nkululeko 0.93.11__py3-none-any.whl → 0.93.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.93.11"
1
+ VERSION="0.93.13"
2
2
  SAMPLING_RATE = 16000
nkululeko/data/dataset.py CHANGED
@@ -676,6 +676,8 @@ class Dataset:
676
676
 
677
677
  def map_continuous_classification(self, df):
678
678
  """Map labels to bins for continuous data that should be classified"""
679
+ if df.empty:
680
+ return
679
681
  if self.check_continuous_classification():
680
682
  self.util.debug(f"{self.name}: binning continuous variable to categories")
681
683
  cat_vals = self.util.continuous_to_categorical(df[self.target])
@@ -4,8 +4,10 @@ import ast
4
4
  import matplotlib.pyplot as plt
5
5
  import pandas as pd
6
6
  from sklearn.inspection import permutation_importance
7
- from sklearn.linear_model import LinearRegression, LogisticRegression
8
- from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
7
+ from sklearn.linear_model import LinearRegression
8
+ from sklearn.linear_model import LogisticRegression
9
+ from sklearn.tree import DecisionTreeClassifier
10
+ from sklearn.tree import DecisionTreeRegressor
9
11
 
10
12
  import nkululeko.glob_conf as glob_conf
11
13
  from nkululeko.plots import Plots
@@ -49,6 +49,7 @@ class Wav2vec2(Featureset):
49
49
  hidden_layer = int(self.util.config_val("FEATS", "wav2vec2.layer", "0"))
50
50
  config.num_hidden_layers = layer_num - hidden_layer
51
51
  self.util.debug(f"using hidden layer #{config.num_hidden_layers}")
52
+
52
53
  self.processor = Wav2Vec2FeatureExtractor.from_pretrained(model_path)
53
54
  self.model = Wav2Vec2Model.from_pretrained(model_path, config=config).to(
54
55
  self.device
nkululeko/plots.py CHANGED
@@ -297,6 +297,9 @@ class Plots:
297
297
  if cat_col == "class_label":
298
298
  plot_df = plot_df.rename(columns={cat_col: self.target})
299
299
  cat_col = self.target
300
+ elif cont_col == "class_label":
301
+ plot_df = plot_df.rename(columns={cont_col: self.target})
302
+ cont_col = self.target
300
303
  dist_type = self.util.config_val("EXPL", "dist_type", "kde")
301
304
  cats, cat_str, es = su.get_effect_size(plot_df, cat_col, cont_col)
302
305
  model_type = self.util.get_model_type()
@@ -327,7 +330,7 @@ class Plots:
327
330
  if col2 == "class_label":
328
331
  plot_df = plot_df.rename(columns={col2: self.target})
329
332
  col2 = self.target
330
- if col1 == "class_label":
333
+ elif col1 == "class_label":
331
334
  plot_df = plot_df.rename(columns={col1: self.target})
332
335
  col1 = self.target
333
336
  crosstab = pd.crosstab(index=plot_df[col1], columns=plot_df[col2])
@@ -0,0 +1,39 @@
1
+ Metadata-Version: 2.2
2
+ Name: nkululeko
3
+ Version: 0.93.13
4
+ Summary: Machine learning audio prediction experiments based on templates
5
+ Home-page: https://github.com/felixbur/nkululeko
6
+ Author: Felix Burkhardt
7
+ Author-email: fxburk@gmail.com
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: License :: OSI Approved :: MIT License
10
+ Classifier: Operating System :: OS Independent
11
+ Classifier: Development Status :: 3 - Alpha
12
+ Classifier: Topic :: Scientific/Engineering
13
+ Requires-Python: >=3.9
14
+ License-File: LICENSE
15
+ Requires-Dist: audeer
16
+ Requires-Dist: audformat
17
+ Requires-Dist: audinterface
18
+ Requires-Dist: audiofile
19
+ Requires-Dist: audiomentations
20
+ Requires-Dist: audmetric
21
+ Requires-Dist: audonnx
22
+ Requires-Dist: confidence_intervals
23
+ Requires-Dist: datasets
24
+ Requires-Dist: imageio
25
+ Requires-Dist: matplotlib
26
+ Requires-Dist: numpy
27
+ Requires-Dist: opensmile
28
+ Requires-Dist: pandas
29
+ Requires-Dist: praat-parselmouth
30
+ Requires-Dist: scikit_learn
31
+ Requires-Dist: scipy
32
+ Requires-Dist: seaborn
33
+ Requires-Dist: sounddevice
34
+ Requires-Dist: torch
35
+ Requires-Dist: torchvision
36
+ Requires-Dist: transformers
37
+ Requires-Dist: umap-learn
38
+ Requires-Dist: xgboost
39
+ Requires-Dist: pylatex
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
2
  nkululeko/aug_train.py,sha256=FoMbBrfyOZd4QAw7oIHl3X6-UpsqAKWVDIolCA7qOWs,3196
3
3
  nkululeko/augment.py,sha256=3RzaxB3gRxovgJVjHXi0glprW01J7RaHhUkqotW2T3U,2955
4
4
  nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
5
- nkululeko/constants.py,sha256=RFv_MnQuDew9o2GQ6vQEZEZj1JoIn68nAUZQ1_9S_yw,40
5
+ nkululeko/constants.py,sha256=B_SoEW_E21VyJqFUyh_XG4GvVYNPEsgUF31slyJ2fFY,40
6
6
  nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
7
7
  nkululeko/demo.py,sha256=4Yzhg6pCPBYPGJrP7JX2TysVosl_R1llpVDKc2P_gUA,4955
8
8
  nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
@@ -20,7 +20,7 @@ nkululeko/modelrunner.py,sha256=lJy-xM4QfDDWeL0dLTE_VIb4sYrnd_Z_yJRK3wwohQA,1119
20
20
  nkululeko/multidb.py,sha256=sO6OwJn8sn1-C-ig3thsIL8QMWHdV9SnJhDodKjeKrI,6876
21
21
  nkululeko/nkuluflag.py,sha256=PGWSmZz-PiiHLgcZJAoGOI_Y-sZDVI1ksB8p5r7riWM,3725
22
22
  nkululeko/nkululeko.py,sha256=M7baIq2nAoi6dEoBL4ATEuqAs5U1fvl_hyqAl5DybAQ,2040
23
- nkululeko/plots.py,sha256=Mm30pDLBb55iE9SYaSg76KFBKnebZTlypFQIBo26wuY,25991
23
+ nkululeko/plots.py,sha256=2G5yNR3Q3qWDt8ncKwKUZBLE-O1rbGUiG6omwfFudVk,26138
24
24
  nkululeko/predict.py,sha256=MLnHEyFmSiHLLs-HDczag8Vu3zKF5T1rXLKdZZJ6py8,2083
25
25
  nkululeko/resample.py,sha256=rn3-M1A-iwVGibfQNGyeYNa7briD24lIN9Szq_1uTJo,5194
26
26
  nkululeko/runmanager.py,sha256=AswmORVUkCIH0gTx6zEyufvFATQBS8C5TXo2erSNdVg,7611
@@ -49,12 +49,12 @@ nkululeko/autopredict/ap_stoi.py,sha256=UEQg1ZV0meAsxgdWB8ieRs9GPXHqArmsaOyCGRwp
49
49
  nkululeko/autopredict/ap_valence.py,sha256=WrW4Ltqi_odW49_4QEVKkfnrcztLIVZ4cXIEHu4dBN8,1026
50
50
  nkululeko/autopredict/estimate_snr.py,sha256=1k9-XadABudnsNOeFZD_Fg0E64-GUQVS7JEp82MLQS4,4995
51
51
  nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
52
- nkululeko/data/dataset.py,sha256=G4jzD2MvzB7d6Oja_pUIdShFr7Qsbs0ogGzuTcyQfLo,30041
52
+ nkululeko/data/dataset.py,sha256=G6RFK2msSVHxpzDm8gZSAD4GK6ieMS5fTbqVS-NOFuY,30081
53
53
  nkululeko/data/dataset_csv.py,sha256=p2b4eS5R2Q5zdOIc56NRRU2PTFXSRt0qrdHGafHkWKo,4830
54
54
  nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
55
55
  nkululeko/feat_extract/feats_agender.py,sha256=onfAQ6-xx_mFMJXEF1IX8cHBmGtGeX6weJmxbkfh1_o,3184
56
56
  nkululeko/feat_extract/feats_agender_agender.py,sha256=_YQv1qw--3uQfnyTQDCwlmPRnrhdMhgXbYK2yQtseW0,3464
57
- nkululeko/feat_extract/feats_analyser.py,sha256=luTV2-yw7rk0aQPI88vvtW1GLV8cGypp7LJW1v_YBrw,13450
57
+ nkululeko/feat_extract/feats_analyser.py,sha256=txuIEgO4uprle35RzBczvZm5Hc7iUl2p9oBEfdrvg_I,13506
58
58
  nkululeko/feat_extract/feats_ast.py,sha256=w62xEoLiFtU-rj6SXkqXAktmoFaXcAcAWpUyEjp8JWo,4652
59
59
  nkululeko/feat_extract/feats_auddim.py,sha256=CGLp_aYhudfwoU5522vjrvjPxfZcyw593A8xLjYefV8,3134
60
60
  nkululeko/feat_extract/feats_audmodel.py,sha256=OsZyB1rdcG0Fai2gAwBlbuubmWor1_-P4IDkZLqgPKE,3161
@@ -71,7 +71,7 @@ nkululeko/feat_extract/feats_spectra.py,sha256=6WhFUpB0WTutg7OFMlAw9lSwVU5OBYCDc
71
71
  nkululeko/feat_extract/feats_spkrec.py,sha256=o_6bdU4lIkj64S5Kdjf1iyuo1VASeYxE4XdxV94a8gE,4732
72
72
  nkululeko/feat_extract/feats_squim.py,sha256=yJifsp9kj9iJjW_UAKr3LlvVhX5rv7el4bepn0wN2a8,4578
73
73
  nkululeko/feat_extract/feats_trill.py,sha256=JgyUQ8ihIL5PlUpxjchlbC9547GI0SyUwkFEquya85Q,3197
74
- nkululeko/feat_extract/feats_wav2vec2.py,sha256=WYB9XlRzgDi8cGSKzhV5jahA0GZ_SiWgaQ25IcEemto,5296
74
+ nkululeko/feat_extract/feats_wav2vec2.py,sha256=q1QzMD3KbhF2SOmxdwI7CiViRmhlFRyghxN_6SmUc0E,5297
75
75
  nkululeko/feat_extract/feats_wavlm.py,sha256=O9cfc39VF5aPJRRATKb37pHT4W11i2cu5O1mY9LOjIA,4755
76
76
  nkululeko/feat_extract/feats_whisper.py,sha256=n3ESZtva7wshs8E8diBlQYa9xCH_P0UY1DncSrxz-FY,4508
77
77
  nkululeko/feat_extract/featureset.py,sha256=clcBv9rzBRW-bfw7JC_FYTjU5uUS-c0UE1XtQLYYRiE,1615
@@ -112,9 +112,9 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
112
112
  nkululeko/utils/files.py,sha256=SrrYaU7AB80MZHiV1jcB0h_zigvYLYgSVNTXV4ao38g,4593
113
113
  nkululeko/utils/stats.py,sha256=vCRzhCR0Gx5SiJyAGbj1TIto8ocGz58CM5Pr3LltagA,2948
114
114
  nkululeko/utils/util.py,sha256=wFDslqxpCVDwi6LBakIFDDy1kYsxt5G7ykE38CocmtA,16880
115
- nkululeko-0.93.11.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
116
- nkululeko-0.93.11.dist-info/METADATA,sha256=pMKMenPiE34afU4cUaCXCsi6wqi8OJH5YsHp9Q2pmos,42733
117
- nkululeko-0.93.11.dist-info/WHEEL,sha256=A3WOREP4zgxI0fKrHUG8DC8013e3dK3n7a6HDbcEIwE,91
118
- nkululeko-0.93.11.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
119
- nkululeko-0.93.11.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
120
- nkululeko-0.93.11.dist-info/RECORD,,
115
+ nkululeko-0.93.13.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
116
+ nkululeko-0.93.13.dist-info/METADATA,sha256=G0DPQrKRoSO4lB0NjR5hjc715sggueUA3lcokR1NyUQ,1148
117
+ nkululeko-0.93.13.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
118
+ nkululeko-0.93.13.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
119
+ nkululeko-0.93.13.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
120
+ nkululeko-0.93.13.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.7.0)
2
+ Generator: setuptools (75.8.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5