nkululeko 0.88.5__py3-none-any.whl → 0.88.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nkululeko/constants.py +1 -1
- nkululeko/data/dataset.py +16 -0
- {nkululeko-0.88.5.dist-info → nkululeko-0.88.6.dist-info}/METADATA +5 -1
- {nkululeko-0.88.5.dist-info → nkululeko-0.88.6.dist-info}/RECORD +7 -7
- {nkululeko-0.88.5.dist-info → nkululeko-0.88.6.dist-info}/WHEEL +1 -1
- {nkululeko-0.88.5.dist-info → nkululeko-0.88.6.dist-info}/LICENSE +0 -0
- {nkululeko-0.88.5.dist-info → nkululeko-0.88.6.dist-info}/top_level.txt +0 -0
nkululeko/constants.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1
|
-
VERSION="0.88.
|
1
|
+
VERSION="0.88.6"
|
2
2
|
SAMPLING_RATE = 16000
|
nkululeko/data/dataset.py
CHANGED
@@ -423,6 +423,9 @@ class Dataset:
|
|
423
423
|
self.util.debug(f"{self.name}: trying to reuse data splits")
|
424
424
|
self.df_test = pd.read_pickle(storage_test)
|
425
425
|
self.df_train = pd.read_pickle(storage_train)
|
426
|
+
elif isinstance(ast.literal_eval(split_strategy), list):
|
427
|
+
# treat this as a list of test speakers
|
428
|
+
self.assign_speakers(ast.literal_eval(split_strategy))
|
426
429
|
else:
|
427
430
|
self.util.error(f"unknown split strategy: {split_strategy}")
|
428
431
|
|
@@ -515,6 +518,19 @@ class Dataset:
|
|
515
518
|
# because this generates new train/test sample quantaties, the feature extraction has to be done again
|
516
519
|
glob_conf.config["FEATS"]["needs_feature_extraction"] = "True"
|
517
520
|
|
521
|
+
def assign_speakers(self, speakers):
|
522
|
+
"""One way to split train and eval sets: Specify test speaker names."""
|
523
|
+
self.df_test = self.df[self.df.speaker.isin(speakers)]
|
524
|
+
if len(self.df_test) == 0:
|
525
|
+
self.util.error(f"no speakers found in {speakers}")
|
526
|
+
self.df_train = self.df[~self.df.index.isin(self.df_test.index)]
|
527
|
+
self.util.debug(
|
528
|
+
f"{self.name} (speakers assigned): [{self.df_train.shape[0]}/{self.df_test.shape[0]}]"
|
529
|
+
" samples in train/test"
|
530
|
+
)
|
531
|
+
# because this generates new train/test sample quantaties, the feature extraction has to be done again
|
532
|
+
glob_conf.config["FEATS"]["needs_feature_extraction"] = "True"
|
533
|
+
|
518
534
|
def split_speakers(self):
|
519
535
|
"""One way to split train and eval sets: Specify percentage of evaluation speakers"""
|
520
536
|
test_percent = int(self.util.config_val_data(self.name, "test_size", 20))
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: nkululeko
|
3
|
-
Version: 0.88.
|
3
|
+
Version: 0.88.6
|
4
4
|
Summary: Machine learning audio prediction experiments based on templates
|
5
5
|
Home-page: https://github.com/felixbur/nkululeko
|
6
6
|
Author: Felix Burkhardt
|
@@ -360,6 +360,10 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
|
|
360
360
|
Changelog
|
361
361
|
=========
|
362
362
|
|
363
|
+
Version 0.88.6
|
364
|
+
--------------
|
365
|
+
* added test speaker assign
|
366
|
+
|
363
367
|
Version 0.88.5
|
364
368
|
--------------
|
365
369
|
* add a unique name to the uncertainty plot
|
@@ -2,7 +2,7 @@ nkululeko/__init__.py,sha256=62f8HiEzJ8rG2QlTFJXUCMpvuH3fKI33DoJSj33mscc,63
|
|
2
2
|
nkululeko/aug_train.py,sha256=YhuZnS_WVWnun9G-M6g5n6rbRxoVREz6Zh7k6qprFNQ,3194
|
3
3
|
nkululeko/augment.py,sha256=4MG0apTAG5RgkuJrYEjGgDdbodZWi_HweSPNI1JJ5QA,3051
|
4
4
|
nkululeko/cacheddataset.py,sha256=lIJ6hUo5LoxSrzXtWV8mzwO7wRtUETWnOQ4ws2XfL1E,969
|
5
|
-
nkululeko/constants.py,sha256=
|
5
|
+
nkululeko/constants.py,sha256=HFKr4pZomwthK3M6yBJLjNzKCEuB1PvMeUwKrHm2cL8,39
|
6
6
|
nkululeko/demo.py,sha256=bLuHkeEl5rOfm7ecGHCcWATiPK7-njNbtrGljxzNzFs,5088
|
7
7
|
nkululeko/demo_feats.py,sha256=sAeGFojhEj9WEDFtG3SzPBmyYJWLF2rkbpp65m8Ujo4,2025
|
8
8
|
nkululeko/demo_predictor.py,sha256=zs1bjhpnKuNCPLJeiyDm19ME1NEDOQT3QNeyVKJq9Yc,4882
|
@@ -46,7 +46,7 @@ nkululeko/autopredict/ap_stoi.py,sha256=It0Lk-ki-gohA2AzD8nkLAN2WahYvD9rPDGTQuvd
|
|
46
46
|
nkululeko/autopredict/ap_valence.py,sha256=n-hctRKySzhmJtowuMOTUu0T_ld3uK5pnfOzWeWW4VM,1024
|
47
47
|
nkululeko/autopredict/estimate_snr.py,sha256=S-bpS0xFkwWc4Ch75UrjbS8y538lQ0U3g_iLRFXureY,5048
|
48
48
|
nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
49
|
-
nkululeko/data/dataset.py,sha256=
|
49
|
+
nkululeko/data/dataset.py,sha256=o2xuluErZg0I8qkR0YtMu2UdewdcgSdRUvUhRXDMwuI,28940
|
50
50
|
nkululeko/data/dataset_csv.py,sha256=UGEpi__eT2KFS6Fop6N4HkMrzO-u5VP71gt44kwZavo,4588
|
51
51
|
nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
52
52
|
nkululeko/feat_extract/feats_agender.py,sha256=sHyvxxlWXv1QGYXHGHIYEQK7X39eifSVie0tu-zBG3M,3189
|
@@ -107,8 +107,8 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
107
107
|
nkululeko/utils/files.py,sha256=UiGAtZRWYjHSvlmPaTMtzyNNGE6qaLaxQkybctS7iRM,4021
|
108
108
|
nkululeko/utils/stats.py,sha256=eC9dMO-by6CDnGLHDBQu-2B4-BudZNJ0nnWGhKYdUMA,2968
|
109
109
|
nkululeko/utils/util.py,sha256=y-pdrjovT8yGtBTJ3ifIpTcF0fPnoz8UKbuLIZ0efpc,16768
|
110
|
-
nkululeko-0.88.
|
111
|
-
nkululeko-0.88.
|
112
|
-
nkululeko-0.88.
|
113
|
-
nkululeko-0.88.
|
114
|
-
nkululeko-0.88.
|
110
|
+
nkululeko-0.88.6.dist-info/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
|
111
|
+
nkululeko-0.88.6.dist-info/METADATA,sha256=7UE8yEbdfJo_SU4xeE3gLlaLkfwC2NEg7w1nou8eGLQ,39955
|
112
|
+
nkululeko-0.88.6.dist-info/WHEEL,sha256=Wyh-_nZ0DJYolHNn1_hMa4lM7uDedD_RGVwbmTjyItk,91
|
113
|
+
nkululeko-0.88.6.dist-info/top_level.txt,sha256=DPFNNSHPjUeVKj44dVANAjuVGRCC3MusJ08lc2a8xFA,10
|
114
|
+
nkululeko-0.88.6.dist-info/RECORD,,
|
File without changes
|
File without changes
|