nkululeko 0.93.11__py3-none-any.whl → 0.93.13__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nkululeko/constants.py +1 -1
- nkululeko/data/dataset.py +2 -0
- nkululeko/feat_extract/feats_analyser.py +4 -2
- nkululeko/feat_extract/feats_wav2vec2.py +1 -0
- nkululeko/plots.py +4 -1
- nkululeko-0.93.13.dist-info/METADATA +39 -0
- {nkululeko-0.93.11.dist-info → nkululeko-0.93.13.dist-info}/RECORD +11 -11
- {nkululeko-0.93.11.dist-info → nkululeko-0.93.13.dist-info}/WHEEL +1 -1
- nkululeko-0.93.11.dist-info/METADATA +0 -1487
- {nkululeko-0.93.11.dist-info → nkululeko-0.93.13.dist-info}/LICENSE +0 -0
- {nkululeko-0.93.11.dist-info → nkululeko-0.93.13.dist-info}/entry_points.txt +0 -0
- {nkululeko-0.93.11.dist-info → nkululeko-0.93.13.dist-info}/top_level.txt +0 -0
nkululeko/constants.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1
|
-
VERSION="0.93.
|
1
|
+
VERSION="0.93.13"
|
2
2
|
SAMPLING_RATE = 16000
|
nkululeko/data/dataset.py
CHANGED
@@ -676,6 +676,8 @@ class Dataset:
|
|
676
676
|
|
677
677
|
def map_continuous_classification(self, df):
|
678
678
|
"""Map labels to bins for continuous data that should be classified"""
|
679
|
+
if df.empty:
|
680
|
+
return
|
679
681
|
if self.check_continuous_classification():
|
680
682
|
self.util.debug(f"{self.name}: binning continuous variable to categories")
|
681
683
|
cat_vals = self.util.continuous_to_categorical(df[self.target])
|
@@ -4,8 +4,10 @@ import ast
|
|
4
4
|
import matplotlib.pyplot as plt
|
5
5
|
import pandas as pd
|
6
6
|
from sklearn.inspection import permutation_importance
|
7
|
-
from sklearn.linear_model import LinearRegression
|
8
|
-
from sklearn.
|
7
|
+
from sklearn.linear_model import LinearRegression
|
8
|
+
from sklearn.linear_model import LogisticRegression
|
9
|
+
from sklearn.tree import DecisionTreeClassifier
|
10
|
+
from sklearn.tree import DecisionTreeRegressor
|
9
11
|
|
10
12
|
import nkululeko.glob_conf as glob_conf
|
11
13
|
from nkululeko.plots import Plots
|
@@ -49,6 +49,7 @@ class Wav2vec2(Featureset):
|
|
49
49
|
hidden_layer = int(self.util.config_val("FEATS", "wav2vec2.layer", "0"))
|
50
50
|
config.num_hidden_layers = layer_num - hidden_layer
|
51
51
|
self.util.debug(f"using hidden layer #{config.num_hidden_layers}")
|
52
|
+
|
52
53
|
self.processor = Wav2Vec2FeatureExtractor.from_pretrained(model_path)
|
53
54
|
self.model = Wav2Vec2Model.from_pretrained(model_path, config=config).to(
|
54
55
|
self.device
|
nkululeko/plots.py
CHANGED
@@ -297,6 +297,9 @@ class Plots:
|
|
297
297
|
if cat_col == "class_label":
|
298
298
|
plot_df = plot_df.rename(columns={cat_col: self.target})
|
299
299
|
cat_col = self.target
|
300
|
+
elif cont_col == "class_label":
|
301
|
+
plot_df = plot_df.rename(columns={cont_col: self.target})
|
302
|
+
cont_col = self.target
|
300
303
|
dist_type = self.util.config_val("EXPL", "dist_type", "kde")
|
301
304
|
cats, cat_str, es = su.get_effect_size(plot_df, cat_col, cont_col)
|
302
305
|
model_type = self.util.get_model_type()
|
@@ -327,7 +330,7 @@ class Plots:
|
|
327
330
|
if col2 == "class_label":
|
328
331
|
plot_df = plot_df.rename(columns={col2: self.target})
|
329
332
|
col2 = self.target
|
330
|
-
|
333
|
+
elif col1 == "class_label":
|
331
334
|
plot_df = plot_df.rename(columns={col1: self.target})
|
332
335
|
col1 = self.target
|
333
336
|
crosstab = pd.crosstab(index=plot_df[col1], columns=plot_df[col2])
|
@@ -0,0 +1,39 @@
|
|
1
|
+
Metadata-Version: 2.2
|
2
|
+
Name: nkululeko
|
3
|
+
Version: 0.93.13
|
4
|
+
Summary: Machine learning audio prediction experiments based on templates
|
5
|
+
Home-page: https://github.com/felixbur/nkululeko
|
6
|
+
Author: Felix Burkhardt
|
7
|
+
Author-email: fxburk@gmail.com
|
8
|
+
Classifier: Programming Language :: Python :: 3
|
9
|
+
Classifier: License :: OSI Approved :: MIT License
|
10
|
+
Classifier: Operating System :: OS Independent
|
11
|
+
Classifier: Development Status :: 3 - Alpha
|
12
|
+
Classifier: Topic :: Scientific/Engineering
|
13
|
+
Requires-Python: >=3.9
|
14
|
+
License-File: LICENSE
|
15
|
+
Requires-Dist: audeer
|
16
|
+
Requires-Dist: audformat
|
17
|
+
Requires-Dist: audinterface
|
18
|
+
Requires-Dist: audiofile
|
19
|
+
Requires-Dist: audiomentations
|
20
|
+
Requires-Dist: audmetric
|
21
|
+
Requires-Dist: audonnx
|
22
|
+
Requires-Dist: confidence_intervals
|
23
|
+
Requires-Dist: datasets
|
24
|
+
Requires-Dist: imageio
|
25
|
+
Requires-Dist: matplotlib
|
26
|
+
Requires-Dist: numpy
|
27
|
+
Requires-Dist: opensmile
|
28
|
+
Requires-Dist: pandas
|
29
|
+
Requires-Dist: praat-parselmouth
|
30
|
+
Requires-Dist: scikit_learn
|
31
|
+
Requires-Dist: scipy
|
32
|
+
Requires-Dist: seaborn
|
33
|
+
Requires-Dist: sounddevice
|
34
|
+
Requires-Dist: torch
|
35
|
+
Requires-Dist: torchvision
|
36
|
+
Requires-Dist: transformers
|
37
|
+
Requires-Dist: umap-learn
|
38
|
+
Requires-Dist: xgboost
|
39
|
+
Requires-Dist: pylatex
|
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
|
|
2
2
|
nkululeko/aug_train.py,sha256=FoMbBrfyOZd4QAw7oIHl3X6-UpsqAKWVDIolCA7qOWs,3196
|
3
3
|
nkululeko/augment.py,sha256=3RzaxB3gRxovgJVjHXi0glprW01J7RaHhUkqotW2T3U,2955
|
4
4
|
nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
|
5
|
-
nkululeko/constants.py,sha256=
|
5
|
+
nkululeko/constants.py,sha256=B_SoEW_E21VyJqFUyh_XG4GvVYNPEsgUF31slyJ2fFY,40
|
6
6
|
nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
|
7
7
|
nkululeko/demo.py,sha256=4Yzhg6pCPBYPGJrP7JX2TysVosl_R1llpVDKc2P_gUA,4955
|
8
8
|
nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
|
@@ -20,7 +20,7 @@ nkululeko/modelrunner.py,sha256=lJy-xM4QfDDWeL0dLTE_VIb4sYrnd_Z_yJRK3wwohQA,1119
|
|
20
20
|
nkululeko/multidb.py,sha256=sO6OwJn8sn1-C-ig3thsIL8QMWHdV9SnJhDodKjeKrI,6876
|
21
21
|
nkululeko/nkuluflag.py,sha256=PGWSmZz-PiiHLgcZJAoGOI_Y-sZDVI1ksB8p5r7riWM,3725
|
22
22
|
nkululeko/nkululeko.py,sha256=M7baIq2nAoi6dEoBL4ATEuqAs5U1fvl_hyqAl5DybAQ,2040
|
23
|
-
nkululeko/plots.py,sha256=
|
23
|
+
nkululeko/plots.py,sha256=2G5yNR3Q3qWDt8ncKwKUZBLE-O1rbGUiG6omwfFudVk,26138
|
24
24
|
nkululeko/predict.py,sha256=MLnHEyFmSiHLLs-HDczag8Vu3zKF5T1rXLKdZZJ6py8,2083
|
25
25
|
nkululeko/resample.py,sha256=rn3-M1A-iwVGibfQNGyeYNa7briD24lIN9Szq_1uTJo,5194
|
26
26
|
nkululeko/runmanager.py,sha256=AswmORVUkCIH0gTx6zEyufvFATQBS8C5TXo2erSNdVg,7611
|
@@ -49,12 +49,12 @@ nkululeko/autopredict/ap_stoi.py,sha256=UEQg1ZV0meAsxgdWB8ieRs9GPXHqArmsaOyCGRwp
|
|
49
49
|
nkululeko/autopredict/ap_valence.py,sha256=WrW4Ltqi_odW49_4QEVKkfnrcztLIVZ4cXIEHu4dBN8,1026
|
50
50
|
nkululeko/autopredict/estimate_snr.py,sha256=1k9-XadABudnsNOeFZD_Fg0E64-GUQVS7JEp82MLQS4,4995
|
51
51
|
nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
52
|
-
nkululeko/data/dataset.py,sha256=
|
52
|
+
nkululeko/data/dataset.py,sha256=G6RFK2msSVHxpzDm8gZSAD4GK6ieMS5fTbqVS-NOFuY,30081
|
53
53
|
nkululeko/data/dataset_csv.py,sha256=p2b4eS5R2Q5zdOIc56NRRU2PTFXSRt0qrdHGafHkWKo,4830
|
54
54
|
nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
55
55
|
nkululeko/feat_extract/feats_agender.py,sha256=onfAQ6-xx_mFMJXEF1IX8cHBmGtGeX6weJmxbkfh1_o,3184
|
56
56
|
nkululeko/feat_extract/feats_agender_agender.py,sha256=_YQv1qw--3uQfnyTQDCwlmPRnrhdMhgXbYK2yQtseW0,3464
|
57
|
-
nkululeko/feat_extract/feats_analyser.py,sha256=
|
57
|
+
nkululeko/feat_extract/feats_analyser.py,sha256=txuIEgO4uprle35RzBczvZm5Hc7iUl2p9oBEfdrvg_I,13506
|
58
58
|
nkululeko/feat_extract/feats_ast.py,sha256=w62xEoLiFtU-rj6SXkqXAktmoFaXcAcAWpUyEjp8JWo,4652
|
59
59
|
nkululeko/feat_extract/feats_auddim.py,sha256=CGLp_aYhudfwoU5522vjrvjPxfZcyw593A8xLjYefV8,3134
|
60
60
|
nkululeko/feat_extract/feats_audmodel.py,sha256=OsZyB1rdcG0Fai2gAwBlbuubmWor1_-P4IDkZLqgPKE,3161
|
@@ -71,7 +71,7 @@ nkululeko/feat_extract/feats_spectra.py,sha256=6WhFUpB0WTutg7OFMlAw9lSwVU5OBYCDc
|
|
71
71
|
nkululeko/feat_extract/feats_spkrec.py,sha256=o_6bdU4lIkj64S5Kdjf1iyuo1VASeYxE4XdxV94a8gE,4732
|
72
72
|
nkululeko/feat_extract/feats_squim.py,sha256=yJifsp9kj9iJjW_UAKr3LlvVhX5rv7el4bepn0wN2a8,4578
|
73
73
|
nkululeko/feat_extract/feats_trill.py,sha256=JgyUQ8ihIL5PlUpxjchlbC9547GI0SyUwkFEquya85Q,3197
|
74
|
-
nkululeko/feat_extract/feats_wav2vec2.py,sha256=
|
74
|
+
nkululeko/feat_extract/feats_wav2vec2.py,sha256=q1QzMD3KbhF2SOmxdwI7CiViRmhlFRyghxN_6SmUc0E,5297
|
75
75
|
nkululeko/feat_extract/feats_wavlm.py,sha256=O9cfc39VF5aPJRRATKb37pHT4W11i2cu5O1mY9LOjIA,4755
|
76
76
|
nkululeko/feat_extract/feats_whisper.py,sha256=n3ESZtva7wshs8E8diBlQYa9xCH_P0UY1DncSrxz-FY,4508
|
77
77
|
nkululeko/feat_extract/featureset.py,sha256=clcBv9rzBRW-bfw7JC_FYTjU5uUS-c0UE1XtQLYYRiE,1615
|
@@ -112,9 +112,9 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
112
112
|
nkululeko/utils/files.py,sha256=SrrYaU7AB80MZHiV1jcB0h_zigvYLYgSVNTXV4ao38g,4593
|
113
113
|
nkululeko/utils/stats.py,sha256=vCRzhCR0Gx5SiJyAGbj1TIto8ocGz58CM5Pr3LltagA,2948
|
114
114
|
nkululeko/utils/util.py,sha256=wFDslqxpCVDwi6LBakIFDDy1kYsxt5G7ykE38CocmtA,16880
|
115
|
-
nkululeko-0.93.
|
116
|
-
nkululeko-0.93.
|
117
|
-
nkululeko-0.93.
|
118
|
-
nkululeko-0.93.
|
119
|
-
nkululeko-0.93.
|
120
|
-
nkululeko-0.93.
|
115
|
+
nkululeko-0.93.13.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
|
116
|
+
nkululeko-0.93.13.dist-info/METADATA,sha256=G0DPQrKRoSO4lB0NjR5hjc715sggueUA3lcokR1NyUQ,1148
|
117
|
+
nkululeko-0.93.13.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
118
|
+
nkululeko-0.93.13.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
|
119
|
+
nkululeko-0.93.13.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
|
120
|
+
nkululeko-0.93.13.dist-info/RECORD,,
|