nimare 0.4.2rc4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- benchmarks/__init__.py +0 -0
- benchmarks/bench_cbma.py +57 -0
- nimare/__init__.py +45 -0
- nimare/_version.py +21 -0
- nimare/annotate/__init__.py +21 -0
- nimare/annotate/cogat.py +213 -0
- nimare/annotate/gclda.py +924 -0
- nimare/annotate/lda.py +147 -0
- nimare/annotate/text.py +75 -0
- nimare/annotate/utils.py +87 -0
- nimare/base.py +217 -0
- nimare/cli.py +124 -0
- nimare/correct.py +462 -0
- nimare/dataset.py +685 -0
- nimare/decode/__init__.py +33 -0
- nimare/decode/base.py +115 -0
- nimare/decode/continuous.py +462 -0
- nimare/decode/discrete.py +753 -0
- nimare/decode/encode.py +110 -0
- nimare/decode/utils.py +44 -0
- nimare/diagnostics.py +510 -0
- nimare/estimator.py +139 -0
- nimare/extract/__init__.py +19 -0
- nimare/extract/extract.py +466 -0
- nimare/extract/utils.py +295 -0
- nimare/generate.py +331 -0
- nimare/io.py +635 -0
- nimare/meta/__init__.py +39 -0
- nimare/meta/cbma/__init__.py +6 -0
- nimare/meta/cbma/ale.py +951 -0
- nimare/meta/cbma/base.py +947 -0
- nimare/meta/cbma/mkda.py +1361 -0
- nimare/meta/cbmr.py +970 -0
- nimare/meta/ibma.py +1683 -0
- nimare/meta/kernel.py +501 -0
- nimare/meta/models.py +1199 -0
- nimare/meta/utils.py +494 -0
- nimare/nimads.py +492 -0
- nimare/reports/__init__.py +24 -0
- nimare/reports/base.py +664 -0
- nimare/reports/default.yml +123 -0
- nimare/reports/figures.py +651 -0
- nimare/reports/report.tpl +160 -0
- nimare/resources/__init__.py +1 -0
- nimare/resources/atlases/Harvard-Oxford-LICENSE +93 -0
- nimare/resources/atlases/HarvardOxford-cort-maxprob-thr25-2mm.nii.gz +0 -0
- nimare/resources/database_file_manifest.json +142 -0
- nimare/resources/english_spellings.csv +1738 -0
- nimare/resources/filenames.json +32 -0
- nimare/resources/neurosynth_laird_studies.json +58773 -0
- nimare/resources/neurosynth_stoplist.txt +396 -0
- nimare/resources/nidm_pain_dset.json +1349 -0
- nimare/resources/references.bib +541 -0
- nimare/resources/semantic_knowledge_children.txt +325 -0
- nimare/resources/semantic_relatedness_children.txt +249 -0
- nimare/resources/templates/MNI152_2x2x2_brainmask.nii.gz +0 -0
- nimare/resources/templates/tpl-MNI152NLin6Asym_res-01_T1w.nii.gz +0 -0
- nimare/resources/templates/tpl-MNI152NLin6Asym_res-01_desc-brain_mask.nii.gz +0 -0
- nimare/resources/templates/tpl-MNI152NLin6Asym_res-02_T1w.nii.gz +0 -0
- nimare/resources/templates/tpl-MNI152NLin6Asym_res-02_desc-brain_mask.nii.gz +0 -0
- nimare/results.py +225 -0
- nimare/stats.py +276 -0
- nimare/tests/__init__.py +1 -0
- nimare/tests/conftest.py +229 -0
- nimare/tests/data/amygdala_roi.nii.gz +0 -0
- nimare/tests/data/data-neurosynth_version-7_coordinates.tsv.gz +0 -0
- nimare/tests/data/data-neurosynth_version-7_metadata.tsv.gz +0 -0
- nimare/tests/data/data-neurosynth_version-7_vocab-terms_source-abstract_type-tfidf_features.npz +0 -0
- nimare/tests/data/data-neurosynth_version-7_vocab-terms_vocabulary.txt +100 -0
- nimare/tests/data/neurosynth_dset.json +2868 -0
- nimare/tests/data/neurosynth_laird_studies.json +58773 -0
- nimare/tests/data/nidm_pain_dset.json +1349 -0
- nimare/tests/data/nimads_annotation.json +1 -0
- nimare/tests/data/nimads_studyset.json +1 -0
- nimare/tests/data/test_baseline.txt +2 -0
- nimare/tests/data/test_pain_dataset.json +1278 -0
- nimare/tests/data/test_pain_dataset_multiple_contrasts.json +1242 -0
- nimare/tests/data/test_sleuth_file.txt +18 -0
- nimare/tests/data/test_sleuth_file2.txt +10 -0
- nimare/tests/data/test_sleuth_file3.txt +5 -0
- nimare/tests/data/test_sleuth_file4.txt +5 -0
- nimare/tests/data/test_sleuth_file5.txt +5 -0
- nimare/tests/test_annotate_cogat.py +32 -0
- nimare/tests/test_annotate_gclda.py +86 -0
- nimare/tests/test_annotate_lda.py +27 -0
- nimare/tests/test_dataset.py +99 -0
- nimare/tests/test_decode_continuous.py +132 -0
- nimare/tests/test_decode_discrete.py +92 -0
- nimare/tests/test_diagnostics.py +168 -0
- nimare/tests/test_estimator_performance.py +385 -0
- nimare/tests/test_extract.py +46 -0
- nimare/tests/test_generate.py +247 -0
- nimare/tests/test_io.py +240 -0
- nimare/tests/test_meta_ale.py +298 -0
- nimare/tests/test_meta_cbmr.py +295 -0
- nimare/tests/test_meta_ibma.py +240 -0
- nimare/tests/test_meta_kernel.py +209 -0
- nimare/tests/test_meta_mkda.py +234 -0
- nimare/tests/test_nimads.py +21 -0
- nimare/tests/test_reports.py +110 -0
- nimare/tests/test_stats.py +101 -0
- nimare/tests/test_transforms.py +272 -0
- nimare/tests/test_utils.py +200 -0
- nimare/tests/test_workflows.py +221 -0
- nimare/tests/utils.py +126 -0
- nimare/transforms.py +907 -0
- nimare/utils.py +1367 -0
- nimare/workflows/__init__.py +14 -0
- nimare/workflows/base.py +189 -0
- nimare/workflows/cbma.py +165 -0
- nimare/workflows/ibma.py +108 -0
- nimare/workflows/macm.py +77 -0
- nimare/workflows/misc.py +65 -0
- nimare-0.4.2rc4.dist-info/LICENSE +21 -0
- nimare-0.4.2rc4.dist-info/METADATA +124 -0
- nimare-0.4.2rc4.dist-info/RECORD +119 -0
- nimare-0.4.2rc4.dist-info/WHEEL +5 -0
- nimare-0.4.2rc4.dist-info/entry_points.txt +2 -0
- nimare-0.4.2rc4.dist-info/top_level.txt +2 -0
nimare/meta/cbmr.py
ADDED
@@ -0,0 +1,970 @@
|
|
1
|
+
"""Coordinate Based Meta Regression Methods."""
|
2
|
+
|
3
|
+
import logging
|
4
|
+
import re
|
5
|
+
from functools import wraps
|
6
|
+
|
7
|
+
import nibabel as nib
|
8
|
+
import numpy as np
|
9
|
+
import pandas as pd
|
10
|
+
import scipy
|
11
|
+
|
12
|
+
try:
|
13
|
+
import torch
|
14
|
+
except ImportError as e:
|
15
|
+
raise ImportError(
|
16
|
+
"Torch is required to use `CBMR` classes. Install with `pip install 'nimare[cbmr]'`."
|
17
|
+
) from e
|
18
|
+
|
19
|
+
from nimare import _version
|
20
|
+
from nimare.diagnostics import FocusFilter
|
21
|
+
from nimare.estimator import Estimator
|
22
|
+
from nimare.meta import models
|
23
|
+
from nimare.utils import b_spline_bases, dummy_encoding_moderators, get_masker, mm2vox
|
24
|
+
|
25
|
+
LGR = logging.getLogger(__name__)
|
26
|
+
__version__ = _version.get_versions()["version"]
|
27
|
+
|
28
|
+
|
29
|
+
class CBMREstimator(Estimator):
|
30
|
+
"""Coordinate-based meta-regression with a spatial model.
|
31
|
+
|
32
|
+
.. versionadded:: 0.1.0
|
33
|
+
|
34
|
+
Parameters
|
35
|
+
----------
|
36
|
+
group_categories : :obj:`~str` or obj:`~list` or obj:`~None`, optional
|
37
|
+
CBMR allows dataset to be categorized into mutiple groups, according to group categories.
|
38
|
+
Default is one-group CBMR.
|
39
|
+
moderators : :obj:`~str` or obj:`~list` or obj:`~None`, optional
|
40
|
+
CBMR can accommodate study-level moderators (e.g. sample size, year of publication).
|
41
|
+
Default is CBMR without study-level moderators.
|
42
|
+
model : : :obj:`~nimare.meta.models.GeneralLinearModel`, optional
|
43
|
+
Stochastic models in CBMR. The available options are
|
44
|
+
|
45
|
+
======================= ==================================================================
|
46
|
+
Poisson (default) This is the most efficient and widely used method, but slightly
|
47
|
+
less accurate, because Poisson model is an approximation for
|
48
|
+
low-rate Binomial data, but cannot account over-dispersion in
|
49
|
+
foci counts and may underestimate the standard error.
|
50
|
+
|
51
|
+
NegativeBinomial This method might be slower and less stable, but slightly more
|
52
|
+
accurate. Negative Binomial (NB) model asserts foci counts follow
|
53
|
+
a NB distribution, and allows for anticipated excess variance
|
54
|
+
relative to Poisson (there's an group-wise overdispersion parameter
|
55
|
+
shared by all studies and all voxels to index excess variance).
|
56
|
+
|
57
|
+
ClusteredNegativeBinomial This method is also an efficient but less accurate approach.
|
58
|
+
Clustered NB model is "random effect" Poisson model, which asserts
|
59
|
+
that the random effects are latent characteristics of each study,
|
60
|
+
and represent a shared effect over the entire brain for a given
|
61
|
+
study.
|
62
|
+
======================= =================================================================
|
63
|
+
penalty: :obj:`~bool`, optional
|
64
|
+
Currently, the only available option is Firth-type penalty, which penalizes likelihood function
|
65
|
+
by Jeffrey's invariant prior and guarantees convergent estimates.
|
66
|
+
spline_spacing: :obj:`~int`, optional
|
67
|
+
Spatial structure of foci counts is parameterized by coefficient of cubic B-spline bases
|
68
|
+
in CBMR. Spatial smoothness in CBMR is determined by spline spacing, which is shared across
|
69
|
+
x,y,z dimension.
|
70
|
+
Default is 10 (20mm with 2mm brain atlas template).
|
71
|
+
n_iters: :obj:`int`, optional
|
72
|
+
Number of iterations limit in optimisation of log-likelihood function.
|
73
|
+
Default is 10000.
|
74
|
+
lr: :obj:`float`, optional
|
75
|
+
Learning rate in optimization of log-likelihood function.
|
76
|
+
Default is 1e-2 for Poisson and clustered NB model, and 1e-3 for NB model.
|
77
|
+
lr_decay: :obj:`float`, optional
|
78
|
+
Multiplicative factor of learning rate decay.
|
79
|
+
Default is 0.999.
|
80
|
+
tol: :obj:`float`, optional
|
81
|
+
Stopping criteria w.r.t difference of log-likelihood function in two consecutive
|
82
|
+
iterations.
|
83
|
+
Default is 1e-2
|
84
|
+
device: :obj:`string`, optional
|
85
|
+
Device type ('cpu' or 'cuda') represents the device on which operations will be allocated
|
86
|
+
Default is 'cpu'
|
87
|
+
**kwargs
|
88
|
+
Keyword arguments. Arguments for the Estimator can be assigned here,
|
89
|
+
Another optional argument is ``mask``.
|
90
|
+
|
91
|
+
Attributes
|
92
|
+
----------
|
93
|
+
masker : :class:`~nilearn.input_data.NiftiMasker` or similar
|
94
|
+
Masker object.
|
95
|
+
inputs_ : :obj:`dict`
|
96
|
+
Inputs to the Estimator. For CBMR estimators, there is only multiple keys:
|
97
|
+
coordinates,
|
98
|
+
mask_img (Niftiimage of brain mask),
|
99
|
+
id (study id),
|
100
|
+
studies_by_groups (study id categorized by groups),
|
101
|
+
all_group_moderators (study-level moderators categorized by groups if exist),
|
102
|
+
coef_spline_bases (spatial matrix of coefficient of cubic B-spline
|
103
|
+
bases in x,y,z dimension),
|
104
|
+
foci_per_voxel (voxelwise sum of foci count across studies, categorized by groups),
|
105
|
+
foci_per_study (study-wise sum of foci count across space, categorized by groups).
|
106
|
+
|
107
|
+
Notes
|
108
|
+
-----
|
109
|
+
Available correction methods: :meth:`~nimare.meta.cbmr.CBMRInference`.
|
110
|
+
"""
|
111
|
+
|
112
|
+
_required_inputs = {"coordinates": ("coordinates", None)}
|
113
|
+
|
114
|
+
def __init__(
|
115
|
+
self,
|
116
|
+
group_categories=None,
|
117
|
+
moderators=None,
|
118
|
+
mask=None,
|
119
|
+
spline_spacing=10,
|
120
|
+
model=models.PoissonEstimator,
|
121
|
+
penalty=False,
|
122
|
+
n_iter=2000,
|
123
|
+
lr=1,
|
124
|
+
lr_decay=0.999,
|
125
|
+
tol=1e-9,
|
126
|
+
device="cpu",
|
127
|
+
**kwargs,
|
128
|
+
):
|
129
|
+
super().__init__(**kwargs)
|
130
|
+
if mask is not None:
|
131
|
+
mask = get_masker(mask)
|
132
|
+
self.masker = mask
|
133
|
+
|
134
|
+
self.group_categories = group_categories
|
135
|
+
self.moderators = moderators
|
136
|
+
|
137
|
+
self.spline_spacing = spline_spacing
|
138
|
+
self.model = model(
|
139
|
+
penalty=penalty, lr=lr, lr_decay=lr_decay, n_iter=n_iter, tol=tol, device=device
|
140
|
+
)
|
141
|
+
self.penalty = penalty
|
142
|
+
self.n_iter = n_iter
|
143
|
+
self.lr = lr
|
144
|
+
self.lr_decay = lr_decay
|
145
|
+
self.tol = tol
|
146
|
+
self.device = device
|
147
|
+
if self.device == "cuda" and not torch.cuda.is_available():
|
148
|
+
LGR.debug("cuda not found, use device cpu")
|
149
|
+
self.device = "cpu"
|
150
|
+
|
151
|
+
# Initialize optimisation parameters
|
152
|
+
self.iter = 0
|
153
|
+
|
154
|
+
def _generate_description(self):
|
155
|
+
"""Generate a description of the Estimator instance.
|
156
|
+
|
157
|
+
Returns
|
158
|
+
-------
|
159
|
+
description : :obj:`str`
|
160
|
+
Description of the Estimator instance.
|
161
|
+
"""
|
162
|
+
description = """CBMR is a meta-regression framework that can explicitly model
|
163
|
+
group-wise spatial intensity function, and consider the effect of
|
164
|
+
study-level moderators. It consists of two components: (1) a spatial
|
165
|
+
model that makes use of a spline parameterization to induce a smooth
|
166
|
+
response; (2) a generalized linear model (Poisson, Negative Binomial
|
167
|
+
(NB), Clustered NB) to model group-wise spatial intensity function).
|
168
|
+
CBMR is fitted via maximizing the log-likelihood function with L-BFGS
|
169
|
+
algorithm."""
|
170
|
+
if self.moderators:
|
171
|
+
moderators_str = f"""and accommodate the following study-level moderators:
|
172
|
+
{', '.join(self.moderators)}"""
|
173
|
+
else:
|
174
|
+
moderators_str = ""
|
175
|
+
if self.model.penalty:
|
176
|
+
penalty_str = " Firth-type penalty is applied to ensure convergence."
|
177
|
+
else:
|
178
|
+
penalty_str = ""
|
179
|
+
|
180
|
+
if type(self.model).__name__ == "PoissonEstimator":
|
181
|
+
model_str = (
|
182
|
+
" Here, Poisson model \\citep{eisenberg1966general} is the most basic CBMR model. "
|
183
|
+
"It's based on the assumption that foci arise from a realisation of a (continues) "
|
184
|
+
"inhomogeneous Poisson process, so that the (discrete) voxel-wise foci counts will"
|
185
|
+
" be independently distributed as Poisson random variables, with rate equal to the"
|
186
|
+
" integral of (true, unobserved, continous) intensity function over each voxels"
|
187
|
+
)
|
188
|
+
elif type(self.model).__name__ == "NegativeBinomialEstimator":
|
189
|
+
model_str = (
|
190
|
+
" Negative Binomial (NB) model \\citep{barndorff1969negative} is a generalized "
|
191
|
+
"Poisson model with over-dispersion. "
|
192
|
+
"It's a more flexible model, but more difficult to estimate. In practice, foci"
|
193
|
+
"counts often display over-dispersion (the variance of response variable"
|
194
|
+
"substantially exceeeds the mean), which is not captured by Poisson model."
|
195
|
+
)
|
196
|
+
elif type(self.model).__name__ == "ClusteredNegativeBinomialEstimator":
|
197
|
+
model_str = (
|
198
|
+
" Clustered NB model \\citep{geoffroy2001poisson} can also accommodate "
|
199
|
+
"over-dispersion in foci counts. "
|
200
|
+
"In NB model, the latent random variable introduces indepdentent variation"
|
201
|
+
"at each voxel. While in Clustered NB model, we assert the random effects are not "
|
202
|
+
"independent voxelwise effects, but rather latent characteristics of each study, "
|
203
|
+
"and represent a shared effect over the entire brain for a given study."
|
204
|
+
)
|
205
|
+
|
206
|
+
model_description = (
|
207
|
+
f"CBMR is a meta-regression framework that was performed with NiMARE {__version__}. "
|
208
|
+
f"{type(self.model).__name__} model was used to model group-wise spatial intensity "
|
209
|
+
f"functions {moderators_str}." + model_str
|
210
|
+
)
|
211
|
+
|
212
|
+
optimization_description = (
|
213
|
+
"CBMR is fitted via maximizing the log-likelihood function with L-BFGS algorithm, with"
|
214
|
+
f" learning rate {self.lr}, learning rate decay {self.lr_decay} and "
|
215
|
+
+ "tolerance {self.tol}."
|
216
|
+
+ penalty_str
|
217
|
+
+ f" The optimization is run on {self.device}."
|
218
|
+
f" The input dataset included {self.inputs_['coordinates'].shape[0]} foci from "
|
219
|
+
f"{len(self.inputs_['id'])} experiments."
|
220
|
+
)
|
221
|
+
|
222
|
+
description = model_description + "\n" + optimization_description
|
223
|
+
return description
|
224
|
+
|
225
|
+
def _preprocess_input(self, dataset):
|
226
|
+
"""Mask required input images using either the Dataset's mask or the Estimator's.
|
227
|
+
|
228
|
+
Also, categorize study id, voxelwise sum of foci counts across studies, study-wise sum of
|
229
|
+
foci counts across space into multiple groups. And summarize study-level moderators into
|
230
|
+
multiple groups (if exist).
|
231
|
+
|
232
|
+
Parameters
|
233
|
+
----------
|
234
|
+
dataset : :obj:`~nimare.dataset.Dataset`
|
235
|
+
In this method, the Dataset is used to (1) select the appropriate mask image,
|
236
|
+
(2) categorize studies into multiple groups according to group categories in
|
237
|
+
annotations,
|
238
|
+
(3) summarize group-wise study id, moderators (if exist), foci per voxel, foci
|
239
|
+
per study,
|
240
|
+
(4) extract sample size metadata and use it as one of study-level moderators.
|
241
|
+
|
242
|
+
Attributes
|
243
|
+
----------
|
244
|
+
inputs_ : :obj:`dict`
|
245
|
+
Specifically, (1) a “mask_img” key will be added (Niftiimage of brain mask),
|
246
|
+
(2) an 'id' key will be added (id of all studies in the dataset),
|
247
|
+
(3) a 'coef_spline_bases' key will be added (spatial matrix of coefficient of cubic
|
248
|
+
B-spline bases in x,y,z dimension),
|
249
|
+
(4) an 'studies_by_group' key will be added (study id categorized by groups),
|
250
|
+
(5) an 'moderators_by_group' key will be added (study-level moderators categorized
|
251
|
+
by groups) if study-level moderators are considered,
|
252
|
+
(6) an 'foci_per_voxel' key will be added (voxelwise sum of foci count across
|
253
|
+
studies, categorized by groups),
|
254
|
+
(7) an 'foci_per_study' key will be added (study-wise sum of foci count across
|
255
|
+
space, categorized by groups).
|
256
|
+
"""
|
257
|
+
masker = self.masker or dataset.masker
|
258
|
+
|
259
|
+
mask_img = masker.mask_img or masker.labels_img
|
260
|
+
if isinstance(mask_img, str):
|
261
|
+
mask_img = nib.load(mask_img)
|
262
|
+
self.inputs_["mask_img"] = mask_img
|
263
|
+
|
264
|
+
# generate spatial matrix of coefficient of cubic B-spline bases in x,y,z dimension
|
265
|
+
coef_spline_bases = b_spline_bases(
|
266
|
+
masker_voxels=mask_img._dataobj, spacing=self.spline_spacing
|
267
|
+
)
|
268
|
+
self.inputs_["coef_spline_bases"] = coef_spline_bases
|
269
|
+
|
270
|
+
for name, (type_, _) in self._required_inputs.items():
|
271
|
+
if type_ == "coordinates":
|
272
|
+
# remove dataset coordinates outside of mask
|
273
|
+
focus_filter = FocusFilter(mask=masker)
|
274
|
+
dataset = focus_filter.transform(dataset)
|
275
|
+
valid_dset_annotations = dataset.annotations[
|
276
|
+
dataset.annotations["id"].isin(self.inputs_["id"])
|
277
|
+
]
|
278
|
+
studies_by_group = dict()
|
279
|
+
if self.group_categories is None:
|
280
|
+
studies_by_group["Default"] = (
|
281
|
+
valid_dset_annotations["study_id"].unique().tolist()
|
282
|
+
)
|
283
|
+
unique_groups = ["Default"]
|
284
|
+
elif isinstance(self.group_categories, str):
|
285
|
+
if self.group_categories not in valid_dset_annotations.columns:
|
286
|
+
raise ValueError(
|
287
|
+
f"""Category_names: {self.group_categories} does not exist
|
288
|
+
in the dataset"""
|
289
|
+
)
|
290
|
+
else:
|
291
|
+
unique_groups = list(
|
292
|
+
valid_dset_annotations[self.group_categories].unique()
|
293
|
+
)
|
294
|
+
for group in unique_groups:
|
295
|
+
group_study_id_bool = (
|
296
|
+
valid_dset_annotations[self.group_categories] == group
|
297
|
+
)
|
298
|
+
group_study_id = valid_dset_annotations.loc[group_study_id_bool][
|
299
|
+
"study_id"
|
300
|
+
]
|
301
|
+
studies_by_group[group.capitalize()] = group_study_id.unique().tolist()
|
302
|
+
elif isinstance(self.group_categories, list):
|
303
|
+
missing_categories = set(self.group_categories) - set(
|
304
|
+
dataset.annotations.columns
|
305
|
+
)
|
306
|
+
if missing_categories:
|
307
|
+
raise ValueError(
|
308
|
+
f"""Category_names: {missing_categories} do/does not exist in
|
309
|
+
the dataset."""
|
310
|
+
)
|
311
|
+
unique_groups = (
|
312
|
+
valid_dset_annotations[self.group_categories]
|
313
|
+
.drop_duplicates()
|
314
|
+
.values.tolist()
|
315
|
+
)
|
316
|
+
for group in unique_groups:
|
317
|
+
group_study_id_bool = (
|
318
|
+
valid_dset_annotations[self.group_categories] == group
|
319
|
+
).all(axis=1)
|
320
|
+
group_study_id = valid_dset_annotations.loc[group_study_id_bool][
|
321
|
+
"study_id"
|
322
|
+
]
|
323
|
+
camelcase_group = "".join([g.capitalize() for g in group])
|
324
|
+
studies_by_group[camelcase_group] = group_study_id.unique().tolist()
|
325
|
+
self.inputs_["studies_by_group"] = studies_by_group
|
326
|
+
self.groups = list(self.inputs_["studies_by_group"].keys())
|
327
|
+
# collect studywise moderators if specficed
|
328
|
+
if self.moderators:
|
329
|
+
valid_dset_annotations, self.moderators = dummy_encoding_moderators(
|
330
|
+
valid_dset_annotations, self.moderators
|
331
|
+
)
|
332
|
+
if isinstance(self.moderators, str):
|
333
|
+
self.moderators = [
|
334
|
+
self.moderators
|
335
|
+
] # convert moderators to a single-element list if it's a string
|
336
|
+
moderators_by_group = dict()
|
337
|
+
for group in self.groups:
|
338
|
+
df_group = valid_dset_annotations.loc[
|
339
|
+
valid_dset_annotations["study_id"].isin(studies_by_group[group])
|
340
|
+
]
|
341
|
+
group_moderators = np.stack(
|
342
|
+
[df_group[moderator_name] for moderator_name in self.moderators],
|
343
|
+
axis=1,
|
344
|
+
)
|
345
|
+
moderators_by_group[group] = group_moderators
|
346
|
+
self.inputs_["moderators_by_group"] = moderators_by_group
|
347
|
+
|
348
|
+
foci_per_voxel, foci_per_study = dict(), dict()
|
349
|
+
for group in self.groups:
|
350
|
+
group_study_id = studies_by_group[group]
|
351
|
+
group_coordinates = dataset.coordinates.loc[
|
352
|
+
dataset.coordinates["study_id"].isin(group_study_id)
|
353
|
+
]
|
354
|
+
# Group-wise foci coordinates
|
355
|
+
# Calculate IJK matrix indices for target mask
|
356
|
+
# Mask space is assumed to be the same as the Dataset's space
|
357
|
+
group_xyz = group_coordinates[["x", "y", "z"]].values
|
358
|
+
group_ijk = mm2vox(group_xyz, mask_img.affine)
|
359
|
+
group_foci_per_voxel = np.zeros(mask_img.shape, dtype=np.int32)
|
360
|
+
for ijk in group_ijk:
|
361
|
+
group_foci_per_voxel[ijk[0], ijk[1], ijk[2]] += 1
|
362
|
+
# will not work with maskers that aren't NiftiMaskers
|
363
|
+
group_foci_per_voxel = nib.Nifti1Image(
|
364
|
+
group_foci_per_voxel, mask_img.affine, mask_img.header
|
365
|
+
)
|
366
|
+
group_foci_per_voxel = masker.transform(group_foci_per_voxel).transpose()
|
367
|
+
# number of foci per voxel/study
|
368
|
+
# n_group_study = len(group_study_id)
|
369
|
+
group_foci_per_study = group_coordinates.groupby(["study_id"]).size()
|
370
|
+
group_foci_per_study = group_foci_per_study.to_numpy()
|
371
|
+
group_foci_per_study = group_foci_per_study.reshape((-1, 1))
|
372
|
+
|
373
|
+
foci_per_voxel[group] = group_foci_per_voxel
|
374
|
+
foci_per_study[group] = group_foci_per_study
|
375
|
+
|
376
|
+
self.inputs_["foci_per_voxel"] = foci_per_voxel
|
377
|
+
self.inputs_["foci_per_study"] = foci_per_study
|
378
|
+
|
379
|
+
def _fit(self, dataset):
|
380
|
+
"""Perform coordinate-based meta-regression (CBMR) on dataset.
|
381
|
+
|
382
|
+
(1) Estimate group-wise spatial regression coefficients and its standard error via
|
383
|
+
inverse of Fisher Information matrix; Similarly, estimate regression coefficient of
|
384
|
+
study-level moderators (if exist), as well as its standard error via inverse of
|
385
|
+
Fisher Information matrix;
|
386
|
+
(2) Estimate standard error of group-wise log intensity, group-wise intensity via delta
|
387
|
+
method;
|
388
|
+
(3) For NegativeBinomial or ClusteredNegativeBinomial model, estimate regression
|
389
|
+
coefficient of overdispersion.s
|
390
|
+
|
391
|
+
Parameters
|
392
|
+
----------
|
393
|
+
dataset : :obj:`~nimare.dataset.Dataset`
|
394
|
+
Dataset to analyze.
|
395
|
+
"""
|
396
|
+
init_weight_kwargs = {
|
397
|
+
"groups": self.groups,
|
398
|
+
"moderators": self.moderators,
|
399
|
+
"spatial_coef_dim": self.inputs_["coef_spline_bases"].shape[1],
|
400
|
+
"moderators_coef_dim": len(self.moderators) if self.moderators else None,
|
401
|
+
}
|
402
|
+
self.model.init_weights(**init_weight_kwargs)
|
403
|
+
|
404
|
+
moderators_by_group = self.inputs_["moderators_by_group"] if self.moderators else None
|
405
|
+
self.model.fit(
|
406
|
+
self.inputs_["coef_spline_bases"],
|
407
|
+
moderators_by_group,
|
408
|
+
self.inputs_["foci_per_voxel"],
|
409
|
+
self.inputs_["foci_per_study"],
|
410
|
+
)
|
411
|
+
|
412
|
+
maps, tables = self.model.summary()
|
413
|
+
|
414
|
+
return maps, tables, self._generate_description()
|
415
|
+
|
416
|
+
|
417
|
+
class CBMRInference(object):
|
418
|
+
"""Statistical inference on outcomes of CBMR.
|
419
|
+
|
420
|
+
.. versionadded:: 0.1.0
|
421
|
+
|
422
|
+
(intensity estimation and study-level moderator regressors)
|
423
|
+
|
424
|
+
Parameters
|
425
|
+
----------
|
426
|
+
result : :obj:`~nimare.cbmr.CBMREstimator`
|
427
|
+
Results of optimized regression coefficients of CBMR, as well as their
|
428
|
+
standard error in `tables`. Results of estimated spatial intensity function
|
429
|
+
(per study) in `maps`.
|
430
|
+
t_con_groups : :obj:`~bool` or obj:`~list` or obj:`~None`, optional
|
431
|
+
Contrast matrix for homogeneity test or group comparison on estimated spatial
|
432
|
+
intensity function.
|
433
|
+
For boolean inputs, no statistical inference will be conducted for spatial intensity
|
434
|
+
if `t_con_groups` is False, and spatial homogeneity test for groupwise intensity
|
435
|
+
function will be conducted if `t_con_groups` is True.
|
436
|
+
For list inputs, generialized linear hypothesis (GLH) testing will be conducted for
|
437
|
+
each element independently. We also allow any element of `t_con_groups` in list type,
|
438
|
+
which represents GLH is conducted for all contrasts in this element simultaneously.
|
439
|
+
Default is homogeneity test on group-wise estimated intensity function.
|
440
|
+
t_con_moderators : :obj:`~bool` or obj:`~list` or obj:`~None`, optional
|
441
|
+
Contrast matrix for testing the existence of one or more study-level moderator effects.
|
442
|
+
For boolean inputs, no statistical inference will be conducted for study-level moderators
|
443
|
+
if `t_con_moderatorss` is False, and statistical inference on the effect of each
|
444
|
+
study-level moderators will be conducted if `t_con_groups` is True.
|
445
|
+
For list inputs, generialized linear hypothesis (GLH) testing will be conducted for
|
446
|
+
each element independently. We also allow any element of `t_con_moderatorss` in list type,
|
447
|
+
which represents GLH is conducted for all contrasts in this element simultaneously.
|
448
|
+
Default is statistical inference on the effect of each study-level moderators
|
449
|
+
device: :obj:`string`, optional
|
450
|
+
Device type ('cpu' or 'cuda') represents the device on which operations will be allocated.
|
451
|
+
Default is 'cpu'.
|
452
|
+
"""
|
453
|
+
|
454
|
+
def __init__(self, device="cpu"):
|
455
|
+
self.device = device
|
456
|
+
# device check
|
457
|
+
if self.device == "cuda" and not torch.cuda.is_available():
|
458
|
+
LGR.debug("cuda not found, use device 'cpu'")
|
459
|
+
self.device = "cpu"
|
460
|
+
self.result = None
|
461
|
+
self.groups = None
|
462
|
+
self.moderators = None
|
463
|
+
|
464
|
+
def _check_fit(fn):
|
465
|
+
"""Check if CBMRInference instance has been fit."""
|
466
|
+
|
467
|
+
@wraps(fn)
|
468
|
+
def wrapper(self, *args, **kwargs):
|
469
|
+
if self.result is None:
|
470
|
+
raise ValueError("CBMRInference instance has not been fit.")
|
471
|
+
return fn(self, *args, **kwargs)
|
472
|
+
|
473
|
+
return wrapper
|
474
|
+
|
475
|
+
def fit(self, result):
|
476
|
+
"""Fit CBMRInference instance.
|
477
|
+
|
478
|
+
Parameters
|
479
|
+
----------
|
480
|
+
result : :obj:`~nimare.cbmr.CBMREstimator`
|
481
|
+
Results of optimized regression coefficients of CBMR, as well as their
|
482
|
+
standard error in `tables`. Results of estimated spatial intensity function
|
483
|
+
(per study) in `maps`.
|
484
|
+
"""
|
485
|
+
self.result = result.copy()
|
486
|
+
self.estimator = self.result.estimator
|
487
|
+
self.groups = self.result.estimator.groups
|
488
|
+
self.moderators = self.result.estimator.moderators
|
489
|
+
|
490
|
+
self.create_regular_expressions()
|
491
|
+
|
492
|
+
self.group_reference_dict, self.moderator_reference_dict = dict(), dict()
|
493
|
+
for i in range(len(self.groups)):
|
494
|
+
self.group_reference_dict[self.groups[i]] = i
|
495
|
+
if self.moderators:
|
496
|
+
for j in range(len(self.moderators)):
|
497
|
+
self.moderator_reference_dict[self.moderators[j]] = j
|
498
|
+
LGR.info(f"{self.moderators[j]} = index_{j}")
|
499
|
+
|
500
|
+
@_check_fit
|
501
|
+
def display(self):
|
502
|
+
"""Display Groups and Moderator names and order."""
|
503
|
+
# visialize group/moderator names and their indices in contrast array
|
504
|
+
LGR.info("Group Reference in contrast array")
|
505
|
+
for group, index in self.group_reference_dict.items():
|
506
|
+
LGR.info(f"{group} = index_{index}")
|
507
|
+
if self.moderators:
|
508
|
+
LGR.info("Moderator Reference in contrast array")
|
509
|
+
for moderator, index in self.moderator_reference_dict.items():
|
510
|
+
LGR.info(f"{moderator} = index_{index}")
|
511
|
+
|
512
|
+
def create_regular_expressions(self):
|
513
|
+
"""
|
514
|
+
Create regular expressions for parsing contrast names.
|
515
|
+
|
516
|
+
creates the following attributes:
|
517
|
+
self.groups_regular_expression: regular expression for parsing group names
|
518
|
+
self.moderators_regular_expression: regular expression for parsing moderator names
|
519
|
+
|
520
|
+
usage:
|
521
|
+
>>> self.groups_regular_expression.match("group1 - group2").groupdict()
|
522
|
+
"""
|
523
|
+
operator = "(\\ ?(?P<operator>[+-]?)\\ ??)"
|
524
|
+
for attr in ["groups", "moderators"]:
|
525
|
+
groups = getattr(self, attr)
|
526
|
+
if groups:
|
527
|
+
first_group, second_group = [
|
528
|
+
f"(?P<{order}>{'|'.join([re.escape(g) for g in groups])})"
|
529
|
+
for order in ["first", "second"]
|
530
|
+
]
|
531
|
+
reg_expr = re.compile(first_group + "(" + operator + second_group + "?)")
|
532
|
+
else:
|
533
|
+
reg_expr = None
|
534
|
+
|
535
|
+
setattr(self, "{}_regular_expression".format(attr), reg_expr)
|
536
|
+
|
537
|
+
@_check_fit
|
538
|
+
def create_contrast(self, contrast_name, source="groups"):
|
539
|
+
"""Create contrast matrix for generalized hypothesis testing (GLH).
|
540
|
+
|
541
|
+
(1) if `source` is "group", create contrast matrix for GLH on spatial intensity;
|
542
|
+
if `contrast_name` begins with 'homo_test_', followed by a valid group name,
|
543
|
+
create a contrast matrix for one-group homogeneity test on spatial intensity;
|
544
|
+
if `contrast_name` comes in the form of "group1VSgroup2", with valid group names
|
545
|
+
"group1" and "group2", create a contrast matrix for group comparison on estimated
|
546
|
+
group spatial intensity;
|
547
|
+
(2) if `source` is "moderator", create contrast matrix for GLH on study-level moderators;
|
548
|
+
if `contrast_name` begins with 'moderator_', followed by a valid moderator name,
|
549
|
+
we create a contrast matrix for testing if the effect of this moderator exists;
|
550
|
+
if `contrast_name` comes in the form of "moderator1VSmoderator2", with valid moderator
|
551
|
+
names "modeator1" and "moderator2", we create a contrast matrix for testing if the
|
552
|
+
effect of these two moderators are different.
|
553
|
+
|
554
|
+
Parameters
|
555
|
+
----------
|
556
|
+
contrast_name : :obj:`~string`
|
557
|
+
Name of contrast in GLH.
|
558
|
+
"""
|
559
|
+
if isinstance(contrast_name, str):
|
560
|
+
contrast_name = [contrast_name]
|
561
|
+
contrast_matrix = {}
|
562
|
+
if source == "groups": # contrast matrix for spatial intensity
|
563
|
+
for contrast in contrast_name:
|
564
|
+
contrast_vector = np.zeros(len(self.groups))
|
565
|
+
contrast_match = self.groups_regular_expression.match(contrast)
|
566
|
+
# check validity of contrast name
|
567
|
+
if contrast_match is None:
|
568
|
+
raise ValueError(f"{contrast} is not a valid contrast.")
|
569
|
+
groups_contrast = contrast_match.groupdict()
|
570
|
+
# create contrast matrix
|
571
|
+
if all(groups_contrast.values()): # group comparison
|
572
|
+
contrast_vector[self.group_reference_dict[groups_contrast["first"]]] = 1
|
573
|
+
contrast_vector[self.group_reference_dict[groups_contrast["second"]]] = int(
|
574
|
+
contrast_match["operator"] + "1"
|
575
|
+
)
|
576
|
+
else: # homogeneity test
|
577
|
+
contrast_vector[self.group_reference_dict[contrast]] = 1
|
578
|
+
contrast_matrix[contrast] = contrast_vector
|
579
|
+
|
580
|
+
elif source == "moderators": # contrast matrix for moderator effect
|
581
|
+
for contrast in contrast_name:
|
582
|
+
contrast_vector = np.zeros(len(self.moderators))
|
583
|
+
contrast_match = self.moderators_regular_expression.match(contrast)
|
584
|
+
if contrast_match is None:
|
585
|
+
raise ValueError(f"{contrast} is not a valid contrast.")
|
586
|
+
moderators_contrast = contrast_match.groupdict()
|
587
|
+
if all(moderators_contrast.values()): # moderator comparison
|
588
|
+
_ = list(map(moderators_contrast.get, ["first", "second"]))
|
589
|
+
contrast_vector[
|
590
|
+
self.moderator_reference_dict[moderators_contrast["first"]]
|
591
|
+
] = 1
|
592
|
+
contrast_vector[
|
593
|
+
self.moderator_reference_dict[moderators_contrast["second"]]
|
594
|
+
] = int(moderators_contrast["operator"] + "1")
|
595
|
+
else: # moderator effect
|
596
|
+
contrast_vector[self.moderator_reference_dict[contrast]] = 1
|
597
|
+
contrast_matrix[contrast] = contrast_vector
|
598
|
+
|
599
|
+
return contrast_matrix
|
600
|
+
|
601
|
+
@_check_fit
|
602
|
+
def transform(self, t_con_groups=None, t_con_moderators=None):
|
603
|
+
"""Conduct generalized linear hypothesis (GLH) testing on CBMR estimates.
|
604
|
+
|
605
|
+
Estimate group-wise spatial regression coefficients and its standard error via inverse
|
606
|
+
Fisher Information matrix, estimate standard error of group-wise log intensity,
|
607
|
+
group-wise intensity via delta method. For NB or clustered model, estimate regression
|
608
|
+
coefficient of overdispersion. Similarly, estimate regression coefficient of study-level
|
609
|
+
moderators (if exist), as well as its standard error via Fisher Information matrix.
|
610
|
+
Save these outcomes in `tables`. Also, estimate group-wise spatial intensity (per study)
|
611
|
+
and save the results in `maps`.
|
612
|
+
|
613
|
+
Parameters
|
614
|
+
----------
|
615
|
+
t_con_groups : :obj:`~list`, optional
|
616
|
+
Contrast matrix for GLH on group-wise spatial intensity estimation.
|
617
|
+
Default is None (group-wise homogeneity test for all groups).
|
618
|
+
t_con_moderators : :obj:`~list`, optional
|
619
|
+
Contrast matrix for GLH on moderator effects.
|
620
|
+
Default is None (tests if moderator effects exist for all moderators).
|
621
|
+
"""
|
622
|
+
self.t_con_groups = t_con_groups
|
623
|
+
self.t_con_moderators = t_con_moderators
|
624
|
+
|
625
|
+
if self.t_con_groups:
|
626
|
+
# preprocess and standardize group contrast
|
627
|
+
self.t_con_groups, self.t_con_groups_name = self._preprocess_t_con_regressor(
|
628
|
+
source="groups"
|
629
|
+
)
|
630
|
+
# GLH test for group contrast
|
631
|
+
self._glh_con_group()
|
632
|
+
if self.t_con_moderators:
|
633
|
+
# preprocess and standardize moderator contrast
|
634
|
+
self.t_con_moderators, self.t_con_moderators_name = self._preprocess_t_con_regressor(
|
635
|
+
source="moderators"
|
636
|
+
)
|
637
|
+
# GLH test for moderator contrast
|
638
|
+
self._glh_con_moderator()
|
639
|
+
|
640
|
+
return self.result
|
641
|
+
|
642
|
+
def fit_transform(self, result, t_con_groups=None, t_con_moderators=None):
|
643
|
+
"""Fit and transform."""
|
644
|
+
self.fit(result)
|
645
|
+
return self.transform(t_con_groups, t_con_moderators)
|
646
|
+
|
647
|
+
@_check_fit
|
648
|
+
def _preprocess_t_con_regressor(self, source):
|
649
|
+
"""Preprocess contrast vector/matrix for GLH testing.
|
650
|
+
|
651
|
+
Follow the steps below:
|
652
|
+
(1) Remove groups not involved in contrast;
|
653
|
+
(2) Standardize contrast matrix (row sum to 1);
|
654
|
+
(3) Remove duplicate rows in contrast matrix.
|
655
|
+
|
656
|
+
Parameters
|
657
|
+
----------
|
658
|
+
source : :obj:`~string`
|
659
|
+
Source of contrast matrix, either "groups" or "moderators".
|
660
|
+
|
661
|
+
Returns
|
662
|
+
-------
|
663
|
+
t_con_regressor : :obj:`~list`
|
664
|
+
Preprocessed contrast vector/matrix for inference on
|
665
|
+
spatial intensity or study-level moderators.
|
666
|
+
t_con_regressor_name : :obj:`~list`
|
667
|
+
Name of contrast vector/matrix for spatial intensity
|
668
|
+
"""
|
669
|
+
# regressor can be either groups or moderators
|
670
|
+
t_con_regressor = getattr(self, f"t_con_{source}")
|
671
|
+
n_regressors = len(getattr(self, f"{source}"))
|
672
|
+
# if contrast matrix is a dictionary, convert it to list
|
673
|
+
if isinstance(t_con_regressor, dict):
|
674
|
+
t_con_regressor_name = list(t_con_regressor.keys())
|
675
|
+
t_con_regressor = list(t_con_regressor.values())
|
676
|
+
elif isinstance(t_con_regressor, (list, np.ndarray)):
|
677
|
+
for i in range(len(t_con_regressor)):
|
678
|
+
self.result.metadata[f"GLH_{source}_{i}"] = t_con_regressor[i]
|
679
|
+
t_con_regressor_name = None
|
680
|
+
# Conduct group-wise spatial homogeneity test by default
|
681
|
+
t_con_regressor = (
|
682
|
+
[np.eye(n_regressors)]
|
683
|
+
if t_con_regressor is None
|
684
|
+
else [np.array(con_regressor) for con_regressor in t_con_regressor]
|
685
|
+
)
|
686
|
+
# make sure contrast matrix/vector is 2D
|
687
|
+
t_con_regressor = [
|
688
|
+
con_regressor.reshape((1, -1)) if len(con_regressor.shape) == 1 else con_regressor
|
689
|
+
for con_regressor in t_con_regressor
|
690
|
+
]
|
691
|
+
# raise error if dimension of contrast matrix/vector doesn't match with number of groups
|
692
|
+
if np.any([con_regressor.shape[1] != n_regressors for con_regressor in t_con_regressor]):
|
693
|
+
wrong_con_regressor_idx = np.where(
|
694
|
+
[con_regressor.shape[1] != n_regressors for con_regressor in t_con_regressor]
|
695
|
+
)[0].tolist()
|
696
|
+
raise ValueError(
|
697
|
+
f"""The shape of {str(wrong_con_regressor_idx)}th contrast vector(s) in contrast
|
698
|
+
matrix doesn't match with {source}."""
|
699
|
+
)
|
700
|
+
# remove zero rows in contrast matrix (if exist)
|
701
|
+
con_regressor_zero_row = [
|
702
|
+
np.where(np.sum(np.abs(con_regressor), axis=1) == 0)[0]
|
703
|
+
for con_regressor in t_con_regressor
|
704
|
+
]
|
705
|
+
if np.any([len(zero_row) > 0 for zero_row in con_regressor_zero_row]):
|
706
|
+
t_con_regressor = [
|
707
|
+
np.delete(t_con_regressor[i], con_regressor_zero_row[i], axis=0)
|
708
|
+
for i in range(len(t_con_regressor))
|
709
|
+
]
|
710
|
+
if np.any([con_regressor.shape[0] == 0 for con_regressor in t_con_regressor]):
|
711
|
+
raise ValueError(
|
712
|
+
f"""One or more of contrast vector(s) in {source} contrast matrix are
|
713
|
+
all zeros."""
|
714
|
+
)
|
715
|
+
# standardization (row sum 1)
|
716
|
+
t_con_regressor = [
|
717
|
+
con_regressor / np.sum(np.abs(con_regressor), axis=1).reshape((-1, 1))
|
718
|
+
for con_regressor in t_con_regressor
|
719
|
+
]
|
720
|
+
# remove duplicate rows in contrast matrix (after standardization)
|
721
|
+
uniq_con_regressor_idx = np.unique(t_con_regressor, axis=0, return_index=True)[1].tolist()
|
722
|
+
t_con_regressor = [t_con_regressor[i] for i in uniq_con_regressor_idx[::-1]]
|
723
|
+
|
724
|
+
return t_con_regressor, t_con_regressor_name
|
725
|
+
|
726
|
+
@_check_fit
|
727
|
+
def _glh_con_group(self):
|
728
|
+
"""Conduct GLH testing for group-wise spatial intensity estimation.
|
729
|
+
|
730
|
+
GLH testing allows flexible hypothesis testings on spatial
|
731
|
+
intensity, including group-wise spatial homogeneity test and
|
732
|
+
group comparison test.
|
733
|
+
"""
|
734
|
+
X = self.estimator.inputs_["coef_spline_bases"]
|
735
|
+
n_brain_voxel, spatial_coef_dim = X.shape
|
736
|
+
con_group_count = 0
|
737
|
+
for con_group in self.t_con_groups:
|
738
|
+
con_group_involved_index = np.where(np.any(con_group != 0, axis=0))[0].tolist()
|
739
|
+
con_group_involved = [self.groups[i] for i in con_group_involved_index]
|
740
|
+
n_con_group_involved = len(con_group_involved)
|
741
|
+
# Simplify contrast matrix by removing irrelevant columns
|
742
|
+
simp_con_group = con_group[:, ~np.all(con_group == 0, axis=0)]
|
743
|
+
# Covariance of involved group-wise spatial coef (either one or multiple groups)
|
744
|
+
moderators_by_group = (
|
745
|
+
self.estimator.inputs_["moderators_by_group"] if self.moderators else None
|
746
|
+
)
|
747
|
+
f_spatial_coef = self.estimator.model.fisher_info_multiple_group_spatial(
|
748
|
+
con_group_involved,
|
749
|
+
self.estimator.inputs_["coef_spline_bases"],
|
750
|
+
moderators_by_group,
|
751
|
+
self.estimator.inputs_["foci_per_voxel"],
|
752
|
+
self.estimator.inputs_["foci_per_study"],
|
753
|
+
)
|
754
|
+
cov_spatial_coef = np.linalg.inv(f_spatial_coef)
|
755
|
+
# compute numerator: contrast vector * group-wise log spatial intensity
|
756
|
+
involved_log_intensity_per_voxel = list()
|
757
|
+
for group in con_group_involved:
|
758
|
+
group_log_intensity_per_voxel = np.log(
|
759
|
+
self.result.maps["spatialIntensity_group-" + group]
|
760
|
+
)
|
761
|
+
if np.all(np.count_nonzero(con_group, axis=1) == 1): # GLH: homogeneity test
|
762
|
+
group_foci_per_voxel = self.estimator.inputs_["foci_per_voxel"][group]
|
763
|
+
group_foci_per_study = self.estimator.inputs_["foci_per_study"][group]
|
764
|
+
n_voxels, n_study = (
|
765
|
+
group_foci_per_voxel.shape[0],
|
766
|
+
group_foci_per_study.shape[0],
|
767
|
+
)
|
768
|
+
group_null_log_spatial_intensity = np.log(
|
769
|
+
np.sum(group_foci_per_voxel) / (n_voxels * n_study)
|
770
|
+
)
|
771
|
+
group_log_intensity_per_voxel -= group_null_log_spatial_intensity
|
772
|
+
involved_log_intensity_per_voxel.append(group_log_intensity_per_voxel)
|
773
|
+
involved_log_intensity_per_voxel = np.stack(involved_log_intensity_per_voxel, axis=0)
|
774
|
+
contrast_log_intensity = np.matmul(simp_con_group, involved_log_intensity_per_voxel)
|
775
|
+
|
776
|
+
# check if a single hypothesis is tested or GLH tests
|
777
|
+
# (with multiple contrasts) are conducted
|
778
|
+
m, _ = con_group.shape
|
779
|
+
if m == 1: # a single contrast vector, use Wald test
|
780
|
+
var_log_intensity = []
|
781
|
+
for k in range(n_con_group_involved):
|
782
|
+
cov_spatial_coef_k = cov_spatial_coef[
|
783
|
+
k * spatial_coef_dim : (k + 1) * spatial_coef_dim,
|
784
|
+
k * spatial_coef_dim : (k + 1) * spatial_coef_dim,
|
785
|
+
]
|
786
|
+
var_log_intensity_k = np.sum(np.multiply(X @ cov_spatial_coef_k, X), axis=1)
|
787
|
+
var_log_intensity.append(var_log_intensity_k)
|
788
|
+
var_log_intensity = np.stack(var_log_intensity, axis=0)
|
789
|
+
involved_var_log_intensity = simp_con_group**2 @ var_log_intensity
|
790
|
+
involved_std_log_intensity = np.sqrt(involved_var_log_intensity)
|
791
|
+
# Conduct Wald test (Z test)
|
792
|
+
z_stats_spatial = contrast_log_intensity / involved_std_log_intensity
|
793
|
+
if n_con_group_involved == 1: # one-tailed test
|
794
|
+
p_vals_spatial = scipy.stats.norm.sf(z_stats_spatial) # shape: (1, n_voxels)
|
795
|
+
else: # two-tailed test
|
796
|
+
p_vals_spatial = (
|
797
|
+
scipy.stats.norm.sf(abs(z_stats_spatial)) * 2
|
798
|
+
) # shape: (1, n_voxels)
|
799
|
+
else: # GLH tests (with multiple contrasts)
|
800
|
+
cov_log_intensity = np.empty(shape=(0, n_brain_voxel))
|
801
|
+
for k in range(n_con_group_involved):
|
802
|
+
for s in range(n_con_group_involved):
|
803
|
+
cov_beta_ks = cov_spatial_coef[
|
804
|
+
k * spatial_coef_dim : (k + 1) * spatial_coef_dim,
|
805
|
+
s * spatial_coef_dim : (s + 1) * spatial_coef_dim,
|
806
|
+
]
|
807
|
+
cov_group_log_intensity = (
|
808
|
+
(X.dot(cov_beta_ks) * X).sum(axis=1).reshape((1, -1))
|
809
|
+
)
|
810
|
+
cov_log_intensity = np.concatenate(
|
811
|
+
(cov_log_intensity, cov_group_log_intensity), axis=0
|
812
|
+
) # (m^2, n_voxels)
|
813
|
+
# GLH on log_intensity (eta)
|
814
|
+
chi_sq_spatial = self._chi_square_log_intensity(
|
815
|
+
m,
|
816
|
+
n_brain_voxel,
|
817
|
+
n_con_group_involved,
|
818
|
+
simp_con_group,
|
819
|
+
cov_log_intensity,
|
820
|
+
contrast_log_intensity,
|
821
|
+
)
|
822
|
+
p_vals_spatial = 1 - scipy.stats.chi2.cdf(chi_sq_spatial, df=m)
|
823
|
+
# convert p-values to z-scores for visualization
|
824
|
+
if np.all(np.count_nonzero(con_group, axis=1) == 1): # GLH: homogeneity test
|
825
|
+
z_stats_spatial = scipy.stats.norm.isf(p_vals_spatial)
|
826
|
+
z_stats_spatial[z_stats_spatial < 0] = 0
|
827
|
+
else:
|
828
|
+
z_stats_spatial = scipy.stats.norm.isf(p_vals_spatial / 2)
|
829
|
+
if con_group.shape[0] == 1: # GLH one test: Z statistics are signed
|
830
|
+
z_stats_spatial *= np.sign(contrast_log_intensity.flatten())
|
831
|
+
z_stats_spatial = np.clip(z_stats_spatial, a_min=-10, a_max=10)
|
832
|
+
# save results
|
833
|
+
if self.t_con_groups_name:
|
834
|
+
if m > 1: # GLH tests (with multiple contrasts)
|
835
|
+
self.result.maps[
|
836
|
+
f"chiSquare_group-{self.t_con_groups_name[con_group_count]}"
|
837
|
+
] = chi_sq_spatial
|
838
|
+
self.result.maps[f"p_group-{self.t_con_groups_name[con_group_count]}"] = (
|
839
|
+
p_vals_spatial
|
840
|
+
)
|
841
|
+
self.result.maps[f"z_group-{self.t_con_groups_name[con_group_count]}"] = (
|
842
|
+
z_stats_spatial
|
843
|
+
)
|
844
|
+
else:
|
845
|
+
if m > 1: # GLH tests (with multiple contrasts)
|
846
|
+
self.result.maps[f"chiSquare_GLH_groups_{con_group_count}"] = chi_sq_spatial
|
847
|
+
self.result.maps[f"p_GLH_groups_{con_group_count}"] = p_vals_spatial
|
848
|
+
self.result.maps[f"z_GLH_groups_{con_group_count}"] = z_stats_spatial
|
849
|
+
con_group_count += 1
|
850
|
+
|
851
|
+
def _chi_square_log_intensity(
|
852
|
+
self,
|
853
|
+
m,
|
854
|
+
n_brain_voxel,
|
855
|
+
n_con_group_involved,
|
856
|
+
simp_con_group,
|
857
|
+
cov_log_intensity,
|
858
|
+
contrast_log_intensity,
|
859
|
+
):
|
860
|
+
"""
|
861
|
+
Calculate chi-square statistics for GLH on group-wise log intensity function.
|
862
|
+
|
863
|
+
It is an intermediate steps for GLH testings.
|
864
|
+
|
865
|
+
Parameters
|
866
|
+
----------
|
867
|
+
m : :obj:`int`
|
868
|
+
Number of independent GLH tests.
|
869
|
+
n_brain_voxel : :obj:`int`
|
870
|
+
Number of voxels within the brain mask.
|
871
|
+
n_con_group_involved : :obj:`int`
|
872
|
+
Number of groups involved in the GLH test.
|
873
|
+
simp_con_group : :obj:`numpy.ndarray`
|
874
|
+
Simplified contrast matrix for the GLH test.
|
875
|
+
cov_log_intensity : :obj:`numpy.ndarray`
|
876
|
+
Covariance matrix of log intensity estimation.
|
877
|
+
contrast_log_intensity : :obj:`numpy.ndarray`
|
878
|
+
The product of contrast matrix and log intensity estimation.
|
879
|
+
|
880
|
+
Returns
|
881
|
+
-------
|
882
|
+
chi_sq_spatial : :obj:`numpy.ndarray`
|
883
|
+
Voxel-wise chi-square statistics for GLH tests on group-wise spatial
|
884
|
+
intensity estimations.
|
885
|
+
"""
|
886
|
+
chi_sq_spatial = np.empty(shape=(0,))
|
887
|
+
for j in range(n_brain_voxel):
|
888
|
+
contrast_log_intensity_j = contrast_log_intensity[:, j].reshape(m, 1)
|
889
|
+
v_j = cov_log_intensity[:, j].reshape((n_con_group_involved, n_con_group_involved))
|
890
|
+
cv_jc = simp_con_group @ v_j @ simp_con_group.T
|
891
|
+
cv_jc_inv = np.linalg.inv(cv_jc)
|
892
|
+
chi_sq_spatial_j = contrast_log_intensity_j.T @ cv_jc_inv @ contrast_log_intensity_j
|
893
|
+
chi_sq_spatial = np.concatenate(
|
894
|
+
(
|
895
|
+
chi_sq_spatial,
|
896
|
+
chi_sq_spatial_j.reshape(
|
897
|
+
1,
|
898
|
+
),
|
899
|
+
),
|
900
|
+
axis=0,
|
901
|
+
)
|
902
|
+
return chi_sq_spatial
|
903
|
+
|
904
|
+
@_check_fit
|
905
|
+
def _glh_con_moderator(self):
|
906
|
+
"""Conduct Generalized linear hypothesis (GLH) testing for study-level moderators.
|
907
|
+
|
908
|
+
GLH testing allows flexible hypothesis testings on regression
|
909
|
+
coefficients of study-level moderators, including testing for
|
910
|
+
the existence of moderator effects and difference in moderator
|
911
|
+
effects across multiple moderator effects.
|
912
|
+
"""
|
913
|
+
con_moderator_count = 0
|
914
|
+
for con_moderator in self.t_con_moderators:
|
915
|
+
m_con_moderator, _ = con_moderator.shape
|
916
|
+
moderator_coef = self.result.tables["moderators_regression_coef"].to_numpy().T
|
917
|
+
contrast_moderator_coef = np.matmul(con_moderator, moderator_coef)
|
918
|
+
|
919
|
+
moderators_by_group = (
|
920
|
+
self.estimator.inputs_["moderators_by_group"] if self.moderators else None
|
921
|
+
)
|
922
|
+
f_moderator_coef = self.estimator.model.fisher_info_multiple_group_moderator(
|
923
|
+
self.estimator.inputs_["coef_spline_bases"],
|
924
|
+
moderators_by_group,
|
925
|
+
self.estimator.inputs_["foci_per_voxel"],
|
926
|
+
self.estimator.inputs_["foci_per_study"],
|
927
|
+
)
|
928
|
+
|
929
|
+
cov_moderator_coef = np.linalg.inv(f_moderator_coef)
|
930
|
+
if m_con_moderator == 1: # a single contrast vector, use Wald test
|
931
|
+
var_moderator_coef = np.diag(cov_moderator_coef)
|
932
|
+
involved_var_moderator_coef = con_moderator**2 @ var_moderator_coef
|
933
|
+
involved_std_moderator_coef = np.sqrt(involved_var_moderator_coef)
|
934
|
+
# Conduct Wald test (Z test)
|
935
|
+
z_stats_moderator = contrast_moderator_coef / involved_std_moderator_coef
|
936
|
+
p_vals_moderator = (
|
937
|
+
scipy.stats.norm.sf(abs(z_stats_moderator)) * 2
|
938
|
+
) # two-tailed test
|
939
|
+
else: # GLH test (multiple contrast vectors)
|
940
|
+
chi_sq_moderator = (
|
941
|
+
contrast_moderator_coef.T
|
942
|
+
@ np.linalg.inv(con_moderator @ cov_moderator_coef @ con_moderator.T)
|
943
|
+
@ contrast_moderator_coef
|
944
|
+
)
|
945
|
+
p_vals_moderator = 1 - scipy.stats.chi2.cdf(chi_sq_moderator, df=m_con_moderator)
|
946
|
+
z_stats_moderator = scipy.stats.norm.isf(p_vals_moderator / 2)
|
947
|
+
|
948
|
+
if self.t_con_moderators_name: # None?
|
949
|
+
if m_con_moderator > 1:
|
950
|
+
self.result.tables[
|
951
|
+
f"chi_square_{self.t_con_moderators_name[con_moderator_count]}"
|
952
|
+
] = pd.DataFrame(data=np.array(chi_sq_moderator), columns=["chi_square"])
|
953
|
+
self.result.tables[f"p_{self.t_con_moderators_name[con_moderator_count]}"] = (
|
954
|
+
pd.DataFrame(data=np.array(p_vals_moderator), columns=["p"])
|
955
|
+
)
|
956
|
+
self.result.tables[f"z_{self.t_con_moderators_name[con_moderator_count]}"] = (
|
957
|
+
pd.DataFrame(data=np.array(z_stats_moderator), columns=["z"])
|
958
|
+
)
|
959
|
+
else:
|
960
|
+
if m_con_moderator > 1:
|
961
|
+
self.result.tables[f"chi_square_GLH_moderators_{con_moderator_count}"] = (
|
962
|
+
pd.DataFrame(data=np.array(chi_sq_moderator), columns=["chi_square"])
|
963
|
+
)
|
964
|
+
self.result.tables[f"p_GLH_moderators_{con_moderator_count}"] = pd.DataFrame(
|
965
|
+
data=np.array(p_vals_moderator), columns=["p"]
|
966
|
+
)
|
967
|
+
self.result.tables[f"z_GLH_moderators_{con_moderator_count}"] = pd.DataFrame(
|
968
|
+
data=np.array(z_stats_moderator), columns=["z"]
|
969
|
+
)
|
970
|
+
con_moderator_count += 1
|