niwrap-afni 0.5.0__py3-none-any.whl → 0.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of niwrap-afni might be problematic. Click here for more details.
- niwrap_afni/afni/abids_json_tool_py.py +104 -1
- niwrap_afni/afni/abids_tool.py +43 -1
- niwrap_afni/afni/adjunct_make_script_and_rst_py.py +2 -2
- niwrap_afni/afni/afni_batch_r.py +1 -2
- niwrap_afni/afni/balloon.py +25 -1
- niwrap_afni/afni/brain_skin.py +16 -1
- niwrap_afni/afni/build_afni_py.py +28 -1
- niwrap_afni/afni/cat_matvec.py +23 -1
- niwrap_afni/afni/convert_surface.py +38 -1
- niwrap_afni/afni/dicom_hinfo.py +9 -2
- niwrap_afni/afni/dsetstat2p.py +19 -1
- niwrap_afni/afni/fat_proc_align_anat_pair.py +10 -1
- niwrap_afni/afni/fat_proc_convert_dcm_anat.py +16 -1
- niwrap_afni/afni/fat_roi_row.py +1 -4
- niwrap_afni/afni/fsread_annot.py +2 -2
- niwrap_afni/afni/imrotate.py +10 -1
- niwrap_afni/afni/myget.py +16 -3
- niwrap_afni/afni/nifti_tool.py +3 -2
- niwrap_afni/afni/p2dsetstat.py +19 -1
- niwrap_afni/afni/plugout_drive.py +93 -1
- niwrap_afni/afni/prompt_popup.py +46 -1
- niwrap_afni/afni/prompt_user.py +16 -1
- niwrap_afni/afni/rbox.py +170 -9
- niwrap_afni/afni/samp_bias.py +16 -1
- niwrap_afni/afni/sfim.py +9 -2
- niwrap_afni/afni/stimband.py +22 -3
- niwrap_afni/afni/surf_dist.py +47 -1
- niwrap_afni/afni/surf_fwhm.py +1 -5
- niwrap_afni/afni/surf_info.py +99 -2
- niwrap_afni/afni/surface_metrics.py +179 -172
- niwrap_afni/afni/tedana_wrapper_py.py +19 -1
- niwrap_afni/afni/v_1d_bport.py +12 -1
- niwrap_afni/afni/v_1d_correlate.py +39 -1
- niwrap_afni/afni/v_1d_marry.py +1 -2
- niwrap_afni/afni/v_1d_rplot.py +233 -4
- niwrap_afni/afni/v_1d_sem.py +157 -2
- niwrap_afni/afni/v_1d_tsort.py +10 -1
- niwrap_afni/afni/v_1ddot.py +5 -4
- niwrap_afni/afni/v_1deval.py +16 -1
- niwrap_afni/afni/v_1dgen_arma11.py +16 -1
- niwrap_afni/afni/v_3_droimaker.py +16 -1
- niwrap_afni/afni/v_3d_afnito3_d.py +34 -4
- niwrap_afni/afni/v_3d_afnito_niml.py +34 -2
- niwrap_afni/afni/v_3d_amp_to_rsfc.py +10 -9
- niwrap_afni/afni/v_3d_anova3.py +323 -20
- niwrap_afni/afni/v_3d_clip_level.py +38 -2
- niwrap_afni/afni/v_3d_clust_sim.py +275 -22
- niwrap_afni/afni/v_3d_cm.py +103 -2
- niwrap_afni/afni/v_3d_dtto_dwi.py +58 -4
- niwrap_afni/afni/v_3d_dwito_dt.py +299 -2
- niwrap_afni/afni/v_3d_ecm.py +24 -2
- niwrap_afni/afni/v_3d_fdr.py +14 -1
- niwrap_afni/afni/v_3d_gen_feature_dist.py +53 -1
- niwrap_afni/afni/v_3d_hist.py +14 -1
- niwrap_afni/afni/v_3d_icc.py +137 -2
- niwrap_afni/afni/v_3d_lfcd.py +24 -5
- niwrap_afni/afni/v_3d_lme.py +1 -3
- niwrap_afni/afni/v_3d_local_histog.py +32 -1
- niwrap_afni/afni/v_3d_lrflip.py +46 -1
- niwrap_afni/afni/v_3d_lss.py +107 -4
- niwrap_afni/afni/v_3d_mask_to_ascii.py +12 -4
- niwrap_afni/afni/v_3d_mema.py +301 -3
- niwrap_afni/afni/v_3d_mepfm.py +1 -2
- niwrap_afni/afni/v_3d_nlfim.py +487 -30
- niwrap_afni/afni/v_3d_nwarp_xyz.py +27 -14
- niwrap_afni/afni/v_3d_overlap.py +20 -6
- niwrap_afni/afni/v_3d_par2_afni.py +32 -1
- niwrap_afni/afni/v_3d_pfm.py +200 -2
- niwrap_afni/afni/v_3d_remlfit.py +41 -1
- niwrap_afni/afni/v_3d_roistats.py +1 -2
- niwrap_afni/afni/v_3d_rsfc.py +240 -6
- niwrap_afni/afni/v_3d_stat_clust.py +19 -1
- niwrap_afni/afni/v_3d_tcat.py +24 -5
- niwrap_afni/afni/v_3d_threeto_rgb.py +1 -2
- niwrap_afni/afni/v_3d_toy_prog.py +111 -1
- niwrap_afni/afni/v_3d_tsgen.py +18 -1
- niwrap_afni/afni/v_3d_tsort.py +10 -1
- niwrap_afni/afni/v_3d_tstat.py +25 -15
- niwrap_afni/afni/v_3d_undump.py +10 -1
- niwrap_afni/afni/v_3d_warp.py +236 -2
- niwrap_afni/afni/v_3d_wilcoxon.py +9 -7
- niwrap_afni/afni/v_3dbucket.py +14 -1
- niwrap_afni/afni/v_3dcalc.py +1 -1
- niwrap_afni/afni/v_3dcopy.py +31 -3
- niwrap_afni/afni/v_3dmask_svd.py +99 -2
- niwrap_afni/afni/v__4_daverage.py +11 -2
- niwrap_afni/afni/v__afni_env.py +19 -1
- niwrap_afni/afni/v__afni_refacer_run.py +36 -1
- niwrap_afni/afni/v__build_afni_xlib.py +21 -1
- niwrap_afni/afni/v__chauffeur_afni.py +184 -2
- niwrap_afni/afni/v__command_globb.py +13 -7
- niwrap_afni/afni/v__compute_oc_weights.py +16 -1
- niwrap_afni/afni/v__deblank_file_names.py +13 -2
- niwrap_afni/afni/v__dice_metric.py +18 -14
- niwrap_afni/afni/v__djunct_edgy_align_check.py +82 -10
- niwrap_afni/afni/v__djunct_montage_coordinator.py +10 -1
- niwrap_afni/afni/v__get_afni_res.py +3 -2
- niwrap_afni/afni/v__grad_flip_test.py +38 -42
- niwrap_afni/afni/v__grayplot.py +34 -1
- niwrap_afni/afni/v__help_afni.py +63 -2
- niwrap_afni/afni/v__make_label_table.py +14 -1
- niwrap_afni/afni/v__no_ext.py +9 -2
- niwrap_afni/afni/v__reorder.py +10 -1
- niwrap_afni/afni/v__skull_strip_touch_up.py +10 -1
- niwrap_afni/afni/v__suma_make_spec_caret.py +62 -2
- niwrap_afni/afni/v__suma_make_spec_fs.py +180 -2
- niwrap_afni/afni/v__to_mni_qwarpar.py +21 -1
- niwrap_afni/afni/v__to_rai.py +23 -7
- {niwrap_afni-0.5.0.dist-info → niwrap_afni-0.5.2.dist-info}/METADATA +1 -1
- {niwrap_afni-0.5.0.dist-info → niwrap_afni-0.5.2.dist-info}/RECORD +111 -111
- {niwrap_afni-0.5.0.dist-info → niwrap_afni-0.5.2.dist-info}/WHEEL +0 -0
niwrap_afni/afni/v_1d_sem.py
CHANGED
|
@@ -6,7 +6,7 @@ import pathlib
|
|
|
6
6
|
from styxdefs import *
|
|
7
7
|
|
|
8
8
|
V_1D_SEM_METADATA = Metadata(
|
|
9
|
-
id="
|
|
9
|
+
id="a26930914a15136a68f2004d57838df7d226dcb0.boutiques",
|
|
10
10
|
name="1dSEM",
|
|
11
11
|
package="afni",
|
|
12
12
|
container_image_tag="afni/afni_make_build:AFNI_24.2.06",
|
|
@@ -19,6 +19,18 @@ V1dSemParameters = typing.TypedDict('V1dSemParameters', {
|
|
|
19
19
|
"correlation_matrix": InputPathType,
|
|
20
20
|
"residual_variance": InputPathType,
|
|
21
21
|
"degrees_of_freedom": float,
|
|
22
|
+
"max_iterations": typing.NotRequired[int | None],
|
|
23
|
+
"number_random_trials": typing.NotRequired[int | None],
|
|
24
|
+
"limits": typing.NotRequired[list[float] | None],
|
|
25
|
+
"calculate_cost": bool,
|
|
26
|
+
"verbose": typing.NotRequired[int | None],
|
|
27
|
+
"tree_growth": bool,
|
|
28
|
+
"model_search": bool,
|
|
29
|
+
"max_paths": typing.NotRequired[int | None],
|
|
30
|
+
"stop_cost": typing.NotRequired[float | None],
|
|
31
|
+
"forest_growth": bool,
|
|
32
|
+
"grow_all": bool,
|
|
33
|
+
"leafpicker": bool,
|
|
22
34
|
})
|
|
23
35
|
|
|
24
36
|
|
|
@@ -69,6 +81,18 @@ def v_1d_sem_params(
|
|
|
69
81
|
correlation_matrix: InputPathType,
|
|
70
82
|
residual_variance: InputPathType,
|
|
71
83
|
degrees_of_freedom: float,
|
|
84
|
+
max_iterations: int | None = None,
|
|
85
|
+
number_random_trials: int | None = None,
|
|
86
|
+
limits: list[float] | None = None,
|
|
87
|
+
calculate_cost: bool = False,
|
|
88
|
+
verbose: int | None = None,
|
|
89
|
+
tree_growth: bool = False,
|
|
90
|
+
model_search: bool = False,
|
|
91
|
+
max_paths: int | None = None,
|
|
92
|
+
stop_cost: float | None = None,
|
|
93
|
+
forest_growth: bool = False,
|
|
94
|
+
grow_all: bool = False,
|
|
95
|
+
leafpicker: bool = False,
|
|
72
96
|
) -> V1dSemParameters:
|
|
73
97
|
"""
|
|
74
98
|
Build parameters.
|
|
@@ -78,6 +102,30 @@ def v_1d_sem_params(
|
|
|
78
102
|
correlation_matrix: Correlation matrix 1D file.
|
|
79
103
|
residual_variance: Residual variance vector 1D file.
|
|
80
104
|
degrees_of_freedom: Degrees of freedom.
|
|
105
|
+
max_iterations: Maximum number of iterations for convergence\
|
|
106
|
+
(Default=10000). Values can range from 1 to any positive integer less\
|
|
107
|
+
than 10000.
|
|
108
|
+
number_random_trials: Number of random trials before optimization\
|
|
109
|
+
(Default = 100).
|
|
110
|
+
limits: Lower and upper limits for connection coefficients (Default =\
|
|
111
|
+
-1.0 to 1.0).
|
|
112
|
+
calculate_cost: No modeling at all, just calculate the cost function\
|
|
113
|
+
for the coefficients as given in the theta file.
|
|
114
|
+
verbose: Print info every nnnnn steps.
|
|
115
|
+
tree_growth: Search for best model by growing a model for one\
|
|
116
|
+
additional coefficient from the previous model for n-1 coefficients.
|
|
117
|
+
model_search: Search for best model by growing a model for one\
|
|
118
|
+
additional coefficient from the previous model for n-1 coefficients.
|
|
119
|
+
max_paths: Maximum number of paths to include (Default = 1000).
|
|
120
|
+
stop_cost: Stop searching for paths when cost function is below this\
|
|
121
|
+
value (Default = 0.1).
|
|
122
|
+
forest_growth: Search over all possible models by comparing models at\
|
|
123
|
+
incrementally increasing number of path coefficients.
|
|
124
|
+
grow_all: Search over all possible models by comparing models at\
|
|
125
|
+
incrementally increasing number of path coefficients.
|
|
126
|
+
leafpicker: Expands the search optimization to look at multiple paths\
|
|
127
|
+
to avoid local minimum. This method is the default technique for tree\
|
|
128
|
+
growth and standard coefficient searches.
|
|
81
129
|
Returns:
|
|
82
130
|
Parameter dictionary
|
|
83
131
|
"""
|
|
@@ -87,7 +135,25 @@ def v_1d_sem_params(
|
|
|
87
135
|
"correlation_matrix": correlation_matrix,
|
|
88
136
|
"residual_variance": residual_variance,
|
|
89
137
|
"degrees_of_freedom": degrees_of_freedom,
|
|
138
|
+
"calculate_cost": calculate_cost,
|
|
139
|
+
"tree_growth": tree_growth,
|
|
140
|
+
"model_search": model_search,
|
|
141
|
+
"forest_growth": forest_growth,
|
|
142
|
+
"grow_all": grow_all,
|
|
143
|
+
"leafpicker": leafpicker,
|
|
90
144
|
}
|
|
145
|
+
if max_iterations is not None:
|
|
146
|
+
params["max_iterations"] = max_iterations
|
|
147
|
+
if number_random_trials is not None:
|
|
148
|
+
params["number_random_trials"] = number_random_trials
|
|
149
|
+
if limits is not None:
|
|
150
|
+
params["limits"] = limits
|
|
151
|
+
if verbose is not None:
|
|
152
|
+
params["verbose"] = verbose
|
|
153
|
+
if max_paths is not None:
|
|
154
|
+
params["max_paths"] = max_paths
|
|
155
|
+
if stop_cost is not None:
|
|
156
|
+
params["stop_cost"] = stop_cost
|
|
91
157
|
return params
|
|
92
158
|
|
|
93
159
|
|
|
@@ -122,7 +188,48 @@ def v_1d_sem_cargs(
|
|
|
122
188
|
"-DF",
|
|
123
189
|
str(params.get("degrees_of_freedom"))
|
|
124
190
|
])
|
|
125
|
-
|
|
191
|
+
if params.get("max_iterations") is not None:
|
|
192
|
+
cargs.extend([
|
|
193
|
+
"-max_iter",
|
|
194
|
+
str(params.get("max_iterations"))
|
|
195
|
+
])
|
|
196
|
+
if params.get("number_random_trials") is not None:
|
|
197
|
+
cargs.extend([
|
|
198
|
+
"-nrand",
|
|
199
|
+
str(params.get("number_random_trials"))
|
|
200
|
+
])
|
|
201
|
+
if params.get("limits") is not None:
|
|
202
|
+
cargs.extend([
|
|
203
|
+
"-limits",
|
|
204
|
+
*map(str, params.get("limits"))
|
|
205
|
+
])
|
|
206
|
+
if params.get("calculate_cost"):
|
|
207
|
+
cargs.append("-calccost")
|
|
208
|
+
if params.get("verbose") is not None:
|
|
209
|
+
cargs.extend([
|
|
210
|
+
"-verbose",
|
|
211
|
+
str(params.get("verbose"))
|
|
212
|
+
])
|
|
213
|
+
if params.get("tree_growth"):
|
|
214
|
+
cargs.append("-tree_growth")
|
|
215
|
+
if params.get("model_search"):
|
|
216
|
+
cargs.append("-model_search")
|
|
217
|
+
if params.get("max_paths") is not None:
|
|
218
|
+
cargs.extend([
|
|
219
|
+
"-max_paths",
|
|
220
|
+
str(params.get("max_paths"))
|
|
221
|
+
])
|
|
222
|
+
if params.get("stop_cost") is not None:
|
|
223
|
+
cargs.extend([
|
|
224
|
+
"-stop_cost",
|
|
225
|
+
str(params.get("stop_cost"))
|
|
226
|
+
])
|
|
227
|
+
if params.get("forest_growth"):
|
|
228
|
+
cargs.append("-forest_growth")
|
|
229
|
+
if params.get("grow_all"):
|
|
230
|
+
cargs.append("-grow_all")
|
|
231
|
+
if params.get("leafpicker"):
|
|
232
|
+
cargs.append("-leafpicker")
|
|
126
233
|
return cargs
|
|
127
234
|
|
|
128
235
|
|
|
@@ -176,6 +283,18 @@ def v_1d_sem(
|
|
|
176
283
|
correlation_matrix: InputPathType,
|
|
177
284
|
residual_variance: InputPathType,
|
|
178
285
|
degrees_of_freedom: float,
|
|
286
|
+
max_iterations: int | None = None,
|
|
287
|
+
number_random_trials: int | None = None,
|
|
288
|
+
limits: list[float] | None = None,
|
|
289
|
+
calculate_cost: bool = False,
|
|
290
|
+
verbose: int | None = None,
|
|
291
|
+
tree_growth: bool = False,
|
|
292
|
+
model_search: bool = False,
|
|
293
|
+
max_paths: int | None = None,
|
|
294
|
+
stop_cost: float | None = None,
|
|
295
|
+
forest_growth: bool = False,
|
|
296
|
+
grow_all: bool = False,
|
|
297
|
+
leafpicker: bool = False,
|
|
179
298
|
runner: Runner | None = None,
|
|
180
299
|
) -> V1dSemOutputs:
|
|
181
300
|
"""
|
|
@@ -191,6 +310,30 @@ def v_1d_sem(
|
|
|
191
310
|
correlation_matrix: Correlation matrix 1D file.
|
|
192
311
|
residual_variance: Residual variance vector 1D file.
|
|
193
312
|
degrees_of_freedom: Degrees of freedom.
|
|
313
|
+
max_iterations: Maximum number of iterations for convergence\
|
|
314
|
+
(Default=10000). Values can range from 1 to any positive integer less\
|
|
315
|
+
than 10000.
|
|
316
|
+
number_random_trials: Number of random trials before optimization\
|
|
317
|
+
(Default = 100).
|
|
318
|
+
limits: Lower and upper limits for connection coefficients (Default =\
|
|
319
|
+
-1.0 to 1.0).
|
|
320
|
+
calculate_cost: No modeling at all, just calculate the cost function\
|
|
321
|
+
for the coefficients as given in the theta file.
|
|
322
|
+
verbose: Print info every nnnnn steps.
|
|
323
|
+
tree_growth: Search for best model by growing a model for one\
|
|
324
|
+
additional coefficient from the previous model for n-1 coefficients.
|
|
325
|
+
model_search: Search for best model by growing a model for one\
|
|
326
|
+
additional coefficient from the previous model for n-1 coefficients.
|
|
327
|
+
max_paths: Maximum number of paths to include (Default = 1000).
|
|
328
|
+
stop_cost: Stop searching for paths when cost function is below this\
|
|
329
|
+
value (Default = 0.1).
|
|
330
|
+
forest_growth: Search over all possible models by comparing models at\
|
|
331
|
+
incrementally increasing number of path coefficients.
|
|
332
|
+
grow_all: Search over all possible models by comparing models at\
|
|
333
|
+
incrementally increasing number of path coefficients.
|
|
334
|
+
leafpicker: Expands the search optimization to look at multiple paths\
|
|
335
|
+
to avoid local minimum. This method is the default technique for tree\
|
|
336
|
+
growth and standard coefficient searches.
|
|
194
337
|
runner: Command runner.
|
|
195
338
|
Returns:
|
|
196
339
|
NamedTuple of outputs (described in `V1dSemOutputs`).
|
|
@@ -202,6 +345,18 @@ def v_1d_sem(
|
|
|
202
345
|
correlation_matrix=correlation_matrix,
|
|
203
346
|
residual_variance=residual_variance,
|
|
204
347
|
degrees_of_freedom=degrees_of_freedom,
|
|
348
|
+
max_iterations=max_iterations,
|
|
349
|
+
number_random_trials=number_random_trials,
|
|
350
|
+
limits=limits,
|
|
351
|
+
calculate_cost=calculate_cost,
|
|
352
|
+
verbose=verbose,
|
|
353
|
+
tree_growth=tree_growth,
|
|
354
|
+
model_search=model_search,
|
|
355
|
+
max_paths=max_paths,
|
|
356
|
+
stop_cost=stop_cost,
|
|
357
|
+
forest_growth=forest_growth,
|
|
358
|
+
grow_all=grow_all,
|
|
359
|
+
leafpicker=leafpicker,
|
|
205
360
|
)
|
|
206
361
|
return v_1d_sem_execute(params, execution)
|
|
207
362
|
|
niwrap_afni/afni/v_1d_tsort.py
CHANGED
|
@@ -6,7 +6,7 @@ import pathlib
|
|
|
6
6
|
from styxdefs import *
|
|
7
7
|
|
|
8
8
|
V_1D_TSORT_METADATA = Metadata(
|
|
9
|
-
id="
|
|
9
|
+
id="f4d144dd2a33cb2a0c2516cb757ba2a8c82c7262.boutiques",
|
|
10
10
|
name="1dTsort",
|
|
11
11
|
package="afni",
|
|
12
12
|
container_image_tag="afni/afni_make_build:AFNI_24.2.06",
|
|
@@ -15,6 +15,7 @@ V_1D_TSORT_METADATA = Metadata(
|
|
|
15
15
|
|
|
16
16
|
V1dTsortParameters = typing.TypedDict('V1dTsortParameters', {
|
|
17
17
|
"__STYX_TYPE__": typing.Literal["1dTsort"],
|
|
18
|
+
"inc_order": bool,
|
|
18
19
|
"dec_order": bool,
|
|
19
20
|
"transpose": bool,
|
|
20
21
|
"column": typing.NotRequired[float | None],
|
|
@@ -64,6 +65,7 @@ class V1dTsortOutputs(typing.NamedTuple):
|
|
|
64
65
|
|
|
65
66
|
def v_1d_tsort_params(
|
|
66
67
|
infile: InputPathType,
|
|
68
|
+
inc_order: bool = False,
|
|
67
69
|
dec_order: bool = False,
|
|
68
70
|
transpose: bool = False,
|
|
69
71
|
column: float | None = None,
|
|
@@ -74,6 +76,7 @@ def v_1d_tsort_params(
|
|
|
74
76
|
|
|
75
77
|
Args:
|
|
76
78
|
infile: Input 1D file to be sorted.
|
|
79
|
+
inc_order: Sort into increasing order [default].
|
|
77
80
|
dec_order: Sort into decreasing order.
|
|
78
81
|
transpose: Transpose the file before output.
|
|
79
82
|
column: Sort only on column #j (counting starts at 0), and carry the\
|
|
@@ -85,6 +88,7 @@ def v_1d_tsort_params(
|
|
|
85
88
|
"""
|
|
86
89
|
params = {
|
|
87
90
|
"__STYXTYPE__": "1dTsort",
|
|
91
|
+
"inc_order": inc_order,
|
|
88
92
|
"dec_order": dec_order,
|
|
89
93
|
"transpose": transpose,
|
|
90
94
|
"imode": imode,
|
|
@@ -110,6 +114,8 @@ def v_1d_tsort_cargs(
|
|
|
110
114
|
"""
|
|
111
115
|
cargs = []
|
|
112
116
|
cargs.append("1dTsort")
|
|
117
|
+
if params.get("inc_order"):
|
|
118
|
+
cargs.append("-inc")
|
|
113
119
|
if params.get("dec_order"):
|
|
114
120
|
cargs.append("-dec")
|
|
115
121
|
if params.get("transpose"):
|
|
@@ -170,6 +176,7 @@ def v_1d_tsort_execute(
|
|
|
170
176
|
|
|
171
177
|
def v_1d_tsort(
|
|
172
178
|
infile: InputPathType,
|
|
179
|
+
inc_order: bool = False,
|
|
173
180
|
dec_order: bool = False,
|
|
174
181
|
transpose: bool = False,
|
|
175
182
|
column: float | None = None,
|
|
@@ -185,6 +192,7 @@ def v_1d_tsort(
|
|
|
185
192
|
|
|
186
193
|
Args:
|
|
187
194
|
infile: Input 1D file to be sorted.
|
|
195
|
+
inc_order: Sort into increasing order [default].
|
|
188
196
|
dec_order: Sort into decreasing order.
|
|
189
197
|
transpose: Transpose the file before output.
|
|
190
198
|
column: Sort only on column #j (counting starts at 0), and carry the\
|
|
@@ -198,6 +206,7 @@ def v_1d_tsort(
|
|
|
198
206
|
runner = runner or get_global_runner()
|
|
199
207
|
execution = runner.start_execution(V_1D_TSORT_METADATA)
|
|
200
208
|
params = v_1d_tsort_params(
|
|
209
|
+
inc_order=inc_order,
|
|
201
210
|
dec_order=dec_order,
|
|
202
211
|
transpose=transpose,
|
|
203
212
|
column=column,
|
niwrap_afni/afni/v_1ddot.py
CHANGED
|
@@ -6,7 +6,7 @@ import pathlib
|
|
|
6
6
|
from styxdefs import *
|
|
7
7
|
|
|
8
8
|
V_1DDOT_METADATA = Metadata(
|
|
9
|
-
id="
|
|
9
|
+
id="3b57cf09716c42dc28cccea1c8b49a4f626abd0b.boutiques",
|
|
10
10
|
name="1ddot",
|
|
11
11
|
package="afni",
|
|
12
12
|
container_image_tag="afni/afni_make_build:AFNI_24.2.06",
|
|
@@ -64,6 +64,8 @@ class V1ddotOutputs(typing.NamedTuple):
|
|
|
64
64
|
"""
|
|
65
65
|
root: OutputPathType
|
|
66
66
|
"""Output root folder. This is the root folder for all outputs."""
|
|
67
|
+
stdout: list[str]
|
|
68
|
+
"""output text file"""
|
|
67
69
|
stdout_output: OutputPathType
|
|
68
70
|
"""Output correlation or covariance matrix printed to stdout."""
|
|
69
71
|
|
|
@@ -140,8 +142,6 @@ def v_1ddot_cargs(
|
|
|
140
142
|
if params.get("okzero_flag"):
|
|
141
143
|
cargs.append("-okzero")
|
|
142
144
|
cargs.extend([execution.input_file(f) for f in params.get("input_files")])
|
|
143
|
-
cargs.append(">")
|
|
144
|
-
cargs.append("stdout.txt")
|
|
145
145
|
return cargs
|
|
146
146
|
|
|
147
147
|
|
|
@@ -160,6 +160,7 @@ def v_1ddot_outputs(
|
|
|
160
160
|
"""
|
|
161
161
|
ret = V1ddotOutputs(
|
|
162
162
|
root=execution.output_file("."),
|
|
163
|
+
stdout=[],
|
|
163
164
|
stdout_output=execution.output_file("stdout.txt"),
|
|
164
165
|
)
|
|
165
166
|
return ret
|
|
@@ -186,7 +187,7 @@ def v_1ddot_execute(
|
|
|
186
187
|
params = execution.params(params)
|
|
187
188
|
cargs = v_1ddot_cargs(params, execution)
|
|
188
189
|
ret = v_1ddot_outputs(params, execution)
|
|
189
|
-
execution.run(cargs)
|
|
190
|
+
execution.run(cargs, handle_stdout=lambda s: ret.stdout.append(s))
|
|
190
191
|
return ret
|
|
191
192
|
|
|
192
193
|
|
niwrap_afni/afni/v_1deval.py
CHANGED
|
@@ -6,7 +6,7 @@ import pathlib
|
|
|
6
6
|
from styxdefs import *
|
|
7
7
|
|
|
8
8
|
V_1DEVAL_METADATA = Metadata(
|
|
9
|
-
id="
|
|
9
|
+
id="4d289385c575fb0e342e48148cb17a3c5cbf7c68.boutiques",
|
|
10
10
|
name="1deval",
|
|
11
11
|
package="afni",
|
|
12
12
|
container_image_tag="afni/afni_make_build:AFNI_24.2.06",
|
|
@@ -21,6 +21,7 @@ V1devalParameters = typing.TypedDict('V1devalParameters', {
|
|
|
21
21
|
"index": typing.NotRequired[InputPathType | None],
|
|
22
22
|
"1D": bool,
|
|
23
23
|
"symbols": typing.NotRequired[list[InputPathType] | None],
|
|
24
|
+
"symbol_values": typing.NotRequired[list[str] | None],
|
|
24
25
|
"expression": str,
|
|
25
26
|
})
|
|
26
27
|
|
|
@@ -75,6 +76,7 @@ def v_1deval_params(
|
|
|
75
76
|
index: InputPathType | None = None,
|
|
76
77
|
v_1_d: bool = False,
|
|
77
78
|
symbols: list[InputPathType] | None = None,
|
|
79
|
+
symbol_values: list[str] | None = None,
|
|
78
80
|
) -> V1devalParameters:
|
|
79
81
|
"""
|
|
80
82
|
Build parameters.
|
|
@@ -92,6 +94,8 @@ def v_1deval_params(
|
|
|
92
94
|
input on the command line of another program.
|
|
93
95
|
symbols: Read time series file and assign it to the symbol 'a'. Letters\
|
|
94
96
|
'a' to 'z' may be used as symbols.
|
|
97
|
+
symbol_values: Assign a fixed numerical value to the symbol 'a'.\
|
|
98
|
+
Letters 'a' to 'z' may be used as symbols.
|
|
95
99
|
Returns:
|
|
96
100
|
Parameter dictionary
|
|
97
101
|
"""
|
|
@@ -110,6 +114,8 @@ def v_1deval_params(
|
|
|
110
114
|
params["index"] = index
|
|
111
115
|
if symbols is not None:
|
|
112
116
|
params["symbols"] = symbols
|
|
117
|
+
if symbol_values is not None:
|
|
118
|
+
params["symbol_values"] = symbol_values
|
|
113
119
|
return params
|
|
114
120
|
|
|
115
121
|
|
|
@@ -155,6 +161,11 @@ def v_1deval_cargs(
|
|
|
155
161
|
"-a",
|
|
156
162
|
*[execution.input_file(f) for f in params.get("symbols")]
|
|
157
163
|
])
|
|
164
|
+
if params.get("symbol_values") is not None:
|
|
165
|
+
cargs.extend([
|
|
166
|
+
"-a=",
|
|
167
|
+
*params.get("symbol_values")
|
|
168
|
+
])
|
|
158
169
|
cargs.extend([
|
|
159
170
|
"-expr",
|
|
160
171
|
params.get("expression")
|
|
@@ -215,6 +226,7 @@ def v_1deval(
|
|
|
215
226
|
index: InputPathType | None = None,
|
|
216
227
|
v_1_d: bool = False,
|
|
217
228
|
symbols: list[InputPathType] | None = None,
|
|
229
|
+
symbol_values: list[str] | None = None,
|
|
218
230
|
runner: Runner | None = None,
|
|
219
231
|
) -> V1devalOutputs:
|
|
220
232
|
"""
|
|
@@ -238,6 +250,8 @@ def v_1deval(
|
|
|
238
250
|
input on the command line of another program.
|
|
239
251
|
symbols: Read time series file and assign it to the symbol 'a'. Letters\
|
|
240
252
|
'a' to 'z' may be used as symbols.
|
|
253
|
+
symbol_values: Assign a fixed numerical value to the symbol 'a'.\
|
|
254
|
+
Letters 'a' to 'z' may be used as symbols.
|
|
241
255
|
runner: Command runner.
|
|
242
256
|
Returns:
|
|
243
257
|
NamedTuple of outputs (described in `V1devalOutputs`).
|
|
@@ -251,6 +265,7 @@ def v_1deval(
|
|
|
251
265
|
index=index,
|
|
252
266
|
v_1_d=v_1_d,
|
|
253
267
|
symbols=symbols,
|
|
268
|
+
symbol_values=symbol_values,
|
|
254
269
|
expression=expression,
|
|
255
270
|
)
|
|
256
271
|
return v_1deval_execute(params, execution)
|
|
@@ -6,7 +6,7 @@ import pathlib
|
|
|
6
6
|
from styxdefs import *
|
|
7
7
|
|
|
8
8
|
V_1DGEN_ARMA11_METADATA = Metadata(
|
|
9
|
-
id="
|
|
9
|
+
id="db531d2478af899030ee6f05096f794916316ef9.boutiques",
|
|
10
10
|
name="1dgenARMA11",
|
|
11
11
|
package="afni",
|
|
12
12
|
container_image_tag="afni/afni_make_build:AFNI_24.2.06",
|
|
@@ -15,6 +15,7 @@ V_1DGEN_ARMA11_METADATA = Metadata(
|
|
|
15
15
|
|
|
16
16
|
V1dgenArma11Parameters = typing.TypedDict('V1dgenArma11Parameters', {
|
|
17
17
|
"__STYX_TYPE__": typing.Literal["1dgenARMA11"],
|
|
18
|
+
"length": typing.NotRequired[float | None],
|
|
18
19
|
"length_alt": typing.NotRequired[float | None],
|
|
19
20
|
"num_series": typing.NotRequired[float | None],
|
|
20
21
|
"param_a": typing.NotRequired[float | None],
|
|
@@ -72,6 +73,7 @@ class V1dgenArma11Outputs(typing.NamedTuple):
|
|
|
72
73
|
|
|
73
74
|
|
|
74
75
|
def v_1dgen_arma11_params(
|
|
76
|
+
length: float | None = None,
|
|
75
77
|
length_alt: float | None = None,
|
|
76
78
|
num_series: float | None = None,
|
|
77
79
|
param_a: float | None = None,
|
|
@@ -88,6 +90,8 @@ def v_1dgen_arma11_params(
|
|
|
88
90
|
Build parameters.
|
|
89
91
|
|
|
90
92
|
Args:
|
|
93
|
+
length: Specify the length of the time series vector to generate\
|
|
94
|
+
(equivalent to -len option).
|
|
91
95
|
length_alt: Specify the length of the time series vector to generate\
|
|
92
96
|
(equivalent to -num option).
|
|
93
97
|
num_series: The number of time series vectors to generate; defaults to\
|
|
@@ -111,6 +115,8 @@ def v_1dgen_arma11_params(
|
|
|
111
115
|
"__STYXTYPE__": "1dgenARMA11",
|
|
112
116
|
"normalize": normalize,
|
|
113
117
|
}
|
|
118
|
+
if length is not None:
|
|
119
|
+
params["length"] = length
|
|
114
120
|
if length_alt is not None:
|
|
115
121
|
params["length_alt"] = length_alt
|
|
116
122
|
if num_series is not None:
|
|
@@ -149,6 +155,11 @@ def v_1dgen_arma11_cargs(
|
|
|
149
155
|
"""
|
|
150
156
|
cargs = []
|
|
151
157
|
cargs.append("1dgenARMA11")
|
|
158
|
+
if params.get("length") is not None:
|
|
159
|
+
cargs.extend([
|
|
160
|
+
"-num",
|
|
161
|
+
str(params.get("length"))
|
|
162
|
+
])
|
|
152
163
|
if params.get("length_alt") is not None:
|
|
153
164
|
cargs.extend([
|
|
154
165
|
"-len",
|
|
@@ -250,6 +261,7 @@ def v_1dgen_arma11_execute(
|
|
|
250
261
|
|
|
251
262
|
|
|
252
263
|
def v_1dgen_arma11(
|
|
264
|
+
length: float | None = None,
|
|
253
265
|
length_alt: float | None = None,
|
|
254
266
|
num_series: float | None = None,
|
|
255
267
|
param_a: float | None = None,
|
|
@@ -272,6 +284,8 @@ def v_1dgen_arma11(
|
|
|
272
284
|
URL: https://afni.nimh.nih.gov/
|
|
273
285
|
|
|
274
286
|
Args:
|
|
287
|
+
length: Specify the length of the time series vector to generate\
|
|
288
|
+
(equivalent to -len option).
|
|
275
289
|
length_alt: Specify the length of the time series vector to generate\
|
|
276
290
|
(equivalent to -num option).
|
|
277
291
|
num_series: The number of time series vectors to generate; defaults to\
|
|
@@ -295,6 +309,7 @@ def v_1dgen_arma11(
|
|
|
295
309
|
runner = runner or get_global_runner()
|
|
296
310
|
execution = runner.start_execution(V_1DGEN_ARMA11_METADATA)
|
|
297
311
|
params = v_1dgen_arma11_params(
|
|
312
|
+
length=length,
|
|
298
313
|
length_alt=length_alt,
|
|
299
314
|
num_series=num_series,
|
|
300
315
|
param_a=param_a,
|
|
@@ -6,7 +6,7 @@ import pathlib
|
|
|
6
6
|
from styxdefs import *
|
|
7
7
|
|
|
8
8
|
V_3_DROIMAKER_METADATA = Metadata(
|
|
9
|
-
id="
|
|
9
|
+
id="16b5bd8ed0bd228cb0f4654876f7baea2f4af429.boutiques",
|
|
10
10
|
name="3DROIMaker",
|
|
11
11
|
package="afni",
|
|
12
12
|
container_image_tag="afni/afni_make_build:AFNI_24.2.06",
|
|
@@ -20,6 +20,7 @@ V3DroimakerParameters = typing.TypedDict('V3DroimakerParameters', {
|
|
|
20
20
|
"prefix": str,
|
|
21
21
|
"refset": typing.NotRequired[InputPathType | None],
|
|
22
22
|
"volthr": typing.NotRequired[float | None],
|
|
23
|
+
"only_some_top": typing.NotRequired[float | None],
|
|
23
24
|
"only_conn_top": typing.NotRequired[float | None],
|
|
24
25
|
"inflate": typing.NotRequired[float | None],
|
|
25
26
|
"trim_off_wm": bool,
|
|
@@ -89,6 +90,7 @@ def v_3_droimaker_params(
|
|
|
89
90
|
prefix: str,
|
|
90
91
|
refset: InputPathType | None = None,
|
|
91
92
|
volthr: float | None = None,
|
|
93
|
+
only_some_top: float | None = None,
|
|
92
94
|
only_conn_top: float | None = None,
|
|
93
95
|
inflate: float | None = None,
|
|
94
96
|
trim_off_wm: bool = False,
|
|
@@ -118,6 +120,8 @@ def v_3_droimaker_params(
|
|
|
118
120
|
which to label specific GM ROIs after thresholding.
|
|
119
121
|
volthr: Minimum size a cluster of voxels must have in order to remain a\
|
|
120
122
|
GM ROI after thresholding. Can reduce 'noisy' clusters.
|
|
123
|
+
only_some_top: Restrict each found region to keep only N voxels with\
|
|
124
|
+
the highest inset values.
|
|
121
125
|
only_conn_top: Select N max contiguous voxels in a region starting from\
|
|
122
126
|
peak voxel and expanding.
|
|
123
127
|
inflate: Number of voxels to pad each found ROI in order to turn GM\
|
|
@@ -161,6 +165,8 @@ def v_3_droimaker_params(
|
|
|
161
165
|
params["refset"] = refset
|
|
162
166
|
if volthr is not None:
|
|
163
167
|
params["volthr"] = volthr
|
|
168
|
+
if only_some_top is not None:
|
|
169
|
+
params["only_some_top"] = only_some_top
|
|
164
170
|
if only_conn_top is not None:
|
|
165
171
|
params["only_conn_top"] = only_conn_top
|
|
166
172
|
if inflate is not None:
|
|
@@ -214,6 +220,11 @@ def v_3_droimaker_cargs(
|
|
|
214
220
|
"-volthr",
|
|
215
221
|
str(params.get("volthr"))
|
|
216
222
|
])
|
|
223
|
+
if params.get("only_some_top") is not None:
|
|
224
|
+
cargs.extend([
|
|
225
|
+
"-only_some_top",
|
|
226
|
+
str(params.get("only_some_top"))
|
|
227
|
+
])
|
|
217
228
|
if params.get("only_conn_top") is not None:
|
|
218
229
|
cargs.extend([
|
|
219
230
|
"-only_conn_top",
|
|
@@ -321,6 +332,7 @@ def v_3_droimaker(
|
|
|
321
332
|
prefix: str,
|
|
322
333
|
refset: InputPathType | None = None,
|
|
323
334
|
volthr: float | None = None,
|
|
335
|
+
only_some_top: float | None = None,
|
|
324
336
|
only_conn_top: float | None = None,
|
|
325
337
|
inflate: float | None = None,
|
|
326
338
|
trim_off_wm: bool = False,
|
|
@@ -356,6 +368,8 @@ def v_3_droimaker(
|
|
|
356
368
|
which to label specific GM ROIs after thresholding.
|
|
357
369
|
volthr: Minimum size a cluster of voxels must have in order to remain a\
|
|
358
370
|
GM ROI after thresholding. Can reduce 'noisy' clusters.
|
|
371
|
+
only_some_top: Restrict each found region to keep only N voxels with\
|
|
372
|
+
the highest inset values.
|
|
359
373
|
only_conn_top: Select N max contiguous voxels in a region starting from\
|
|
360
374
|
peak voxel and expanding.
|
|
361
375
|
inflate: Number of voxels to pad each found ROI in order to turn GM\
|
|
@@ -392,6 +406,7 @@ def v_3_droimaker(
|
|
|
392
406
|
prefix=prefix,
|
|
393
407
|
refset=refset,
|
|
394
408
|
volthr=volthr,
|
|
409
|
+
only_some_top=only_some_top,
|
|
395
410
|
only_conn_top=only_conn_top,
|
|
396
411
|
inflate=inflate,
|
|
397
412
|
trim_off_wm=trim_off_wm,
|
|
@@ -6,7 +6,7 @@ import pathlib
|
|
|
6
6
|
from styxdefs import *
|
|
7
7
|
|
|
8
8
|
V_3D_AFNITO3_D_METADATA = Metadata(
|
|
9
|
-
id="
|
|
9
|
+
id="2e56ef52ac7f3be262fb2b8e920d983be907904e.boutiques",
|
|
10
10
|
name="3dAFNIto3D",
|
|
11
11
|
package="afni",
|
|
12
12
|
container_image_tag="afni/afni_make_build:AFNI_24.2.06",
|
|
@@ -16,6 +16,9 @@ V_3D_AFNITO3_D_METADATA = Metadata(
|
|
|
16
16
|
V3dAfnito3DParameters = typing.TypedDict('V3dAfnito3DParameters', {
|
|
17
17
|
"__STYX_TYPE__": typing.Literal["3dAFNIto3D"],
|
|
18
18
|
"dataset": InputPathType,
|
|
19
|
+
"prefix": typing.NotRequired[str | None],
|
|
20
|
+
"binary": bool,
|
|
21
|
+
"text": bool,
|
|
19
22
|
})
|
|
20
23
|
|
|
21
24
|
|
|
@@ -57,25 +60,35 @@ class V3dAfnito3DOutputs(typing.NamedTuple):
|
|
|
57
60
|
"""
|
|
58
61
|
root: OutputPathType
|
|
59
62
|
"""Output root folder. This is the root folder for all outputs."""
|
|
60
|
-
outfile: OutputPathType
|
|
63
|
+
outfile: OutputPathType | None
|
|
61
64
|
"""Output 3D file, either in binary or text format"""
|
|
62
65
|
|
|
63
66
|
|
|
64
67
|
def v_3d_afnito3_d_params(
|
|
65
68
|
dataset: InputPathType,
|
|
69
|
+
prefix: str | None = None,
|
|
70
|
+
binary: bool = False,
|
|
71
|
+
text: bool = False,
|
|
66
72
|
) -> V3dAfnito3DParameters:
|
|
67
73
|
"""
|
|
68
74
|
Build parameters.
|
|
69
75
|
|
|
70
76
|
Args:
|
|
71
77
|
dataset: AFNI dataset to be converted.
|
|
78
|
+
prefix: Write result into file with specified prefix.
|
|
79
|
+
binary: Write data in binary format.
|
|
80
|
+
text: Write data in text format.
|
|
72
81
|
Returns:
|
|
73
82
|
Parameter dictionary
|
|
74
83
|
"""
|
|
75
84
|
params = {
|
|
76
85
|
"__STYXTYPE__": "3dAFNIto3D",
|
|
77
86
|
"dataset": dataset,
|
|
87
|
+
"binary": binary,
|
|
88
|
+
"text": text,
|
|
78
89
|
}
|
|
90
|
+
if prefix is not None:
|
|
91
|
+
params["prefix"] = prefix
|
|
79
92
|
return params
|
|
80
93
|
|
|
81
94
|
|
|
@@ -94,8 +107,16 @@ def v_3d_afnito3_d_cargs(
|
|
|
94
107
|
"""
|
|
95
108
|
cargs = []
|
|
96
109
|
cargs.append("3dAFNIto3D")
|
|
97
|
-
cargs.append("[OPTIONS]")
|
|
98
110
|
cargs.append(execution.input_file(params.get("dataset")))
|
|
111
|
+
if params.get("prefix") is not None:
|
|
112
|
+
cargs.extend([
|
|
113
|
+
"-prefix",
|
|
114
|
+
params.get("prefix")
|
|
115
|
+
])
|
|
116
|
+
if params.get("binary"):
|
|
117
|
+
cargs.append("-bin")
|
|
118
|
+
if params.get("text"):
|
|
119
|
+
cargs.append("-txt")
|
|
99
120
|
return cargs
|
|
100
121
|
|
|
101
122
|
|
|
@@ -114,7 +135,7 @@ def v_3d_afnito3_d_outputs(
|
|
|
114
135
|
"""
|
|
115
136
|
ret = V3dAfnito3DOutputs(
|
|
116
137
|
root=execution.output_file("."),
|
|
117
|
-
outfile=execution.output_file("
|
|
138
|
+
outfile=execution.output_file(params.get("prefix") + ".3D") if (params.get("prefix") is not None) else None,
|
|
118
139
|
)
|
|
119
140
|
return ret
|
|
120
141
|
|
|
@@ -145,6 +166,9 @@ def v_3d_afnito3_d_execute(
|
|
|
145
166
|
|
|
146
167
|
def v_3d_afnito3_d(
|
|
147
168
|
dataset: InputPathType,
|
|
169
|
+
prefix: str | None = None,
|
|
170
|
+
binary: bool = False,
|
|
171
|
+
text: bool = False,
|
|
148
172
|
runner: Runner | None = None,
|
|
149
173
|
) -> V3dAfnito3DOutputs:
|
|
150
174
|
"""
|
|
@@ -156,6 +180,9 @@ def v_3d_afnito3_d(
|
|
|
156
180
|
|
|
157
181
|
Args:
|
|
158
182
|
dataset: AFNI dataset to be converted.
|
|
183
|
+
prefix: Write result into file with specified prefix.
|
|
184
|
+
binary: Write data in binary format.
|
|
185
|
+
text: Write data in text format.
|
|
159
186
|
runner: Command runner.
|
|
160
187
|
Returns:
|
|
161
188
|
NamedTuple of outputs (described in `V3dAfnito3DOutputs`).
|
|
@@ -164,6 +191,9 @@ def v_3d_afnito3_d(
|
|
|
164
191
|
execution = runner.start_execution(V_3D_AFNITO3_D_METADATA)
|
|
165
192
|
params = v_3d_afnito3_d_params(
|
|
166
193
|
dataset=dataset,
|
|
194
|
+
prefix=prefix,
|
|
195
|
+
binary=binary,
|
|
196
|
+
text=text,
|
|
167
197
|
)
|
|
168
198
|
return v_3d_afnito3_d_execute(params, execution)
|
|
169
199
|
|