nkululeko 0.88.5__py3-none-any.whl → 0.88.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.88.5"
1
+ VERSION="0.88.6"
2
2
  SAMPLING_RATE = 16000
nkululeko/data/dataset.py CHANGED
@@ -423,6 +423,9 @@ class Dataset:
423
423
  self.util.debug(f"{self.name}: trying to reuse data splits")
424
424
  self.df_test = pd.read_pickle(storage_test)
425
425
  self.df_train = pd.read_pickle(storage_train)
426
+ elif isinstance(ast.literal_eval(split_strategy), list):
427
+ # treat this as a list of test speakers
428
+ self.assign_speakers(ast.literal_eval(split_strategy))
426
429
  else:
427
430
  self.util.error(f"unknown split strategy: {split_strategy}")
428
431
 
@@ -515,6 +518,19 @@ class Dataset:
515
518
  # because this generates new train/test sample quantaties, the feature extraction has to be done again
516
519
  glob_conf.config["FEATS"]["needs_feature_extraction"] = "True"
517
520
 
521
+ def assign_speakers(self, speakers):
522
+ """One way to split train and eval sets: Specify test speaker names."""
523
+ self.df_test = self.df[self.df.speaker.isin(speakers)]
524
+ if len(self.df_test) == 0:
525
+ self.util.error(f"no speakers found in {speakers}")
526
+ self.df_train = self.df[~self.df.index.isin(self.df_test.index)]
527
+ self.util.debug(
528
+ f"{self.name} (speakers assigned): [{self.df_train.shape[0]}/{self.df_test.shape[0]}]"
529
+ " samples in train/test"
530
+ )
531
+ # because this generates new train/test sample quantaties, the feature extraction has to be done again
532
+ glob_conf.config["FEATS"]["needs_feature_extraction"] = "True"
533
+
518
534
  def split_speakers(self):
519
535
  """One way to split train and eval sets: Specify percentage of evaluation speakers"""
520
536
  test_percent = int(self.util.config_val_data(self.name, "test_size", 20))
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.88.5
3
+ Version: 0.88.6
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -360,6 +360,10 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
360
360
  Changelog
361
361
  =========
362
362
 
363
+ Version 0.88.6
364
+ --------------
365
+ * added test speaker assign
366
+
363
367
  Version 0.88.5
364
368
  --------------
365
369
  * add a unique name to the uncertainty plot
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
2
2
  nkululeko/aug_train.py,sha256=YhuZnS_WVWnun9G-M6g5n6rbRxoVREz6Zh7k6qprFNQ,3194
3
3
  nkululeko/augment.py,sha256=4MG0apTAG5RgkuJrYEjGgDdbodZWi_HweSPNI1JJ5QA,3051
4
4
  nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
5
- nkululeko/constants.py,sha256=ir__UePsDhzi0X5DuhvHtXtpIXtZaMIpjU97A7Ljv54,39
5
+ nkululeko/constants.py,sha256=HFKr4pZomwthK3M6yBJLjNzKCEuB1PvMeUwKrHm2cL8,39
6
6
  nkululeko/demo.py,sha256=bLuHkeEl5rOfm7ecGHCcWATiPK7-njNbtrGljxzNzFs,5088
7
7
  nkululeko/demo_feats.py,sha256=sAeGFojhEj9WEDFtG3SzPBmyYJWLF2rkbpp65m8Ujo4,2025
8
8
  nkululeko/demo_predictor.py,sha256=zs1bjhpnKuNCPLJeiyDm19ME1NEDOQT3QNeyVKJq9Yc,4882
@@ -46,7 +46,7 @@ nkululeko/autopredict/ap_stoi.py,sha256=It0Lk-ki-gohA2AzD8nkLAN2WahYvD9rPDGTQuvd
46
46
  nkululeko/autopredict/ap_valence.py,sha256=n-hctRKySzhmJtowuMOTUu0T_ld3uK5pnfOzWeWW4VM,1024
47
47
  nkululeko/autopredict/estimate_snr.py,sha256=S-bpS0xFkwWc4Ch75UrjbS8y538lQ0U3g_iLRFXureY,5048
48
48
  nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
49
- nkululeko/data/dataset.py,sha256=hUD0NqWCfRaSHG8JNs1MsPb0zjUZAf8FJkg_c0ebq0Q,28046
49
+ nkululeko/data/dataset.py,sha256=o2xuluErZg0I8qkR0YtMu2UdewdcgSdRUvUhRXDMwuI,28940
50
50
  nkululeko/data/dataset_csv.py,sha256=UGEpi__eT2KFS6Fop6N4HkMrzO-u5VP71gt44kwZavo,4588
51
51
  nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
52
52
  nkululeko/feat_extract/feats_agender.py,sha256=sHyvxxlWXv1QGYXHGHIYEQK7X39eifSVie0tu-zBG3M,3189
@@ -107,8 +107,8 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
107
107
  nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
108
108
  nkululeko/utils/stats.py,sha256=eC9dMO-by6CDnGLHDBQu-2B4-BudZNJ0nnWGhKYdUMA,2968
109
109
  nkululeko/utils/util.py,sha256=y-pdrjovT8yGtBTJ3ifIpTcF0fPnoz8UKbuLIZ0efpc,16768
110
- nkululeko-0.88.5.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
111
- nkululeko-0.88.5.dist-info/METADATA,sha256=6-AE25u5U0-7CldZfExbSfjBu3_Ey3K7kMEkaNBysTc,39896
112
- nkululeko-0.88.5.dist-info/WHEEL,sha256=FZ75kcLy9M91ncbIgG8dnpCncbiKXSRGJ_PFILs6SFg,91
113
- nkululeko-0.88.5.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
114
- nkululeko-0.88.5.dist-info/RECORD,,
110
+ nkululeko-0.88.6.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
111
+ nkululeko-0.88.6.dist-info/METADATA,sha256=7UE8yEbdfJo_SU4xeE3gLlaLkfwC2NEg7w1nou8eGLQ,39955
112
+ nkululeko-0.88.6.dist-info/WHEEL,sha256=Wyh-_nZ0DJYolHNn1_hMa4lM7uDedD_RGVwbmTjyItk,91
113
+ nkululeko-0.88.6.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
114
+ nkululeko-0.88.6.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (71.0.1)
2
+ Generator: setuptools (71.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5