt
292
- * Install the required packages in your environment
293
- * ```pip install nkululeko```
294
- * Repeat until all error messages vanish (or fix them, or try to ignore them)...
295
- * Now you should have two folders in your *nkulu_work* folder:
296
- * *emodb* and *venv*
297
- * Download a copy of the file [exp_emodb.ini](meta/demos/exp_emodb.ini) to the current working directory (```nkulu_work```)
298
- * Run the demo
299
- * ```python -m nkululeko.nkululeko --config exp_emodb.ini```
300
- * Find the results in the newly created folder exp_emodb
301
- * Inspect ```exp_emodb/images/run_0/emodb_xgb_os_0_000_cnf.png```
302
- * This is the main result of your experiment: a confusion matrix for the emodb emotional categories
303
- * Inspect and play around with the [demo configuration file](meta/demos/exp_emodb.ini) that defined your experiment, then re-run.
304
- * There are many ways to experiment with different classifiers and acoustic feature sets, [all described here](https://github.com/felixbur/nkululeko/blob/main/ini_file.md)
305
-
306
- ### Features
307
- The framework is targeted at the speech domain and supports experiments where different classifiers are combined with different feature extractors.
308
-
309
- * Classifiers: Naive Bayes, KNN, Tree, XGBoost, SVM, MLP
310
- * Feature extractors: Praat, Opensmile, openXBOW BoAW, TRILL embeddings, Wav2vec2 embeddings, audModel embeddings, ...
311
- * Feature scaling
312
- * Label encoding
313
- * Binning (continuous to categorical)
314
- * Online demo interface for trained models
315
-
316
- Here's a rough UML-like sketch of the framework (and [here's the real one done with pyreverse](meta/images/classes.png)).
317
- ![sketch](meta/images/class_diagram.png)
318
-
319
- Currently, the following linear classifiers are implemented (integrated from sklearn):
320
- * SVM, SVR, XGB, XGR, Tree, Tree_regressor, KNN, KNN_regressor, NaiveBayes, GMM
321
- and the following ANNs (artificial neural networks)
322
- * MLP (multi-layer perceptron), CNN (convolutional neural network)
323
-
324
- Here's [an animation that shows the progress of classification done with nkululeko](https://youtu.be/6Y0M382GjvM)
325
-
326
-
327
- ## License
328
- Nkululeko can be used under the [MIT license](https://choosealicense.com/licenses/mit/).
329
-
330
-
331
- ## Contributing
332
- Contributions are welcome and encouraged. To learn more about how to contribute to nkululeko, please refer to the [Contributing guidelines](./CONTRIBUTING.md).
333
-
334
- ## Citing
335
- If you use it, please mention the Nkululeko paper:
336
-
337
- > F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schuller: Nkululeko: A Tool For Rapid Speaker Characteristics Detection, Proc. Proc. LREC, 2022
338
-
339
-
340
- ```
341
- @inproceedings{Burkhardt:lrec2022,
342
- title = {Nkululeko: A Tool For Rapid Speaker Characteristics Detection},
343
- author = {Felix Burkhardt and Johannes Wagner and Hagen Wierstorf and Florian Eyben and Björn Schuller},
344
- isbn = {9791095546726},
345
- journal = {2022 Language Resources and Evaluation Conference, LREC 2022},
346
- keywords = {machine learning,speaker characteristics,tools},
347
- pages = {1925-1932},
348
- publisher = {European Language Resources Association (ELRA)},
349
- year = {2022},
350
- }
351
- ```
352
-
353
- Changelog
354
- =========
355
-
356
- Version 0.93.11
357
- --------------
358
- * bugfix: silero segmenter assigned file duration values
359
-
360
- Version 0.93.10
361
- --------------
362
- * added nan check for imported features
363
- * added LOGO result output
364
-
365
- Version 0.93.9
366
- --------------
367
- * added manual seed to torch models
368
-
369
- Version 0.93.8
370
- --------------
371
- * fixed bugs in plot
372
- * added import_files_append=False
373
-
374
- Version 0.93.7
375
- --------------
376
- * added a safety to remove nan values after mapping
377
-
378
- Version 0.93.6
379
- --------------
380
- * added error message and hint for data.target_tables_append
381
-
382
- Version 0.93.5
383
- --------------
384
- * fixed bug in dataset loading
385
-
386
- Version 0.93.4
387
- --------------
388
- * ccc in plots now configurable
389
-
390
- Version 0.93.3
391
- --------------
392
- * bugfix in plot
393
-
394
- Version 0.93.2
395
- --------------
396
- * changed class_label in plots to actual target
397
-
398
- Version 0.93.1
399
- --------------
400
- * made explore module more robust
401
-
402
- Version 0.93.0
403
- --------------
404
- * integrated pyannote for speaker prediction for predict module
405
-
406
- Version 0.92.2
407
- --------------
408
- * added some output to automatic speaker id
409
-
410
- Version 0.92.1
411
- --------------
412
- * added a speaker plot to pyannote results
413
-
414
- Version 0.92.0
415
- --------------
416
- * added first version of automatic speaker prediction for segment module
417
-
418
- Version 0.91.3
419
- --------------
420
- * some additions for robustness
421
-
422
- Version 0.91.2
423
- --------------
424
- * making lint work by excluding constants from check
425
-
426
- Version 0.91.1
427
- --------------
428
- * minor refactoring in ensemble module
429
-
430
- Version 0.91.0
431
- --------------
432
- * fixed duration display in segmentation
433
- * added possibility to use original segmentations (without max. duration)
434
-
435
- Version 0.90.4
436
- --------------
437
- * added plot format for multidb
438
-
439
- Version 0.90.3
440
- --------------
441
- * refactorings and documentations
442
-
443
- Version 0.90.2
444
- --------------
445
- * added probability output to finetuning classification models
446
- * switched path to prob. output from "store" to "results"
447
-
448
- Version 0.90.1
449
- --------------
450
- * Add balancing for finetune and update data README
451
-
452
- Version 0.90.0
453
- --------------
454
- * augmentation can now be done without target
455
- * random splicing params configurable
456
- * made kde default for plot continous/categorical plots
457
-
458
- Version 0.89.2
459
- --------------
460
- * fix shap value calculation
461
-
462
- Version 0.89.1
463
- --------------
464
- * print and save result of feature importance
465
-
466
- Version 0.89.0
467
- --------------
468
- * added Roc plots and classification report on Debug
469
-
470
-
471
- Version 0.88.12
472
- ---------------
473
- * added n_jobs for sklearn processing
474
- * re_named num_workers n_jobs
475
-
476
- Version 0.88.11
477
- --------------
478
- * removed hack in Praat script
479
-
480
- Version 0.88.10
481
- --------------
482
- * SVM C val defaults to 1
483
- * fixed agender_agender naming bug
484
-
485
- Version 0.88.9
486
- --------------
487
- * added performance_weighted ensemble
488
-
489
- Version 0.88.8
490
- --------------
491
- * some cosmetics
492
-
493
- Version 0.88.7
494
- --------------
495
- * added use_splits for multidb
496
-
497
- Version 0.88.6
498
- --------------
499
- * added test speaker assign
500
-
501
- Version 0.88.5
502
- --------------
503
- * add a unique name to the uncertainty plot
504
- * fix error in speaker embedding (still need speechbrain < 1.0)
505
- * add get_target_name function in util
506
-
507
- Version 0.88.4
508
- --------------
509
- * added more ensemble methods, e.g. based on uncertainty
510
-
511
- Version 0.88.3
512
- --------------
513
- * fixed bug in false uncertainty estimation
514
- * changed demo live recording
515
-
516
- Version 0.88.2
517
- --------------
518
- * changed combine speaker results to show speakers not samples
519
-
520
- Version 0.88.1
521
- --------------
522
- * added obligatory scatter plot for regression
523
-
524
- Version 0.88.0
525
- --------------
526
- * added ensemble late fusion and AST features
527
-
528
- Version 0.87.0
529
- --------------
530
- * added class probability output and uncertainty analysis
531
-
532
- Version 0.86.8
533
- --------------
534
- * handle single feature sets as strings in the config
535
-
536
- Version 0.86.7
537
- --------------
538
- * handles now audformat tables where the target is in a file index
539
-
540
- Version 0.86.6
541
- --------------
542
- * now best (not last) result is shown at end
543
-
544
- Version 0.86.5
545
- --------------
546
- * fix audio path detection in data csv import
547
-
548
- Version 0.86.4
549
- --------------
550
- * add finetuning to the demo module
551
-
552
- Version 0.86.3
553
- --------------
554
- * bugfixed: nan in finetuned model and double saving
555
- * import features now get multiindex automatically
556
-
557
- Version 0.86.2
558
- --------------
559
- * plots epoch progression for finetuned models now
560
-
561
- Version 0.86.1
562
- --------------
563
- * functionality to push to hub
564
- * fixed bug that prevented wavlm finetuning
565
-
566
- Version 0.86.0
567
- --------------
568
- * added regression to finetuning
569
- * added other transformer models to finetuning
570
- * added output the train/dev features sets actually used by the model
571
-
572
- Version 0.85.2
573
- --------------
574
- * added data, and automatic task label detection
575
-
576
- Version 0.85.1
577
- --------------
578
- * fixed bug in model_finetuned that label_num was constant 2
579
-
580
- Version 0.85.0
581
- --------------
582
- * first version with finetuning wav2vec2 layers
583
-
584
- Version 0.84.1
585
- --------------
586
- * made resample independent of config file
587
-
588
- Version 0.84.0
589
- --------------
590
- * added SHAP analysis
591
- * started with finetuning
592
-
593
- Version 0.83.3
594
- --------------
595
- * fixed a naming error in trill features that prevented storage of experiment
596
-
597
- Version 0.83.2
598
- --------------
599
- * added default cuda if present and not stated
600
-
601
- Version 0.83.1
602
- --------------
603
- * add test module to nkuluflag
604
-
605
- Version 0.83.0
606
- --------------
607
- * test module now prints out reports
608
-
609
- Version 0.82.4
610
- --------------
611
- * fixed bug in wavlm
612
-
613
- Version 0.82.3
614
- --------------
615
- * fixed another audformat peculiarity to interprete time values as nanoseconds
616
-
617
- Version 0.82.2
618
- --------------
619
- * fixed audformat peculiarity that dataframes can have only one column
620
-
621
- Version 0.82.1
622
- --------------
623
- * Add more test for GC action
624
-
625
- Version 0.82.0
626
- --------------
627
- * added nkuluflag module
628
-
629
- Version 0.81.7
630
- --------------
631
- * bugfixes
632
- * added whisper feature extractor
633
-
634
- Version 0.81.6
635
- --------------
636
- * updated documentation
637
- * updated crema-d
638
- * updated tests
639
-
640
- Version 0.81.5
641
- --------------
642
- * added sex=gender for speaker mappings
643
-
644
- Version 0.81.4
645
- --------------
646
- * fixed bug in demo module
647
- * removed [MODEL] save
648
-
649
- Version 0.81.3
650
- --------------
651
- * added confidence intervals to result reporting
652
-
653
- Version 0.81.2
654
- --------------
655
- * added a parselmouth.Praat error if pitch out of range
656
- * changed file path for demo_predictor
657
-
658
- Version 0.81.1
659
- --------------
660
- * fixed bugs in demo module
661
- * made kernel for SVM/SVR configurable
662
-
663
- Version 0.81.0
664
- --------------
665
- * added test selection to test module
666
-
667
- Version 0.80.4
668
- --------------
669
- * added test-file folder to demo file lists
670
-
671
- Version 0.80.3
672
- --------------
673
- * made sounddevice use optional as Portaudio library causes difficulties
674
-
675
- Version 0.80.2
676
- --------------
677
- * fixed bug that caused clash with GPU/CPU use
678
-
679
- Version 0.80.1
680
- --------------
681
- * added support for string value in import_features
682
- + added support for multiple extra training databases when doing multi-db experiments
683
-
684
- Version 0.80.0
685
- --------------
686
- * fixed bug no feature import
687
- * add support for multiple import feature files
688
-
689
- Version 0.79.5
690
- --------------
691
- * fixed bug on demo without in- or output
692
- * fixed bug that demo with DL feature extractors did not work
693
-
694
- Version 0.79.4
695
- --------------
696
- * added functionality in demo for regression
697
-
698
- Version 0.79.3
699
- --------------
700
- * fixed bug that test module did not work
701
- * fixed bug that demo module did not work for ANNs
702
- * added csv output for demo mode and file lists
703
-
704
- Version 0.79.2
705
- --------------
706
- * fixed bug and report number of epochs for early stopping
707
-
708
- Version 0.79.1
709
- --------------
710
- * root directory does not have to end with /
711
-
712
- Version 0.79.0
713
- --------------
714
- * added extra_train for multidb experiment
715
-
716
- Version 0.78.2
717
- --------------
718
- * added transformer layer selection for wav2vec2
719
- * removed best_model and epoch progression for non-DL models
720
-
721
- Version 0.78.1
722
- --------------
723
- * added evaluation loss
724
-
725
- Version 0.78.0
726
- --------------
727
- * added 3-d scatter plots
728
- * removed epoch-plots if epoch_num=1
729
-
730
- Version 0.77.14
731
- --------------
732
- * fixed bug preventing bin scaling to work
733
-
734
- Version 0.77.13
735
- --------------
736
- * added bins scaler
737
-
738
- Version 0.77.12
739
- --------------
740
- * fixed bug with scatter plots for numeric targets
741
- * made type of numeric target distributions selectable, default "hist"
742
-
743
- Version 0.77.11
744
- --------------
745
- * added simple target distribution plots
746
-
747
- Version 0.77.10
748
- --------------
749
- * show the best and not the last result for multidb
750
-
751
- Version 0.77.9
752
- --------------
753
- * added results text for multidb
754
-
755
- Version 0.77.8
756
- --------------
757
- * added caption to multidb heatmap
758
- * renamed datasets to databases in multidb
759
-
760
- Version 0.77.7
761
- --------------
762
- * added multidb module
763
-
764
- Version 0.77.6
765
- --------------
766
- * added functions to call modules with config file path directly
767
-
768
- Version 0.77.5
769
- --------------
770
- * fixed augmentation bug for python version 10
771
-
772
- Version 0.77.4
773
- --------------
774
- * made traditional augmentations (audiomentation module) configurable
775
-
776
- Version 0.77.3
777
- --------------
778
- * added augment and train interface
779
-
780
- Version 0.77.2
781
- --------------
782
- * added models for features importance computation
783
-
784
- Version 0.77.1
785
- --------------
786
- * added permutation algorithm to compute feature importance
787
- * shifted util.py to utils
788
-
789
- Version 0.77.0
790
- --------------
791
- * added more latex report output
792
- * got splitutils from a package
793
-
794
- Version 0.76.0
795
- --------------
796
- * added possibility to aggregate feature importance models
797
-
798
- Version 0.75.0
799
- --------------
800
- * added max val for reversing
801
- * added xgb for feature importance
802
-
803
- Version 0.74.6
804
- --------------
805
- * added standard Wav2vec2 model
806
-
807
- Version 0.74.5
808
- --------------
809
- * added praat feature extractor for one sample
810
-
811
- Version 0.74.4
812
- --------------
813
- * fixed bug combining augmentations
814
-
815
- Version 0.74.3
816
- --------------
817
- * audiomentations interface changed
818
-
819
- Version 0.74.2
820
- --------------
821
- * combined augmentation methods
822
-
823
- Version 0.74.1
824
- --------------
825
- * fixed various bugs with augmentation
826
-
827
- Version 0.74.0
828
- --------------
829
- * added patience (early stopping)
830
- * added MAE loss and measure
831
-
832
- Version 0.73.0
833
- --------------
834
- * added reverse and scale arguments to target variable
835
- * also, the data store can now be csv
836
-
837
- Version 0.72.0
838
- --------------
839
- * worked over explore value counts section
840
- * added bin_reals for all columns
841
-
842
- Version 0.71.4
843
- --------------
844
- * automatic epoch reset if not ANN
845
- * scatter plots now show a regression line
846
-
847
- Version 0.71.3
848
- --------------
849
- * enabled scatter plots for all variables
850
-
851
- Version 0.71.2
852
- --------------
853
- * enabled scatter plots for continuous labels
854
-
855
- Version 0.71.1
856
- --------------
857
- * made a wav2vec default
858
- * renamed praat features, ommiting spaces
859
- * fixed plot distribution bugs
860
- * added feature plots for continuous targets
861
-
862
- Version 0.71.0
863
- --------------
864
- * added explore visuals.
865
- * all columns from databases should now be usable
866
-
867
- Version 0.70.0
868
- --------------
869
- * added imb_learn balancing of training set
870
-
871
- Version 0.69.0
872
- --------------
873
- * added CNN model and melspec extractor
874
-
875
- Version 0.68.4
876
- --------------
877
- * bugfix: got_gender was uncorrectly set
878
-
879
- Version 0.68.3
880
- --------------
881
- * Feinberg Praat scripts ignore error and log filename
882
-
883
- Version 0.68.2
884
- --------------
885
- * column names in datasets are now configurable
886
-
887
- Version 0.68.1
888
- --------------
889
- * added error message on file to praat extraction
890
-
891
- Version 0.68.0
892
- --------------
893
- * added stratification framework for split balancing
894
-
895
- Version 0.67.0
896
- --------------
897
- * added first version of spotlight integration
898
-
899
- Version 0.66.13
900
- ---------------
901
- * small changes related to github worker
902
-
903
- Version 0.66.12
904
- ---------------
905
- * fixed bug that prevented Praat features to be selected
906
-
907
- Version 0.66.11
908
- ---------------
909
- * removed torch from automatic install. depends on cpu/gpu machine
910
-
911
- Version 0.66.10
912
- ---------------
913
- * Removed print statements from feats_wav2vec2
914
-
915
- Version 0.66.9
916
- --------------
917
- * Version that should install without requiring opensmile which seems not to be supported by all Apple processors (arm CPU (Apple M1))
918
-
919
- Version 0.66.8
920
- --------------
921
- * forgot __init__.py in reporting module
922
-
923
- Version 0.66.7
924
- --------------
925
- * minor changes to experiment class
926
-
927
- Version 0.66.6
928
- --------------
929
- * minor cosmetics
930
-
931
- Version 0.66.5
932
- --------------
933
- * Latex report now with images
934
-
935
- Version 0.66.4
936
- --------------
937
- * Pypi version mixup
938
-
939
- Version 0.66.3
940
- --------------
941
- * made path to PDF output relative to experiment root
942
-
943
- Version 0.66.2
944
- --------------
945
- * enabled data-pacthes with quotes
946
- * enabled missing category labels
947
- * used tqdm for progress display
948
-
949
- Version 0.66.1
950
- --------------
951
- * start on the latex report framework
952
-
953
- Version 0.66.0
954
- --------------
955
- * added speechbrain speakerID embeddings
956
-
957
- Version 0.65.9
958
- --------------
959
- * added a filter that ensures that the labels have the same size as the features
960
-
961
- Version 0.65.8
962
- --------------
963
- * changed default behaviour of resampler to "keep original files"
964
-
965
- Version 0.65.7
966
- --------------
967
- * more databases and force wav while resampling
968
-
969
- Version 0.65.6
970
- --------------
971
- * minor catch for seaborn in plots
972
-
973
- Version 0.65.5
974
- --------------
975
- * added fill_na in plot effect size
976
-
977
- Version 0.65.4
978
- --------------
979
- * added datasets to distribution
980
- * changes in wav2vec2
981
-
982
- Version 0.65.3
983
- --------------
984
- * various bugfixes
985
-
986
- Version 0.65.2
987
- --------------
988
- * fixed bug in dataset.csv that prevented correct paths for relative files
989
- * fixed bug in export module concerning new file directory
990
-
991
- Version 0.65.1
992
- --------------
993
- * small enhancements with transformer features
994
-
995
- Version 0.65.0
996
- --------------
997
- * introduced export module
998
-
999
- Version 0.64.4
1000
- --------------
1001
- * added num_speakers for reloaded data
1002
- * re-formatted all with black
1003
-
1004
- Version 0.64.3
1005
- --------------
1006
- * added number of speakers shown after data load
1007
-
1008
- Version 0.64.2
1009
- --------------
1010
- * added __init__.py for submodules
1011
-
1012
- Version 0.64.1
1013
- --------------
1014
- * fix error on csv
1015
-
1016
- Version 0.64.0
1017
- --------------
1018
- * added bin_reals
1019
- * added statistics for effect size and correlation to plots
1020
-
1021
- Version 0.63.4
1022
- --------------
1023
- * fixed bug in split selection
1024
-
1025
- Version 0.63.3
1026
- --------------
1027
- * Introduced data.audio_path
1028
-
1029
-
1030
- Version 0.63.2
1031
- --------------
1032
- * re-introduced min and max_length for silero segmenatation
1033
-
1034
- Version 0.63.1
1035
- --------------
1036
- * fixed bug in resample
1037
-
1038
- Version 0.63.0
1039
- --------------
1040
- * added wavlm model
1041
- * added error on filename for models
1042
-
1043
- Version 0.62.1
1044
- --------------
1045
- * added min and max_length for silero segmenatation
1046
-
1047
- Version 0.62.0
1048
- --------------
1049
- * fixed segment silero bug
1050
- * added all Wav2vec2 models
1051
- * added resampler module
1052
- * added error on file for embeddings
1053
-
1054
- Version 0.61.0
1055
- --------------
1056
- * added HUBERT embeddings
1057
-
1058
- Version 0.60.0
1059
- --------------
1060
- * some bugfixes
1061
- * new package structure
1062
- * fixed wav2vec2 bugs
1063
- * removed "cross_data" strategy
1064
-
1065
-
1066
- Version 0.59.1
1067
- --------------
1068
- * bugfix, after fresh install, it seems some libraries have changed
1069
- * added no_warnings
1070
- * changed print() to util.debug()
1071
- * added progress to opensmile extract
1072
-
1073
- Version 0.59.0
1074
- --------------
1075
- * introduced SQUIM features
1076
- * added SDR predict
1077
- * added STOI predict
1078
-
1079
- Version 0.58.0
1080
- --------------
1081
- * added dominance predict
1082
- * added MOS predict
1083
- * added PESQ predict
1084
-
1085
- Version 0.57.0
1086
- --------------
1087
- * renamed autopredict predict
1088
- * added arousal autopredict
1089
- * added valence autopredict
1090
-
1091
-
1092
- Version 0.56.0
1093
- --------------
1094
- * added autopredict module
1095
- * added snr as feature extractor
1096
- * added gender autopredict
1097
- * added age autopredict
1098
- * added snr autopredict
1099
-
1100
- Version 0.55.1
1101
- --------------
1102
- * changed error message in plot class
1103
-
1104
- Version 0.55.0
1105
- --------------
1106
- * added segmentation module
1107
-
1108
- Version 0.54.0
1109
- --------------
1110
- * added audeering public age and gender model embeddings and age and gender predictions
1111
-
1112
- Version 0.53.0
1113
- --------------
1114
- * added file checks: size in bytes and voice activity detection with silero
1115
-
1116
- Version 0.52.1
1117
- --------------
1118
- * bugfix: min/max duration_of_sample was not working
1119
-
1120
- Version 0.52.0
1121
- --------------
1122
- * added flexible value distribution plots
1123
-
1124
- Version 0.51.0
1125
- --------------
1126
- * added datafilter
1127
-
1128
- Version 0.50.1
1129
- --------------
1130
- * added caller information for debug and error messages in Util
1131
-
1132
- Version 0.50.0
1133
- --------------
1134
- * removed loso and added pre-selected logo (leave-one-group-out), aka folds
1135
-
1136
- Version 0.49.1
1137
- --------------
1138
- * bugfix: samples selection for augmentation didn't work
1139
-
1140
- Version 0.49.0
1141
- --------------
1142
- * added random-splicing
1143
-
1144
- Version 0.48.1
1145
- --------------
1146
- * bugfix: database object was not loaded when dataframe was reused
1147
-
1148
- Version 0.48.0
1149
- --------------
1150
- * enabled specific feature selection for praat and opensmile features
1151
-
1152
- Version 0.47.1
1153
- --------------
1154
- * enabled feature storage format csv for opensmile features
1155
-
1156
- Version 0.47.0
1157
- --------------
1158
- * added praat speech rate features
1159
-
1160
- Version 0.46.0
1161
- --------------
1162
- * added warnings for non-existent parameters
1163
- * added sample selection for scatter plotting
1164
-
1165
- Version 0.45.4
1166
- --------------
1167
- * added version attribute to setup.cfg
1168
-
1169
- Version 0.45.4
1170
- --------------
1171
- * added __version__ attribute
1172
-
1173
-
1174
- Version 0.44.1
1175
- --------------
1176
- * bugfixing: feature importance: https://github.com/felixbur/nkululeko/issues/23
1177
- * bugfixing: loading csv database with filewise index https://github.com/felixbur/nkululeko/issues/24
1178
-
1179
- Version 0.45.2
1180
- --------------
1181
- * bugfix: sample_selection in EXPL was required wrongly
1182
-
1183
- Version 0.45.2
1184
- --------------
1185
- * added sample_selection for sample distribution plots
1186
-
1187
- Version 0.45.1
1188
- --------------
1189
- * fixed dataframe.append bug
1190
-
1191
- Version 0.45.0
1192
- --------------
1193
- * added auddim as features
1194
- * added FEATS store_format
1195
- * added device use to feat_audmodel
1196
-
1197
- Version 0.44.1
1198
- --------------
1199
- * bugfixes
1200
-
1201
- Version 0.44.0
1202
- --------------
1203
- * added scatter functions: tsne, pca, umap
1204
-
1205
- Version 0.43.7
1206
- --------------
1207
- * added clap features
1208
-
1209
- Version 0.43.6
1210
- --------------
1211
- * small bugs
1212
-
1213
-
1214
- Version 0.43.5
1215
- --------------
1216
- * because of difficulties with numba and audiomentations importing audiomentations only when augmenting
1217
-
1218
- Version 0.43.4
1219
- --------------
1220
- * added error when experiment type and predictor don't match
1221
-
1222
- Version 0.43.3
1223
- --------------
1224
- * fixed further bugs and added augmentation to the test runs
1225
-
1226
- Version 0.43.2
1227
- --------------
1228
- * fixed a bug when running continuous variable as classification problem
1229
-
1230
- Version 0.43.1
1231
- --------------
1232
- * fixed test_runs
1233
-
1234
- Version 0.43.0
1235
- --------------
1236
- * added augmentation module based on audiomentation
1237
-
1238
- Version 0.42.0
1239
- --------------
1240
- * age labels should now be detected in databases
1241
-
1242
- Version 0.41.0
1243
- --------------
1244
- * added feature tree plot
1245
-
1246
- Version 0.40.1
1247
- --------------
1248
- * fixed a bug: additional test database was not label encoded
1249
-
1250
- Version 0.40.0
1251
- --------------
1252
- * added EXPL section and first functionality
1253
- * added test module (for test databases)
1254
-
1255
- Version 0.39.0
1256
- --------------
1257
- * added feature distribution plots
1258
- * added plot format
1259
-
1260
- Version 0.38.3
1261
- --------------
1262
- * added demo mode with list argument
1263
-
1264
- Version 0.38.2
1265
- --------------
1266
- * fixed a bug concerned with "no_reuse" evaluation
1267
-
1268
- Version 0.38.1
1269
- --------------
1270
- * demo mode with file argument
1271
-
1272
- Version 0.38.0
1273
- --------------
1274
- * fixed demo mode
1275
-
1276
- Version 0.37.2
1277
- --------------
1278
- * mainly replaced pd.append with pd.concat
1279
-
1280
-
1281
- Version 0.37.1
1282
- --------------
1283
- * fixed bug preventing praat feature extraction to work
1284
-
1285
- Version 0.37.0
1286
- --------------
1287
- * fixed bug cvs import not detecting multiindex
1288
-
1289
- Version 0.36.3
1290
- --------------
1291
- * published as a pypi module
1292
-
1293
- Version 0.36.0
1294
- --------------
1295
- * added entry nkululeko.py script
1296
-
1297
-
1298
- Version 0.35.0
1299
- --------------
1300
- * fixed bug that prevented scaling (normalization)
1301
-
1302
- Version 0.34.2
1303
- --------------
1304
- * smaller bug fixed concerning the loss_string
1305
-
1306
- Version 0.34.1
1307
- --------------
1308
- * smaller bug fixes and tried Soft_f1 loss
1309
-
1310
-
1311
- Version 0.34.0
1312
- --------------
1313
- * smaller bug fixes and debug ouputs
1314
-
1315
- Version 0.33.0
1316
- --------------
1317
- * added GMM as a model type
1318
-
1319
- Version 0.32.0
1320
- --------------
1321
- * added audmodel embeddings as features
1322
-
1323
- Version 0.31.0
1324
- --------------
1325
- * added models: tree and tree_reg
1326
-
1327
- Version 0.30.0
1328
- --------------
1329
- * added models: bayes, knn and knn_reg
1330
-
1331
- Version 0.29.2
1332
- --------------
1333
- * fixed hello world example
1334
-
1335
-
1336
- Version 0.29.1
1337
- --------------
1338
- * bug fix for 0.29
1339
-
1340
-
1341
- Version 0.29.0
1342
- --------------
1343
- * added a new FeatureExtractor class to import external data
1344
-
1345
- Version 0.28.2
1346
- --------------
1347
- * removed some Pandas warnings
1348
- * added no_reuse function to database.load()
1349
-
1350
- Version 0.28.1
1351
- --------------
1352
- * with database.value_counts show only the data that is actually used
1353
-
1354
-
1355
- Version 0.28.0
1356
- --------------
1357
- * made "label_data" configuration automatic and added "label_result"
1358
-
1359
-
1360
- Version 0.27.0
1361
- --------------
1362
- * added "label_data" configuration to label data with trained model (so now there can be train, dev and test set)
1363
-
1364
- Version 0.26.1
1365
- --------------
1366
- * Fixed some bugs caused by the multitude of feature sets
1367
- * Added possibilty to distinguish between absolut or relative pathes in csv datasets
1368
-
1369
- Version 0.26.0
1370
- --------------
1371
- * added the rename_speakers funcionality to prevent identical speaker names in datasets
1372
-
1373
- Version 0.25.1
1374
- --------------
1375
- * fixed bug that no features were chosen if not selected
1376
-
1377
- Version 0.25.0
1378
- --------------
1379
- * made selectable features universal for feature sets
1380
-
1381
- Version 0.24.0
1382
- --------------
1383
- * added multiple feature sets (will simply be concatenated)
1384
-
1385
- Version 0.23.0
1386
- --------------
1387
- * added selectable features for Praat interface
1388
-
1389
- Version 0.22.0
1390
- --------------
1391
- * added David R. Feinberg's Praat features, praise also to parselmouth
1392
-
1393
- Version 0.21.0
1394
- --------------
1395
-
1396
- * Revoked 0.20.0
1397
- * Added support for only_test = True, to enable later testing of trained models with new test data
1398
-
1399
- Version 0.20.0
1400
- --------------
1401
-
1402
- * implemented reuse of trained and saved models
1403
-
1404
- Version 0.19.0
1405
- --------------
1406
-
1407
- * added "max_duration_of_sample" for datasets
1408
-
1409
-
1410
- Version 0.18.6
1411
- --------------
1412
-
1413
- * added support for learning and dropout rate as argument
1414
-
1415
-
1416
- Version 0.18.5
1417
- --------------
1418
-
1419
- * added support for epoch number as argument
1420
-
1421
- Version 0.18.4
1422
- --------------
1423
-
1424
- * added support for ANN layers as arguments
1425
-
1426
- Version 0.18.3
1427
- --------------
1428
-
1429
- * added reuse of test and train file sets
1430
- * added parameter to scale continous target values: target_divide_by
1431
-
1432
-
1433
- Version 0.18.2
1434
- --------------
1435
-
1436
- * added preference of local dataset specs to global ones
1437
-
1438
- Version 0.18.1
1439
- --------------
1440
-
1441
- * added regression value display for confusion matrices
1442
-
1443
- Version 0.18.0
1444
- --------------
1445
-
1446
- * added leave one speaker group out
1447
-
1448
- Version 0.17.2
1449
- --------------
1450
-
1451
- * fixed scaler, added robust
1452
-
1453
-
1454
-
1455
- Version 0.17.0
1456
- --------------
1457
-
1458
- * Added minimum duration for test samples
1459
-
1460
-
1461
- Version 0.16.4
1462
- --------------
1463
-
1464
- * Added possibility to combine predictions per speaker (with mean or mode function)
1465
-
1466
- Version 0.16.3
1467
- --------------
1468
-
1469
- * Added minimal sample length for databases
1470
-
1471
-
1472
- Version 0.16.2
1473
- --------------
1474
-
1475
- * Added k-fold-cross-validation for linear classifiers
1476
-
1477
- Version 0.16.1
1478
- --------------
1479
-
1480
- * Added leave-one-speaker-out for linear classifiers
1481
-
1482
-
1483
- Version 0.16.0
1484
- --------------
1485
-
1486
- * Added random sample splits
1487
-