ngsolve 6.2.2506.post75.dev0__cp314-cp314-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ngsolve might be problematic. Click here for more details.
- ngsolve-6.2.2506.post75.dev0.data/data/bin/ngs_nvcc +14 -0
- ngsolve-6.2.2506.post75.dev0.data/data/bin/ngs_nvlink +14 -0
- ngsolve-6.2.2506.post75.dev0.data/data/bin/ngscxx +15 -0
- ngsolve-6.2.2506.post75.dev0.data/data/bin/ngsld +11 -0
- ngsolve-6.2.2506.post75.dev0.data/data/bin/ngsolve.tcl +648 -0
- ngsolve-6.2.2506.post75.dev0.data/data/bin/ngspy +2 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/analytic_integrals.hpp +10 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/arnoldi.hpp +55 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/bandmatrix.hpp +334 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/basematrix.hpp +957 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/basevector.hpp +1268 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/bdbequations.hpp +2805 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/bdbintegrator.hpp +1660 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/bem_diffops.hpp +475 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/bessel.hpp +1064 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/bilinearform.hpp +963 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/bla.hpp +29 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/blockalloc.hpp +95 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/blockjacobi.hpp +328 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/bspline.hpp +116 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/calcinverse.hpp +141 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/cg.hpp +368 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/chebyshev.hpp +44 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/cholesky.hpp +720 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/clapack.h +7254 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/code_generation.hpp +296 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/coefficient.hpp +2033 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/coefficient_impl.hpp +19 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/coefficient_stdmath.hpp +167 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/commutingAMG.hpp +106 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/comp.hpp +79 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/compatibility.hpp +41 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/complex_wrapper.hpp +73 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/compressedfespace.hpp +110 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/contact.hpp +235 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/cuda_linalg.hpp +175 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/cuda_ngbla.hpp +226 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/cuda_ngstd.hpp +527 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/cuda_profiler.hpp +240 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/diagonalmatrix.hpp +154 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/differentialoperator.hpp +276 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/diffop.hpp +1286 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/diffop_impl.hpp +328 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/diffopwithfactor.hpp +123 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/discontinuous.hpp +84 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/dump.hpp +949 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/ectypes.hpp +121 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/eigen.hpp +60 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/eigensystem.hpp +18 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/elasticity_equations.hpp +595 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/elementbyelement.hpp +195 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/elementtopology.hpp +1760 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/elementtransformation.hpp +339 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/evalfunc.hpp +405 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/expr.hpp +1686 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/facetfe.hpp +175 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/facetfespace.hpp +180 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/facethofe.hpp +111 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/facetsurffespace.hpp +112 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/fe_interfaces.hpp +32 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/fem.hpp +87 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/fesconvert.hpp +14 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/fespace.hpp +1449 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/finiteelement.hpp +286 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/globalinterfacespace.hpp +77 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/globalspace.hpp +115 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/gridfunction.hpp +525 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/h1amg.hpp +124 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/h1hofe.hpp +188 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/h1hofe_impl.hpp +1262 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/h1hofefo.hpp +148 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/h1hofefo_impl.hpp +185 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/h1hofespace.hpp +167 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/h1lofe.hpp +1240 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/h1lumping.hpp +41 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurl_equations.hpp +1381 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurlcurlfe.hpp +2241 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurlcurlfespace.hpp +78 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurlfe.hpp +259 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurlfe_utils.hpp +107 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurlhdiv_dshape.hpp +857 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurlhdivfes.hpp +308 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurlhofe.hpp +175 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurlhofe_impl.hpp +1871 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurlhofespace.hpp +193 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurllofe.hpp +1146 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdiv_equations.hpp +880 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivdivfe.hpp +2923 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivdivsurfacespace.hpp +76 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivfe.hpp +206 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivfe_utils.hpp +717 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivfes.hpp +75 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivhofe.hpp +447 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivhofe_impl.hpp +1107 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivhofefo.hpp +229 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivhofespace.hpp +177 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivhosurfacefespace.hpp +106 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivlofe.hpp +773 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hidden.hpp +74 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/householder.hpp +181 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hypre_ams_precond.hpp +123 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hypre_precond.hpp +73 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/integrator.hpp +2012 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/integratorcf.hpp +253 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/interpolate.hpp +49 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/intrule.hpp +2542 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/intrules_SauterSchwab.hpp +25 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/irspace.hpp +49 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/jacobi.hpp +153 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/kernels.hpp +762 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/l2hofe.hpp +194 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/l2hofe_impl.hpp +564 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/l2hofefo.hpp +542 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/l2hofespace.hpp +344 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/la.hpp +38 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/linalg_kernels.hpp +102 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/linearform.hpp +266 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/matrix.hpp +2140 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/memusage.hpp +41 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/meshaccess.hpp +1359 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/mgpre.hpp +204 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/mp_coefficient.hpp +145 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/mptools.hpp +2281 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/multigrid.hpp +42 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/multivector.hpp +447 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/mumpsinverse.hpp +187 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/mycomplex.hpp +361 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/ng_lapack.hpp +1661 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/ngblas.hpp +1232 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/ngs_defines.hpp +30 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/ngs_stdcpp_include.hpp +106 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/ngs_utils.hpp +121 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/ngsobject.hpp +1019 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/ngsstream.hpp +113 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/ngstd.hpp +72 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/nodalhofe.hpp +96 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/nodalhofe_impl.hpp +141 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/normalfacetfe.hpp +223 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/normalfacetfespace.hpp +98 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/normalfacetsurfacefespace.hpp +84 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/order.hpp +251 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/parallel_matrices.hpp +222 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/paralleldofs.hpp +340 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/parallelngs.hpp +23 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/parallelvector.hpp +269 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/pardisoinverse.hpp +200 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/periodic.hpp +129 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/plateaufespace.hpp +25 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/pml.hpp +275 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/pmltrafo.hpp +631 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/postproc.hpp +142 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/potentialtools.hpp +22 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/precomp.hpp +60 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/preconditioner.hpp +602 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/prolongation.hpp +377 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/python_comp.hpp +107 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/python_fem.hpp +89 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/python_linalg.hpp +58 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/python_ngstd.hpp +386 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/recursive_pol.hpp +4896 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/recursive_pol_tet.hpp +395 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/recursive_pol_trig.hpp +492 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/reorderedfespace.hpp +81 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/sample_sort.hpp +105 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/scalarfe.hpp +335 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/shapefunction_utils.hpp +113 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/simd_complex.hpp +329 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/smoother.hpp +253 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/solve.hpp +89 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/sparsecholesky.hpp +313 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/sparsematrix.hpp +1038 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/sparsematrix_dyn.hpp +90 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/sparsematrix_impl.hpp +1013 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/special_matrix.hpp +463 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/specialelement.hpp +125 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/statushandler.hpp +33 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/stringops.hpp +12 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/superluinverse.hpp +136 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/symbolicintegrator.hpp +850 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/symmetricmatrix.hpp +144 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/tangentialfacetfe.hpp +224 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/tangentialfacetfespace.hpp +91 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/tensor.hpp +522 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/tensorcoefficient.hpp +446 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/tensorproductintegrator.hpp +113 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/thcurlfe.hpp +128 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/thcurlfe_impl.hpp +380 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/thdivfe.hpp +80 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/thdivfe_impl.hpp +492 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/tpdiffop.hpp +461 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/tpfes.hpp +133 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/tpintrule.hpp +224 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/triangular.hpp +465 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/tscalarfe.hpp +245 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/tscalarfe_impl.hpp +1029 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/umfpackinverse.hpp +148 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/unifiedvector.hpp +103 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/vector.hpp +1273 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/voxelcoefficientfunction.hpp +41 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/vtkoutput.hpp +198 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/vvector.hpp +208 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/webgui.hpp +92 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/cmake/ngsolve/NGSolveConfig.cmake +102 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/cmake/ngsolve/ngsolve-targets-release.cmake +89 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/cmake/ngsolve/ngsolve-targets.cmake +173 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/netgen_mesher.libs/libngbla.so +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/netgen_mesher.libs/libngcomp.so +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/netgen_mesher.libs/libngfem.so +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/netgen_mesher.libs/libngla.so +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/netgen_mesher.libs/libngsbem.so +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/netgen_mesher.libs/libngscudalib.so +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/netgen_mesher.libs/libngsolve.so +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/netgen_mesher.libs/libngstd.so +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/TensorProductTools.py +210 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/__console.py +94 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/__expr.py +181 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/__init__.py +148 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/_scikit_build_core_dependencies.py +30 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/bvp.py +78 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/config/__init__.py +1 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/config/__main__.py +4 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/config/config.py +60 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/TensorProduct/__init__.py +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/TensorProduct/tp_dg_1d_1d.py +80 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/TensorProduct/tp_dg_1d_2d.py +73 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/TensorProduct/tp_dg_2d_1d.py +72 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/TensorProduct/tp_dg_2d_2d.py +66 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/__init__.py +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/__init__.py +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/hhj.py +44 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/hybrid_dg.py +53 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/mixed.py +30 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/nonlin.py +29 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/pickling.py +26 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/pml.py +31 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/taskmanager.py +20 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/tdnns.py +47 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/timeDG-skeleton.py +45 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/timeDG.py +38 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/timeDGlap.py +42 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/timeDGwave.py +61 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/intro/__init__.py +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/intro/adaptive.py +123 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/intro/cmagnet.py +59 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/intro/elasticity.py +76 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/intro/navierstokes.py +74 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/intro/poisson.ipynb +170 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/intro/poisson.py +41 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/mpi/__init__.py +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/mpi/mpi_cmagnet.py +87 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/mpi/mpi_navierstokes.py +117 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/mpi/mpi_poisson.py +89 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/mpi/mpi_timeDG.py +82 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/directsolvers.py +26 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/eigenvalues.py +364 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/internal.py +89 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/krylovspace.py +1013 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/meshes.py +748 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/ngs2petsc.py +310 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/ngscuda.so +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/ngscxx.py +42 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/ngslib.so +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/nonlinearsolvers.py +203 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/preconditioners.py +11 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/solve_implementation.py +168 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/solvers.py +7 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/timestepping.py +185 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/timing.py +108 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/utils.py +167 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/webgui.py +670 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/beam.geo +17 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/beam.vol +240 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/chip.in2d +41 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/chip.vol +614 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/coil.geo +12 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/coil.vol +2560 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/coilshield.geo +24 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/coilshield.vol +3179 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/cube.geo +19 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/cube.vol +1832 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d10_DGdoubleglazing.pde +50 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d11_chip_nitsche.pde +40 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d1_square.pde +43 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d2_chip.pde +35 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d3_helmholtz.pde +22 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d4_cube.pde +46 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d5_beam.pde +74 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d6_shaft.pde +73 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d7_coil.pde +50 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d8_coilshield.pde +49 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d9_hybridDG.pde +72 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/doubleglazing.in2d +27 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/doubleglazing.vol +737 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/piezo2d40round4.vol.gz +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/shaft.geo +73 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/shaft.vol +4291 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/square.in2d +17 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/square.vol +149 -0
- ngsolve-6.2.2506.post75.dev0.dist-info/METADATA +14 -0
- ngsolve-6.2.2506.post75.dev0.dist-info/RECORD +303 -0
- ngsolve-6.2.2506.post75.dev0.dist-info/WHEEL +5 -0
- ngsolve-6.2.2506.post75.dev0.dist-info/licenses/LICENSE +504 -0
- ngsolve-6.2.2506.post75.dev0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,2923 @@
|
|
|
1
|
+
#ifndef FILE_HDIVDIVFE
|
|
2
|
+
#define FILE_HDIVDIVFE
|
|
3
|
+
|
|
4
|
+
/*********************************************************************/
|
|
5
|
+
/* File: hdivdivfe.hpp */
|
|
6
|
+
/* Author: Astrid Pechstein, Joachim Schoeberl */
|
|
7
|
+
/* Date: orig 2006, redesign Dec 2016 */
|
|
8
|
+
/*********************************************************************/
|
|
9
|
+
|
|
10
|
+
#include "finiteelement.hpp"
|
|
11
|
+
#include "fe_interfaces.hpp"
|
|
12
|
+
|
|
13
|
+
#include "hcurlfe.hpp" // for Cross (AD,AD)
|
|
14
|
+
#include "recursive_pol.hpp"
|
|
15
|
+
#include "recursive_pol_trig.hpp"
|
|
16
|
+
#include "recursive_pol_tet.hpp"
|
|
17
|
+
#include "shapefunction_utils.hpp"
|
|
18
|
+
|
|
19
|
+
namespace ngfem
|
|
20
|
+
{
|
|
21
|
+
|
|
22
|
+
class BaseHDivDivFiniteElement : public FiniteElement
|
|
23
|
+
{
|
|
24
|
+
public:
|
|
25
|
+
|
|
26
|
+
using FiniteElement::ndof;
|
|
27
|
+
using FiniteElement::order;
|
|
28
|
+
bool algebraic_mapping = true;
|
|
29
|
+
|
|
30
|
+
INLINE BaseHDivDivFiniteElement () { ; }
|
|
31
|
+
INLINE BaseHDivDivFiniteElement (int andof, int aorder)
|
|
32
|
+
: FiniteElement (andof, aorder) { ; }
|
|
33
|
+
|
|
34
|
+
void SetAlgebraicMapping (bool am) { algebraic_mapping = am; }
|
|
35
|
+
|
|
36
|
+
virtual void CalcShape (const IntegrationPoint & ip,
|
|
37
|
+
BareSliceMatrix<double> shape) const = 0;
|
|
38
|
+
|
|
39
|
+
virtual void CalcDivShape (const IntegrationPoint & ip,
|
|
40
|
+
BareSliceMatrix<double> divshape) const = 0;
|
|
41
|
+
};
|
|
42
|
+
template <int DIM>
|
|
43
|
+
class HDivDivFiniteElement : public BaseHDivDivFiniteElement
|
|
44
|
+
{
|
|
45
|
+
public:
|
|
46
|
+
using BaseHDivDivFiniteElement::BaseHDivDivFiniteElement;
|
|
47
|
+
using BaseHDivDivFiniteElement::ndof;
|
|
48
|
+
using BaseHDivDivFiniteElement::order;
|
|
49
|
+
|
|
50
|
+
// old style
|
|
51
|
+
virtual void CalcShape (const IntegrationPoint & ip,
|
|
52
|
+
BareSliceMatrix<double> shape) const = 0;
|
|
53
|
+
|
|
54
|
+
virtual void CalcDivShape (const IntegrationPoint & ip,
|
|
55
|
+
BareSliceMatrix<double> divshape) const = 0;
|
|
56
|
+
|
|
57
|
+
// new implementation
|
|
58
|
+
virtual void CalcMappedShape_Matrix (const MappedIntegrationPoint<DIM,DIM> & mip,
|
|
59
|
+
BareSliceMatrix<double> shape) const = 0;
|
|
60
|
+
|
|
61
|
+
/*
|
|
62
|
+
virtual void CalcDDMappedShape_Matrix (const MappedIntegrationPoint<DIM,DIM> & mip,
|
|
63
|
+
BareSliceMatrix<double> shape) const = 0;
|
|
64
|
+
*/
|
|
65
|
+
|
|
66
|
+
virtual void CalcMappedShape_Vector (const MappedIntegrationPoint<DIM,DIM> & mip,
|
|
67
|
+
BareSliceMatrix<double> shape) const = 0;
|
|
68
|
+
|
|
69
|
+
virtual void CalcMappedDivShape (const BaseMappedIntegrationPoint & mip,
|
|
70
|
+
BareSliceMatrix<double> shape) const = 0;
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
virtual void CalcMappedShape_Matrix (const SIMD_BaseMappedIntegrationRule & mir,
|
|
74
|
+
BareSliceMatrix<SIMD<double>> shapes) const = 0;
|
|
75
|
+
|
|
76
|
+
virtual void Evaluate_Matrix (const SIMD_BaseMappedIntegrationRule & ir,
|
|
77
|
+
BareSliceVector<> coefs,
|
|
78
|
+
BareSliceMatrix<SIMD<double>> values) const = 0;
|
|
79
|
+
|
|
80
|
+
virtual void AddTrans_Matrix (const SIMD_BaseMappedIntegrationRule & ir,
|
|
81
|
+
BareSliceMatrix<SIMD<double>> values,
|
|
82
|
+
BareSliceVector<> coefs) const = 0;
|
|
83
|
+
|
|
84
|
+
virtual void CalcDualShape (const BaseMappedIntegrationPoint & bmip, BareSliceMatrix<> shape) const = 0;
|
|
85
|
+
virtual void CalcDualShape (const SIMD_BaseMappedIntegrationRule & bmir, BareSliceMatrix<SIMD<double>> shape) const = 0;
|
|
86
|
+
virtual void EvaluateDual (const SIMD_BaseMappedIntegrationRule & bmir, BareSliceVector<> coefs, BareSliceMatrix<SIMD<double>> values) const = 0;
|
|
87
|
+
virtual void AddDualTrans (const SIMD_BaseMappedIntegrationRule& bmir, BareSliceMatrix<SIMD<double>> values, BareSliceVector<double> coefs) const = 0;
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
virtual void CalcMappedDivShape (const SIMD_BaseMappedIntegrationRule & bmir,
|
|
91
|
+
BareSliceMatrix<SIMD<double>> divshapes) const = 0;
|
|
92
|
+
|
|
93
|
+
virtual void EvaluateDiv (const SIMD_BaseMappedIntegrationRule & bmir, BareSliceVector<> coefs,
|
|
94
|
+
BareSliceMatrix<SIMD<double>> values) const = 0;
|
|
95
|
+
|
|
96
|
+
virtual void AddDivTrans (const SIMD_BaseMappedIntegrationRule & bmir, BareSliceMatrix<SIMD<double>> values,
|
|
97
|
+
BareSliceVector<> coefs) const=0;
|
|
98
|
+
|
|
99
|
+
virtual void CalcShape_NormalComponent (const SIMD_BaseMappedIntegrationRule & mir,
|
|
100
|
+
BareSliceMatrix<SIMD<double>> shapes) const = 0;
|
|
101
|
+
|
|
102
|
+
virtual list<tuple<string,double>> Timing () const;
|
|
103
|
+
};
|
|
104
|
+
|
|
105
|
+
template <int D,typename VEC,typename MAT>
|
|
106
|
+
void VecToSymMat(const VEC & vec,MAT && mat)
|
|
107
|
+
{
|
|
108
|
+
switch(D)
|
|
109
|
+
{
|
|
110
|
+
case 2:
|
|
111
|
+
mat(0) = vec(0);
|
|
112
|
+
mat(3) = vec(1);
|
|
113
|
+
mat(1) = mat(2) = vec(2);
|
|
114
|
+
break;
|
|
115
|
+
case 3:
|
|
116
|
+
auto v0 = vec(0);
|
|
117
|
+
auto v1 = vec(1);
|
|
118
|
+
auto v2 = vec(2);
|
|
119
|
+
auto v3 = vec(3);
|
|
120
|
+
auto v4 = vec(4);
|
|
121
|
+
auto v5 = vec(5);
|
|
122
|
+
mat(0) = v0;
|
|
123
|
+
mat(1) = v5;
|
|
124
|
+
mat(2) = v4;
|
|
125
|
+
mat(3) = v5;
|
|
126
|
+
mat(4) = v1;
|
|
127
|
+
mat(5) = v3;
|
|
128
|
+
mat(6) = v4;
|
|
129
|
+
mat(7) = v3;
|
|
130
|
+
mat(8) = v2;
|
|
131
|
+
/*
|
|
132
|
+
mat(0) = vec(0);
|
|
133
|
+
mat(4) = vec(1);
|
|
134
|
+
mat(8) = vec(2);
|
|
135
|
+
mat(1) = mat(3) = vec(5);
|
|
136
|
+
mat(2) = mat(6) = vec(4);
|
|
137
|
+
mat(5) = mat(7) = vec(3);
|
|
138
|
+
*/
|
|
139
|
+
break;
|
|
140
|
+
}
|
|
141
|
+
}
|
|
142
|
+
|
|
143
|
+
template <typename T>
|
|
144
|
+
auto SymMatToVecDual (const Mat<2,2,T> & mat)
|
|
145
|
+
{
|
|
146
|
+
return Vec<3,T> { mat(0,0), mat(1,1), mat(0,1)+mat(1,0) };
|
|
147
|
+
}
|
|
148
|
+
|
|
149
|
+
template <typename T>
|
|
150
|
+
auto SymMatToVecDual (const Mat<3,3,T> & mat)
|
|
151
|
+
{
|
|
152
|
+
return Vec<6,T> { mat(0,0), mat(1,1), mat(2,2), mat(1,2)+mat(2,1), mat(0,2)+mat(2,0), mat(0,1)+mat(1,0) };
|
|
153
|
+
}
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+
template <typename T>
|
|
157
|
+
Mat<2,2,T> DyadProd(Vec<2,T> a, Vec<2,T> b)
|
|
158
|
+
{
|
|
159
|
+
// return Matrix<T>({{a(0)*b(0), a(0)*b(1)}, {a(1)*b(0), a(1)*b(1)}} );
|
|
160
|
+
return { a(0)*b(0), a(0)*b(1), a(1)*b(0), a(1)*b(1) };
|
|
161
|
+
}
|
|
162
|
+
|
|
163
|
+
template <typename T>
|
|
164
|
+
Mat<3,3,T> DyadProd(Vec<3,T> a, Vec<3,T> b)
|
|
165
|
+
{
|
|
166
|
+
// return Matrix<T>( {{a(0)*b(0), a(0)*b(1), a(0)*b(2)}, {a(1)*b(0), a(1)*b(1), a(1)*b(2)}, {a(2)*b(0), a(2)*b(1), a(2)*b(2)}} );
|
|
167
|
+
return { a(0)*b(0), a(0)*b(1), a(0)*b(2), a(1)*b(0), a(1)*b(1), a(1)*b(2), a(2)*b(0), a(2)*b(1), a(2)*b(2) };
|
|
168
|
+
}
|
|
169
|
+
|
|
170
|
+
template <ELEMENT_TYPE ET> class HDivDivFE;
|
|
171
|
+
|
|
172
|
+
|
|
173
|
+
template <ELEMENT_TYPE ET, typename SHAPES = HDivDivFE<ET>>
|
|
174
|
+
class T_HDivDivFE : public HDivDivFiniteElement<ET_trait<ET>::DIM>,
|
|
175
|
+
public VertexOrientedFE<ET>
|
|
176
|
+
{
|
|
177
|
+
protected:
|
|
178
|
+
enum { DIM = ET_trait<ET>::DIM };
|
|
179
|
+
enum { DIM_STRESS = (DIM*(DIM+1))/2 };
|
|
180
|
+
|
|
181
|
+
using VertexOrientedFE<ET>::vnums;
|
|
182
|
+
using HDivDivFiniteElement<ET_trait<ET>::DIM>::ndof;
|
|
183
|
+
using HDivDivFiniteElement<ET_trait<ET>::DIM>::order;
|
|
184
|
+
|
|
185
|
+
//enum { N_VERTEX = ET_trait<ET>::N_VERTEX };
|
|
186
|
+
//enum { N_FACET = ET_trait<ET>::N_FACET };
|
|
187
|
+
//
|
|
188
|
+
//size_t vnums[N_VERTEX];
|
|
189
|
+
IVec<DIM-1> order_facet[ET_trait<ET>::N_FACET];
|
|
190
|
+
IVec<DIM> order_inner;
|
|
191
|
+
|
|
192
|
+
// additional div-div free bubbles
|
|
193
|
+
bool plus;
|
|
194
|
+
|
|
195
|
+
public:
|
|
196
|
+
using VertexOrientedFE<ET>::SetVertexNumbers;
|
|
197
|
+
|
|
198
|
+
T_HDivDivFE (int aorder, bool _plus = false)
|
|
199
|
+
: plus(_plus)
|
|
200
|
+
{
|
|
201
|
+
order = aorder;
|
|
202
|
+
for (auto & of : order_facet) of = aorder;
|
|
203
|
+
order_inner = aorder;
|
|
204
|
+
//ndof = DIM*(DIM+1)/2 * ET_trait<ET>::PolDimension(aorder);
|
|
205
|
+
|
|
206
|
+
}
|
|
207
|
+
|
|
208
|
+
virtual ELEMENT_TYPE ElementType() const override { return ET; }
|
|
209
|
+
// const HDivDivFE<ET> * Cast() const { return static_cast<const HDivDivFE<ET>*> (this); }
|
|
210
|
+
auto * Cast() const { return static_cast<const SHAPES*> (this); }
|
|
211
|
+
|
|
212
|
+
INLINE void SetOrderFacet (int nr, IVec<DIM-1,int> order) { order_facet[nr] = order; }
|
|
213
|
+
INLINE void SetOrderInner (IVec<DIM,int> order) { order_inner = order; }
|
|
214
|
+
|
|
215
|
+
virtual void ComputeNDof()
|
|
216
|
+
{
|
|
217
|
+
cout << "Error, T_HDivDivFE<ET>:: ComputeNDof not available, only for ET == TRIG" << endl;
|
|
218
|
+
}
|
|
219
|
+
|
|
220
|
+
template <typename T, typename TFA>
|
|
221
|
+
void T_CalcShape (TIP<DIM,AutoDiff<DIM,T>> tip, TFA & shape) const
|
|
222
|
+
{
|
|
223
|
+
if constexpr (DIM == 2)
|
|
224
|
+
Cast() -> T_CalcShape (TIP<DIM,AutoDiffDiff<DIM,T>> (tip), shape);
|
|
225
|
+
else
|
|
226
|
+
Cast() -> T_CalcShape (tip, shape);
|
|
227
|
+
}
|
|
228
|
+
|
|
229
|
+
template <typename T, typename TFA>
|
|
230
|
+
void T_CalcShape (TIP<DIM,AutoDiffDiff<DIM,T>> tip, TFA & shape) const
|
|
231
|
+
{
|
|
232
|
+
if constexpr (DIM == 2)
|
|
233
|
+
Cast() -> T_CalcShape (tip, shape);
|
|
234
|
+
else
|
|
235
|
+
throw Exception ("dd shapes are not supported in 3D");
|
|
236
|
+
}
|
|
237
|
+
|
|
238
|
+
|
|
239
|
+
// old style
|
|
240
|
+
virtual void CalcShape (const IntegrationPoint & ip,
|
|
241
|
+
BareSliceMatrix<double> shape) const override
|
|
242
|
+
{
|
|
243
|
+
// Vec<DIM, AutoDiff<DIM> > adp = ip;
|
|
244
|
+
/*
|
|
245
|
+
Vec<DIM, AutoDiff<DIM>> adp;
|
|
246
|
+
for ( int i=0; i<DIM; i++)
|
|
247
|
+
adp(i) = AutoDiff<DIM>(ip(i),i);
|
|
248
|
+
auto tip = TIP<DIM, AutoDiff<DIM>> (adp, ip.FacetNr(), ip.VB());
|
|
249
|
+
*/
|
|
250
|
+
/* Cast() -> */ T_CalcShape (GetTIPGrad<DIM>(ip),
|
|
251
|
+
SBLambda([&] (int nr, auto val)
|
|
252
|
+
{
|
|
253
|
+
shape.Row(nr).Range(0,DIM_STRESS) = val.Shape();
|
|
254
|
+
}));
|
|
255
|
+
}
|
|
256
|
+
|
|
257
|
+
virtual void CalcDualShape (const BaseMappedIntegrationPoint & bmip, BareSliceMatrix<> shape) const override
|
|
258
|
+
{
|
|
259
|
+
shape.AddSize(ndof, sqr(bmip.DimSpace())) = 0.0;
|
|
260
|
+
Switch<4-DIM>
|
|
261
|
+
(bmip.DimSpace()-DIM,[this, &bmip, shape](auto CODIM)
|
|
262
|
+
{
|
|
263
|
+
auto & mip = static_cast<const MappedIntegrationPoint<DIM,DIM+CODIM.value>&> (bmip);
|
|
264
|
+
|
|
265
|
+
Cast() -> CalcDualShape2 (mip, SBLambda([&] (size_t nr, auto val)
|
|
266
|
+
{
|
|
267
|
+
shape.Row(nr) = val.AsVector();
|
|
268
|
+
}));
|
|
269
|
+
});
|
|
270
|
+
|
|
271
|
+
}
|
|
272
|
+
|
|
273
|
+
virtual void CalcDualShape (const SIMD_BaseMappedIntegrationRule& bmir, BareSliceMatrix<SIMD<double>> shapes) const override
|
|
274
|
+
{
|
|
275
|
+
Switch<4-DIM>
|
|
276
|
+
(bmir.DimSpace()-DIM,[this, &bmir, shapes](auto CODIM)
|
|
277
|
+
{
|
|
278
|
+
constexpr int DIMSPACE = DIM+CODIM.value;
|
|
279
|
+
auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIM+CODIM.value>&> (bmir);
|
|
280
|
+
|
|
281
|
+
shapes.AddSize(ndof*sqr(DIMSPACE), mir.Size()) = 0.0;
|
|
282
|
+
for (size_t i = 0; i < mir.Size(); i++)
|
|
283
|
+
{
|
|
284
|
+
Cast() -> CalcDualShape2 (mir[i], SBLambda([shapes,i,DIMSPACE] (size_t j, auto val)
|
|
285
|
+
{
|
|
286
|
+
shapes.Rows(j*sqr(DIMSPACE), (j+1)*sqr(DIMSPACE)).Col(i).Range(0,sqr(DIMSPACE)) = val.AsVector();
|
|
287
|
+
}));
|
|
288
|
+
}
|
|
289
|
+
});
|
|
290
|
+
}
|
|
291
|
+
|
|
292
|
+
virtual void EvaluateDual (const SIMD_BaseMappedIntegrationRule & bmir, BareSliceVector<> coefs, BareSliceMatrix<SIMD<double>> values) const override
|
|
293
|
+
{
|
|
294
|
+
Switch<4-DIM>
|
|
295
|
+
(bmir.DimSpace()-DIM,[this,&bmir,coefs,values](auto CODIM)
|
|
296
|
+
{
|
|
297
|
+
constexpr int DIMSPACE = DIM+CODIM.value;
|
|
298
|
+
auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIM+CODIM.value>&> (bmir);
|
|
299
|
+
for (size_t i = 0; i < mir.Size(); i++)
|
|
300
|
+
{
|
|
301
|
+
Mat<DIMSPACE,DIMSPACE,SIMD<double>> sum (SIMD<double>(0.0));
|
|
302
|
+
Cast() -> CalcDualShape2 (mir[i], SBLambda([&sum, coefs] (size_t j, auto val)
|
|
303
|
+
{
|
|
304
|
+
sum += coefs(j) * val;
|
|
305
|
+
}));
|
|
306
|
+
for (size_t k = 0; k < sqr(DIMSPACE); k++)
|
|
307
|
+
values(k, i) = sum(k);
|
|
308
|
+
}});
|
|
309
|
+
}
|
|
310
|
+
|
|
311
|
+
virtual void AddDualTrans (const SIMD_BaseMappedIntegrationRule& bmir, BareSliceMatrix<SIMD<double>> values, BareSliceVector<double> coefs) const override
|
|
312
|
+
{
|
|
313
|
+
Switch<4-DIM>
|
|
314
|
+
(bmir.DimSpace()-DIM,[this,&bmir,coefs,values](auto CODIM)
|
|
315
|
+
{
|
|
316
|
+
constexpr int DIMSPACE = DIM+CODIM.value;
|
|
317
|
+
auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIM+CODIM.value>&> (bmir);
|
|
318
|
+
for (size_t i = 0; i < mir.Size(); i++)
|
|
319
|
+
{
|
|
320
|
+
Mat<DIMSPACE,DIMSPACE,SIMD<double>> value;
|
|
321
|
+
for (size_t k = 0; k < sqr(DIMSPACE); k++)
|
|
322
|
+
value(k) = values(k, i);
|
|
323
|
+
|
|
324
|
+
Cast()-> CalcDualShape2 (mir[i], SBLambda([value, coefs] (size_t j, auto val)
|
|
325
|
+
{
|
|
326
|
+
coefs(j) += HSum(InnerProduct(val,value));
|
|
327
|
+
}));
|
|
328
|
+
}});
|
|
329
|
+
}
|
|
330
|
+
|
|
331
|
+
|
|
332
|
+
virtual void CalcDivShape (const IntegrationPoint & ip,
|
|
333
|
+
BareSliceMatrix<double> shape) const override
|
|
334
|
+
{
|
|
335
|
+
// MSVC internal compiler error
|
|
336
|
+
// Vec<DIM, AutoDiff<DIM> > adp = ip;
|
|
337
|
+
// TIP<DIM,AutoDiffDiff<DIM>> addp(adp);
|
|
338
|
+
Vec<DIM, AutoDiff<DIM>> adp;
|
|
339
|
+
for (int i = 0; i < DIM; i++)
|
|
340
|
+
adp[i] = AutoDiff<DIM>(ip(i),i);
|
|
341
|
+
|
|
342
|
+
/* Cast() -> */ T_CalcShape (TIP<DIM, AutoDiff<DIM>> (adp, ip.FacetNr(), ip.VB()),
|
|
343
|
+
SBLambda([shape] (int nr, auto val)
|
|
344
|
+
{
|
|
345
|
+
shape.Row(nr).Range(0,DIM) = val.DivShape();
|
|
346
|
+
}));
|
|
347
|
+
}
|
|
348
|
+
|
|
349
|
+
// new style
|
|
350
|
+
virtual void CalcMappedShape_Vector (const MappedIntegrationPoint<DIM,DIM> & mip,
|
|
351
|
+
BareSliceMatrix<double> shape) const override
|
|
352
|
+
{
|
|
353
|
+
Vec<DIM, AutoDiff<DIM>> adp = mip;
|
|
354
|
+
/*
|
|
355
|
+
Vec<DIM, AutoDiffDiff<DIM>> addp;
|
|
356
|
+
for (int i=0; i<DIM; i++)
|
|
357
|
+
{
|
|
358
|
+
addp[i] = adp[i].Value();
|
|
359
|
+
addp[i].LoadGradient(&adp[i].DValue(0));
|
|
360
|
+
}
|
|
361
|
+
*/
|
|
362
|
+
/* Cast() -> */ T_CalcShape (TIP<DIM, AutoDiff<DIM>> (adp, mip.IP().FacetNr(), mip.IP().VB()),
|
|
363
|
+
SBLambda([&] (int nr, auto val)
|
|
364
|
+
{
|
|
365
|
+
shape.Row(nr).Range(0,DIM_STRESS) = val.Shape();
|
|
366
|
+
}));
|
|
367
|
+
}
|
|
368
|
+
|
|
369
|
+
|
|
370
|
+
virtual void CalcMappedShape_Matrix (const MappedIntegrationPoint<DIM,DIM> & mip,
|
|
371
|
+
BareSliceMatrix<double> shape) const override
|
|
372
|
+
{
|
|
373
|
+
/*
|
|
374
|
+
auto tip = this->algebraic_mapping ? TIP<DIM, AutoDiffDiff<DIM>>(GetTIP(mip)) : GetTIPHesse(mip);
|
|
375
|
+
T_CalcShape (tip,
|
|
376
|
+
SBLambda([&](int nr,auto val)
|
|
377
|
+
{
|
|
378
|
+
VecToSymMat<DIM> (val.Shape(), shape.Row(nr));
|
|
379
|
+
}));
|
|
380
|
+
*/
|
|
381
|
+
if (this->algebraic_mapping)
|
|
382
|
+
T_CalcShape (GetTIP(mip),
|
|
383
|
+
SBLambda([&](int nr,auto val)
|
|
384
|
+
{
|
|
385
|
+
VecToSymMat<DIM> (val.Shape(), shape.Row(nr));
|
|
386
|
+
}));
|
|
387
|
+
else
|
|
388
|
+
T_CalcShape (GetTIPHesse(mip),
|
|
389
|
+
SBLambda([&](int nr,auto val)
|
|
390
|
+
{
|
|
391
|
+
VecToSymMat<DIM> (val.Shape(), shape.Row(nr));
|
|
392
|
+
}));
|
|
393
|
+
}
|
|
394
|
+
|
|
395
|
+
/*
|
|
396
|
+
virtual void CalcDDMappedShape_Matrix (const MappedIntegrationPoint<DIM,DIM> & mip,
|
|
397
|
+
BareSliceMatrix<double> shape) const override
|
|
398
|
+
{
|
|
399
|
+
T_CalcShape (GetTIPHesse(mip),
|
|
400
|
+
SBLambda([&](int nr,auto val)
|
|
401
|
+
{
|
|
402
|
+
VecToSymMat<DIM> (val.Shape(), shape.Row(nr));
|
|
403
|
+
}));
|
|
404
|
+
}
|
|
405
|
+
*/
|
|
406
|
+
|
|
407
|
+
|
|
408
|
+
virtual void CalcMappedDivShape (const BaseMappedIntegrationPoint & bmip,
|
|
409
|
+
BareSliceMatrix<double> shape) const override
|
|
410
|
+
{
|
|
411
|
+
auto & mip = static_cast<const MappedIntegrationPoint<DIM,DIM>&> (bmip);
|
|
412
|
+
if (!this->algebraic_mapping)
|
|
413
|
+
{
|
|
414
|
+
T_CalcShape (GetTIPHesse(mip),
|
|
415
|
+
SBLambda([&](int nr,auto val)
|
|
416
|
+
{
|
|
417
|
+
shape.Row(nr).Range(0,DIM) = val.DivShape();
|
|
418
|
+
}));
|
|
419
|
+
return;
|
|
420
|
+
}
|
|
421
|
+
|
|
422
|
+
if (!mip.GetTransformation().IsCurvedElement()) // non-curved element
|
|
423
|
+
{
|
|
424
|
+
T_CalcShape (GetTIP(mip),
|
|
425
|
+
SBLambda([&](int nr,auto val)
|
|
426
|
+
{
|
|
427
|
+
shape.Row(nr).Range(0,DIM) = val.DivShape();
|
|
428
|
+
}));
|
|
429
|
+
return;
|
|
430
|
+
}
|
|
431
|
+
// curved element
|
|
432
|
+
|
|
433
|
+
if (false) // eval on physical element
|
|
434
|
+
{
|
|
435
|
+
Mat<DIM> inv = mip.GetJacobianInverse();
|
|
436
|
+
|
|
437
|
+
Vec<DIM,Mat<DIM>> hesse, hesse_inv;
|
|
438
|
+
mip.CalcHesse (hesse);
|
|
439
|
+
|
|
440
|
+
/*
|
|
441
|
+
|
|
442
|
+
div ( 1/J F sigma_ref F^T 1/J )
|
|
443
|
+
= deriv (1/J F) sigma_ref F^T 1/J + 1/J F div(sigma_ref F^T 1/J) = I + II
|
|
444
|
+
|
|
445
|
+
I ... Hessian : sigma + grad(1/J) sigma
|
|
446
|
+
II ... by DivShape of SigmaGrad templates, as for non-curved elements
|
|
447
|
+
|
|
448
|
+
*/
|
|
449
|
+
|
|
450
|
+
/*
|
|
451
|
+
for (int k = 0; k < DIM; k++)
|
|
452
|
+
hesse_inv(k) = Trans(inv) * hesse(k) * inv;
|
|
453
|
+
|
|
454
|
+
Vec<DIM> gradJ_xi;
|
|
455
|
+
for (int k = 0; k < DIM; k++)
|
|
456
|
+
{
|
|
457
|
+
double sum = 0;
|
|
458
|
+
for (int i = 0; i < DIM; i++)
|
|
459
|
+
for (int j = 0; j < DIM; j++)
|
|
460
|
+
sum += inv(j,i) * hesse(i)(j,k);
|
|
461
|
+
gradJ_xi(k) = sum;
|
|
462
|
+
}
|
|
463
|
+
Vec<DIM> gradJ = Trans(inv) * gradJ_xi;
|
|
464
|
+
for (int k = 0; k < DIM; k++)
|
|
465
|
+
for (int l = 0; l < DIM; l++)
|
|
466
|
+
hesse_inv(k)(l,k) -= gradJ(l);
|
|
467
|
+
*/
|
|
468
|
+
|
|
469
|
+
// saving a view operations ...
|
|
470
|
+
Vec<DIM, Mat<DIM>> hesse_inv1;
|
|
471
|
+
|
|
472
|
+
for (int k = 0; k < DIM; k++)
|
|
473
|
+
hesse_inv1(k) = hesse(k) * inv;
|
|
474
|
+
|
|
475
|
+
Vec<DIM> gradJ_xi = 0.0;
|
|
476
|
+
for (int i = 0; i < DIM; i++)
|
|
477
|
+
gradJ_xi += hesse_inv1(i).Col(i);
|
|
478
|
+
|
|
479
|
+
for (int k = 0; k < DIM; k++)
|
|
480
|
+
hesse_inv1(k).Col(k) -= gradJ_xi;
|
|
481
|
+
|
|
482
|
+
for (int k = 0; k < DIM; k++)
|
|
483
|
+
hesse_inv(k) = Trans(inv) * hesse_inv1(k);
|
|
484
|
+
|
|
485
|
+
Mat<DIM,DIM_STRESS> hesse_inv_vec;
|
|
486
|
+
for (int k = 0; k < DIM; k++)
|
|
487
|
+
hesse_inv_vec.Row(k) = SymMatToVecDual(hesse_inv(k));
|
|
488
|
+
|
|
489
|
+
T_CalcShape (GetTIP(mip),
|
|
490
|
+
SBLambda([&] (int nr,auto val)
|
|
491
|
+
{
|
|
492
|
+
shape.Row(nr).Range(0,DIM) = val.DivShape() + hesse_inv_vec * val.Shape();
|
|
493
|
+
}));
|
|
494
|
+
return;
|
|
495
|
+
}
|
|
496
|
+
|
|
497
|
+
|
|
498
|
+
if (true)
|
|
499
|
+
{
|
|
500
|
+
// eval on reference element
|
|
501
|
+
|
|
502
|
+
Mat<DIM> inv = mip.GetJacobianInverse();
|
|
503
|
+
Mat<DIM> jac = mip.GetJacobian();
|
|
504
|
+
double det = Det(jac);
|
|
505
|
+
|
|
506
|
+
Vec<DIM,Mat<DIM>> hesse = mip.CalcHesse();
|
|
507
|
+
|
|
508
|
+
Vec<DIM> gradJ_xi = 0.0;
|
|
509
|
+
for (int i = 0; i < DIM; i++)
|
|
510
|
+
for (int j = 0; j < DIM; j++)
|
|
511
|
+
gradJ_xi += inv(j,i) * hesse(i).Col(j);
|
|
512
|
+
|
|
513
|
+
for (int i = 0; i < DIM; i++)
|
|
514
|
+
for (int j = 0; j < DIM; j++)
|
|
515
|
+
hesse(i).Col(j) -= jac(i,j) * gradJ_xi;
|
|
516
|
+
|
|
517
|
+
Mat<DIM,DIM_STRESS> hesse_inv_vec;
|
|
518
|
+
for (int k = 0; k < DIM; k++)
|
|
519
|
+
hesse_inv_vec.Row(k) = 1/(det*det) * SymMatToVecDual(hesse(k));
|
|
520
|
+
Mat<DIM> trans_div = 1/(det*det) * jac;
|
|
521
|
+
|
|
522
|
+
T_CalcShape (GetTIPGrad<DIM>(mip.IP()),
|
|
523
|
+
SBLambda([&] (int nr,auto val) LAMBDA_INLINE
|
|
524
|
+
{
|
|
525
|
+
shape.Row(nr).Range(0,DIM) = trans_div * val.DivShape() + hesse_inv_vec * val.Shape();
|
|
526
|
+
}));
|
|
527
|
+
return;
|
|
528
|
+
}
|
|
529
|
+
|
|
530
|
+
|
|
531
|
+
|
|
532
|
+
|
|
533
|
+
/*
|
|
534
|
+
Mat<DIM> jac = mip.GetJacobian();
|
|
535
|
+
Mat<DIM> inv_jac = mip.GetJacobianInverse();
|
|
536
|
+
Mat<DIM> hesse[3],finvT_h_tilde_finv[3];
|
|
537
|
+
mip.CalcHesse (hesse[0],hesse[1],hesse[2]);
|
|
538
|
+
|
|
539
|
+
Mat<DIM,DIM,AutoDiff<DIM> > f_tilde;
|
|
540
|
+
for(int i = 0; i < DIM; i++)
|
|
541
|
+
{
|
|
542
|
+
for(int j = 0; j < DIM; j++)
|
|
543
|
+
{
|
|
544
|
+
f_tilde(i,j).Value() = jac(i,j);
|
|
545
|
+
for(int k = 0; k < DIM; k++)
|
|
546
|
+
f_tilde(i,j).DValue(k) = hesse[i](j,k);
|
|
547
|
+
}
|
|
548
|
+
}
|
|
549
|
+
|
|
550
|
+
AutoDiff<DIM> ad_det = Det (f_tilde);
|
|
551
|
+
AutoDiff<DIM> iad_det = 1.0 / ad_det;
|
|
552
|
+
f_tilde *= iad_det;
|
|
553
|
+
|
|
554
|
+
for(int i=0; i<DIM; i++)
|
|
555
|
+
{
|
|
556
|
+
finvT_h_tilde_finv[i] = 0;
|
|
557
|
+
for(int alpha=0; alpha<DIM; alpha++)
|
|
558
|
+
for(int beta=0; beta<DIM; beta++)
|
|
559
|
+
for(int gamma=0; gamma<DIM; gamma++)
|
|
560
|
+
for(int delta=0; delta<DIM; delta++)
|
|
561
|
+
finvT_h_tilde_finv[i](alpha,beta) += inv_jac(gamma,alpha)*f_tilde(i,gamma).DValue(delta)*inv_jac(delta,beta);
|
|
562
|
+
}
|
|
563
|
+
|
|
564
|
+
T_CalcShape (GetTIP(mip), // TIP<DIM,AutoDiff<DIM>> (adp),
|
|
565
|
+
SBLambda([&](int nr,auto val)
|
|
566
|
+
{
|
|
567
|
+
shape.Row(nr).Range(0,DIM) = val.DivShape();
|
|
568
|
+
BareVector<double> divshape = shape.Row(nr);
|
|
569
|
+
Vec<DIM_STRESS> vecshape = val.Shape();
|
|
570
|
+
Vec<DIM*DIM> matshape;
|
|
571
|
+
VecToSymMat<DIM> (vecshape, matshape);
|
|
572
|
+
|
|
573
|
+
for(int k=0; k<DIM; k++)
|
|
574
|
+
{
|
|
575
|
+
for(int j=0; j<DIM*DIM; j++)
|
|
576
|
+
{
|
|
577
|
+
divshape(k) += mip.GetJacobiDet() * finvT_h_tilde_finv[k](j) * matshape(j);
|
|
578
|
+
}
|
|
579
|
+
}
|
|
580
|
+
|
|
581
|
+
}));
|
|
582
|
+
}
|
|
583
|
+
*/
|
|
584
|
+
|
|
585
|
+
}
|
|
586
|
+
|
|
587
|
+
template <int DIMSPACE>
|
|
588
|
+
void CalcMappedShape_Matrix2 (const SIMD_MappedIntegrationRule<DIM,DIMSPACE> & mir,
|
|
589
|
+
BareSliceMatrix<SIMD<double>> shapes) const
|
|
590
|
+
{
|
|
591
|
+
// static Timer t("HDivDivFE - Matrix2", NoTracing);
|
|
592
|
+
// RegionTracer regtr(TaskManager::GetThreadId(), t);
|
|
593
|
+
|
|
594
|
+
for (size_t i = 0; i < mir.Size(); i++)
|
|
595
|
+
{
|
|
596
|
+
if (DIM == DIMSPACE)
|
|
597
|
+
{
|
|
598
|
+
const SIMD_BaseMappedIntegrationRule & bmir = mir;
|
|
599
|
+
auto & mir2 = static_cast<const SIMD_MappedIntegrationRule<DIM,DIM>&>(bmir);
|
|
600
|
+
// Vec<DIM,AutoDiff<DIM,SIMD<double>>> adp = mir2[i];
|
|
601
|
+
auto shapesi = shapes.Col(i);
|
|
602
|
+
/* this->Cast() -> */ T_CalcShape (GetTIP(mir2[i]), // TIP<DIM,AutoDiff<DIM,SIMD<double>>>(adp),
|
|
603
|
+
SBLambda ([shapesi] (size_t j, auto val)
|
|
604
|
+
{
|
|
605
|
+
auto shapeij = shapesi.Range(j*sqr(DIMSPACE),(j+1)*sqr(DIMSPACE));
|
|
606
|
+
// VecToSymMat<DIM> (val.Shape(), shapeij);
|
|
607
|
+
Mat<DIM,DIM,SIMD<double>> shapemat;
|
|
608
|
+
VecToSymMat<DIM> (val.Shape(), shapemat);
|
|
609
|
+
for (size_t i = 0; i < DIMSPACE*DIMSPACE; i++)
|
|
610
|
+
shapeij(i) = shapemat(i);
|
|
611
|
+
}));
|
|
612
|
+
}
|
|
613
|
+
else
|
|
614
|
+
{
|
|
615
|
+
auto jac = mir[i].GetJacobian();
|
|
616
|
+
auto d2 = sqr(mir[i].GetJacobiDet());
|
|
617
|
+
Vec<DIM_STRESS,SIMD<double>> hv;
|
|
618
|
+
Mat<DIM,DIM,SIMD<double>> mat;
|
|
619
|
+
SIMD<double> mem[DIMSPACE*DIMSPACE*DIM_STRESS];
|
|
620
|
+
// FlatMatrix<SIMD<double>> trans(DIMSPACE*DIMSPACE,DIM_STRESS,&mem[0]);
|
|
621
|
+
FlatMatrixFixWidth<DIM_STRESS, SIMD<double>> trans(DIMSPACE*DIMSPACE,&mem[0]);
|
|
622
|
+
for (int k = 0; k < DIM_STRESS; k++)
|
|
623
|
+
{
|
|
624
|
+
hv = SIMD<double>(0.0);
|
|
625
|
+
hv(k) = SIMD<double>(1.0);
|
|
626
|
+
VecToSymMat<DIM> (hv, mat);
|
|
627
|
+
Mat<DIMSPACE,DIMSPACE,SIMD<double>> physmat = 1/d2*(jac * mat * Trans(jac));
|
|
628
|
+
trans.Col(k) = physmat.AsVector();
|
|
629
|
+
}
|
|
630
|
+
|
|
631
|
+
|
|
632
|
+
// Vec<DIM,AutoDiff<DIM,SIMD<double>>> adp = mir.IR()[i];
|
|
633
|
+
// TIP<DIM,AutoDiffDiff<DIM,SIMD<double>>> addp(adp);
|
|
634
|
+
|
|
635
|
+
/* this->Cast() -> */ T_CalcShape (GetTIPGrad<DIM> (mir.IR()[i]), // TIP<DIM,AutoDiff<DIM,SIMD<double>>>(adp),
|
|
636
|
+
SBLambda ([i,shapes,trans] (size_t j, auto val)
|
|
637
|
+
{
|
|
638
|
+
shapes.Rows(j*sqr(DIMSPACE),(j+1)*sqr(DIMSPACE)).Col(i).Range(0,sqr(DIMSPACE)) = trans * val.Shape();
|
|
639
|
+
}));
|
|
640
|
+
}
|
|
641
|
+
}
|
|
642
|
+
}
|
|
643
|
+
|
|
644
|
+
virtual void CalcShape_NormalComponent (const SIMD_BaseMappedIntegrationRule & bmir,
|
|
645
|
+
BareSliceMatrix<SIMD<double>> shapes) const override
|
|
646
|
+
{
|
|
647
|
+
auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIM>&> (bmir);
|
|
648
|
+
|
|
649
|
+
for (size_t i = 0; i < mir.Size(); i++)
|
|
650
|
+
{
|
|
651
|
+
// Vec<DIM,AutoDiff<DIM,SIMD<double>>> adp = mir[i];
|
|
652
|
+
Vec<DIM,SIMD<double>> nv = mir[i].GetNV();
|
|
653
|
+
auto shapesi = shapes.Col(i);
|
|
654
|
+
/* this->Cast() -> */ T_CalcShape (GetTIP(mir[i]), // TIP<DIM,AutoDiff<DIM,SIMD<double>>>(adp),
|
|
655
|
+
SBLambda ([shapesi, nv] (size_t j, auto val)
|
|
656
|
+
{
|
|
657
|
+
auto shapeij = shapesi.Range(j*DIM,(j+1)*DIM);
|
|
658
|
+
Mat<DIM,DIM,SIMD<double>> shapemat;
|
|
659
|
+
VecToSymMat<DIM> (val.Shape(), shapemat);
|
|
660
|
+
Vec<DIM,SIMD<double>> mnv = shapemat * nv;
|
|
661
|
+
for (size_t i = 0; i < DIM; i++)
|
|
662
|
+
shapeij(i) = mnv(i);
|
|
663
|
+
}));
|
|
664
|
+
}
|
|
665
|
+
}
|
|
666
|
+
|
|
667
|
+
virtual void CalcMappedShape_Matrix (const SIMD_BaseMappedIntegrationRule & bmir,
|
|
668
|
+
BareSliceMatrix<SIMD<double>> shapes) const override
|
|
669
|
+
{
|
|
670
|
+
Iterate<4-DIM>
|
|
671
|
+
([this, &bmir, shapes](auto CODIM) LAMBDA_INLINE
|
|
672
|
+
{
|
|
673
|
+
constexpr int CD = CODIM.value;
|
|
674
|
+
constexpr int DIMSPACE = DIM+CD;
|
|
675
|
+
if (bmir.DimSpace() == DIMSPACE)
|
|
676
|
+
{
|
|
677
|
+
auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIMSPACE>&> (bmir);
|
|
678
|
+
this->CalcMappedShape_Matrix2 (mir, shapes);
|
|
679
|
+
#ifdef XXX
|
|
680
|
+
|
|
681
|
+
for (size_t i = 0; i < mir.Size(); i++)
|
|
682
|
+
{
|
|
683
|
+
auto jac = mir[i].GetJacobian();
|
|
684
|
+
auto d2 = sqr(mir[i].GetJacobiDet());
|
|
685
|
+
|
|
686
|
+
Vec<DIM_STRESS,SIMD<double>> hv;
|
|
687
|
+
Mat<DIM,DIM,SIMD<double>> mat;
|
|
688
|
+
// Mat<DIMSPACE*DIMSPACE, DIM_STRESS,SIMD<double>> trans;
|
|
689
|
+
SIMD<double> mem[DIMSPACE*DIMSPACE*DIM_STRESS];
|
|
690
|
+
FlatMatrix<SIMD<double>> trans(DIMSPACE*DIMSPACE,DIM_STRESS,&mem[0]);
|
|
691
|
+
for (int k = 0; k < DIM_STRESS; k++)
|
|
692
|
+
{
|
|
693
|
+
hv = SIMD<double>(0.0);
|
|
694
|
+
hv(k) = SIMD<double>(1.0);
|
|
695
|
+
VecToSymMat<DIM> (hv, mat);
|
|
696
|
+
Mat<DIMSPACE,DIMSPACE,SIMD<double>> physmat =
|
|
697
|
+
1/d2 * (jac * mat * Trans(jac));
|
|
698
|
+
for (int j = 0; j < DIMSPACE*DIMSPACE; j++)
|
|
699
|
+
trans(j,k) = physmat(j);
|
|
700
|
+
}
|
|
701
|
+
|
|
702
|
+
|
|
703
|
+
Vec<DIM,AutoDiff<DIM,SIMD<double>>> adp = bmir.IR()[i];
|
|
704
|
+
// TIP<DIM,AutoDiffDiff<DIM,SIMD<double>>> addp(adp);
|
|
705
|
+
|
|
706
|
+
this->Cast() -> T_CalcShape (adp,
|
|
707
|
+
SBLambda ([i,shapes,trans] (size_t j, auto val) LAMBDA_INLINE
|
|
708
|
+
{
|
|
709
|
+
/*
|
|
710
|
+
Mat<DIM,DIM,SIMD<double>> mat;
|
|
711
|
+
VecToSymMat<DIM> (val.Shape(), mat);
|
|
712
|
+
Mat<DIMSPACE,DIMSPACE,SIMD<double>> physmat =
|
|
713
|
+
1/d2 * (jac * mat * Trans(jac));
|
|
714
|
+
for (size_t k = 0; k < sqr(DIMSPACE); k++)
|
|
715
|
+
shapes(j*sqr(DIMSPACE)+k,i) = physmat(k);
|
|
716
|
+
*/
|
|
717
|
+
Vec<DIMSPACE*DIMSPACE,SIMD<double>> transvec;
|
|
718
|
+
transvec = (trans * val.Shape()).AsVector();
|
|
719
|
+
for (size_t k = 0; k < sqr(DIMSPACE); k++)
|
|
720
|
+
shapes(j*sqr(DIMSPACE)+k,i) = transvec(k);
|
|
721
|
+
}));
|
|
722
|
+
}
|
|
723
|
+
#endif
|
|
724
|
+
}
|
|
725
|
+
});
|
|
726
|
+
}
|
|
727
|
+
|
|
728
|
+
virtual void Evaluate_Matrix (const SIMD_BaseMappedIntegrationRule & bmir,
|
|
729
|
+
BareSliceVector<> coefs,
|
|
730
|
+
BareSliceMatrix<SIMD<double>> values) const override
|
|
731
|
+
{
|
|
732
|
+
if (this->algebraic_mapping == false)
|
|
733
|
+
{
|
|
734
|
+
if (bmir.DimSpace() != DIM)
|
|
735
|
+
throw Exception ("sequential mapping only for volume space");
|
|
736
|
+
|
|
737
|
+
auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIM>&> (bmir);
|
|
738
|
+
for (size_t i = 0; i < bmir.Size(); i++)
|
|
739
|
+
{
|
|
740
|
+
double *pcoefs = &coefs(0);
|
|
741
|
+
const size_t dist = coefs.Dist();
|
|
742
|
+
|
|
743
|
+
Vec<DIM_STRESS,SIMD<double>> sum(0.0);
|
|
744
|
+
T_CalcShape (GetTIPHesse(mir[i]),
|
|
745
|
+
SBLambda ([&sum,&pcoefs,dist] (size_t j, auto val)
|
|
746
|
+
{
|
|
747
|
+
sum += (*pcoefs)*val.Shape();
|
|
748
|
+
pcoefs += dist;
|
|
749
|
+
}));
|
|
750
|
+
for (size_t k = 0; k < DIM_STRESS; k++)
|
|
751
|
+
values(k,i) = sum(k);
|
|
752
|
+
}
|
|
753
|
+
return;
|
|
754
|
+
}
|
|
755
|
+
|
|
756
|
+
for (size_t i = 0; i < bmir.Size(); i++)
|
|
757
|
+
{
|
|
758
|
+
double *pcoefs = &coefs(0);
|
|
759
|
+
const size_t dist = coefs.Dist();
|
|
760
|
+
|
|
761
|
+
Vec<DIM_STRESS,SIMD<double>> sum(0.0);
|
|
762
|
+
// Vec<DIM,AutoDiff<DIM,SIMD<double>>> adp = bmir.IR()[i];
|
|
763
|
+
// TIP<DIM,AutoDiffDiff<DIM,SIMD<double>>> addp(adp);
|
|
764
|
+
|
|
765
|
+
/* Cast() -> */ T_CalcShape (GetTIPGrad<DIM>(bmir.IR()[i]), // TIP<DIM,AutoDiff<DIM,SIMD<double>>>(adp),
|
|
766
|
+
SBLambda ([&sum,&pcoefs,dist] (size_t j, auto val)
|
|
767
|
+
{
|
|
768
|
+
sum += (*pcoefs)*val.Shape();
|
|
769
|
+
pcoefs += dist;
|
|
770
|
+
}));
|
|
771
|
+
|
|
772
|
+
Mat<DIM,DIM,SIMD<double>> summat;
|
|
773
|
+
VecToSymMat<DIM> (sum, summat);
|
|
774
|
+
|
|
775
|
+
Iterate<4-DIM>
|
|
776
|
+
([values,&bmir,i,summat](auto CODIM)
|
|
777
|
+
{
|
|
778
|
+
constexpr auto DIMSPACE = DIM+CODIM.value;
|
|
779
|
+
if (bmir.DimSpace() == DIMSPACE)
|
|
780
|
+
{
|
|
781
|
+
auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIMSPACE>&> (bmir);
|
|
782
|
+
auto jac = mir[i].GetJacobian();
|
|
783
|
+
auto d2 = sqr(mir[i].GetJacobiDet());
|
|
784
|
+
Mat<DIMSPACE,DIMSPACE,SIMD<double>> physmat = 1/d2 * (jac * summat * Trans(jac));
|
|
785
|
+
for (size_t k = 0; k < sqr(DIMSPACE); k++)
|
|
786
|
+
values(k,i) = physmat(k);
|
|
787
|
+
}
|
|
788
|
+
});
|
|
789
|
+
}
|
|
790
|
+
}
|
|
791
|
+
|
|
792
|
+
virtual void AddTrans_Matrix (const SIMD_BaseMappedIntegrationRule & bmir,
|
|
793
|
+
BareSliceMatrix<SIMD<double>> values,
|
|
794
|
+
BareSliceVector<> coefs) const override
|
|
795
|
+
{
|
|
796
|
+
for (size_t i = 0; i < bmir.Size(); i++)
|
|
797
|
+
{
|
|
798
|
+
Mat<DIM,DIM,SIMD<double>> mat;
|
|
799
|
+
|
|
800
|
+
Iterate<4-DIM>
|
|
801
|
+
([&bmir,i,&mat,values](auto CODIM)
|
|
802
|
+
{
|
|
803
|
+
constexpr auto DIMSPACE = DIM+CODIM.value;
|
|
804
|
+
if (bmir.DimSpace() == DIMSPACE)
|
|
805
|
+
{
|
|
806
|
+
auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIMSPACE>&> (bmir);
|
|
807
|
+
|
|
808
|
+
auto jac = mir[i].GetJacobian();
|
|
809
|
+
auto d2 = sqr(mir[i].GetJacobiDet());
|
|
810
|
+
|
|
811
|
+
Mat<DIMSPACE,DIMSPACE,SIMD<double>> physmat{};
|
|
812
|
+
// physmat = values.Col(i);
|
|
813
|
+
physmat.AsVector() = values.Col(i);
|
|
814
|
+
mat = 1/d2 * Trans(jac) * physmat * jac;
|
|
815
|
+
}
|
|
816
|
+
});
|
|
817
|
+
|
|
818
|
+
// Vec<DIM,AutoDiff<DIM,SIMD<double>>> adp = bmir.IR()[i];
|
|
819
|
+
// TIP<DIM,AutoDiffDiff<DIM,SIMD<double>>> addp(adp);
|
|
820
|
+
double *pcoefs = &coefs(0);
|
|
821
|
+
const size_t dist = coefs.Dist();
|
|
822
|
+
|
|
823
|
+
/* Cast() -> */ T_CalcShape (GetTIPGrad<DIM>(bmir.IR()[i]), // TIP<DIM,AutoDiff<DIM,SIMD<double>>> (adp),
|
|
824
|
+
SBLambda ([mat,&pcoefs,dist] (size_t j, auto val)
|
|
825
|
+
{
|
|
826
|
+
Mat<DIM,DIM,SIMD<double>> mat2;
|
|
827
|
+
VecToSymMat<DIM> (val.Shape(), mat2);
|
|
828
|
+
|
|
829
|
+
*pcoefs += HSum(InnerProduct(mat,mat2));
|
|
830
|
+
pcoefs += dist;
|
|
831
|
+
}));
|
|
832
|
+
}
|
|
833
|
+
}
|
|
834
|
+
|
|
835
|
+
|
|
836
|
+
virtual void CalcMappedDivShape (const SIMD_BaseMappedIntegrationRule & bmir,
|
|
837
|
+
BareSliceMatrix<SIMD<double>> divshapes) const override
|
|
838
|
+
{
|
|
839
|
+
auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIM>&> (bmir);
|
|
840
|
+
|
|
841
|
+
|
|
842
|
+
if(!mir.GetTransformation().IsCurvedElement()) // non-curved element
|
|
843
|
+
{
|
|
844
|
+
for (size_t i = 0; i < mir.Size(); i++)
|
|
845
|
+
{
|
|
846
|
+
auto jac = mir[i].GetJacobian();
|
|
847
|
+
auto d2 = sqr(mir[i].GetJacobiDet());
|
|
848
|
+
|
|
849
|
+
Vec<DIM,SIMD<double>> vec;
|
|
850
|
+
SIMD<double> mem[DIM*DIM_STRESS];
|
|
851
|
+
FlatMatrix<SIMD<double>> trans(DIM,DIM,&mem[0]);
|
|
852
|
+
trans = 1/d2 * jac;
|
|
853
|
+
/*
|
|
854
|
+
{
|
|
855
|
+
vec = SIMD<double>(0.0);
|
|
856
|
+
vec(k) = SIMD<double>(1.0);
|
|
857
|
+
Vec<DIM,SIMD<double>> physvec = 1/d2 * (jac * vec);
|
|
858
|
+
trans.Col(k) = physvec;
|
|
859
|
+
}
|
|
860
|
+
*/
|
|
861
|
+
// Vec<DIM,AutoDiff<DIM,SIMD<double>>> adp = mir.IR()[i];
|
|
862
|
+
// TIP<DIM,AutoDiffDiff<DIM,SIMD<double>>> addp(adp);
|
|
863
|
+
/* Cast() -> */ T_CalcShape
|
|
864
|
+
(GetTIPGrad<DIM>(mir.IR()[i]), // TIP<DIM,AutoDiff<DIM,SIMD<double>>>(adp),
|
|
865
|
+
SBLambda([divshapes,i,trans](int j,auto val)
|
|
866
|
+
{
|
|
867
|
+
divshapes.Rows(j*DIM,(j+1)*DIM).Col(i).Range(0,DIM) = trans * val.DivShape();
|
|
868
|
+
}));
|
|
869
|
+
}
|
|
870
|
+
}
|
|
871
|
+
else
|
|
872
|
+
{
|
|
873
|
+
// throw ExceptionNOSIMD(string("HDivDiv - CalcMappedDivShape SIMD only for noncurved elements"));
|
|
874
|
+
for (size_t i = 0; i < mir.Size(); i++)
|
|
875
|
+
{
|
|
876
|
+
// static Timer t0("HDivDivFE - hesse", NoTracing);
|
|
877
|
+
// static Timer t1("HDivDivFE - prepare div", NoTracing);
|
|
878
|
+
// static Timer t2("HDivDivFE - calc div", NoTracing);
|
|
879
|
+
|
|
880
|
+
Mat<DIM,DIM,SIMD<double>> jac = mir[i].GetJacobian();
|
|
881
|
+
Mat<DIM,DIM,SIMD<double>> inv_jac = mir[i].GetJacobianInverse();
|
|
882
|
+
Mat<DIM,DIM,SIMD<double>> finvT_h_tilde_finv[DIM];
|
|
883
|
+
|
|
884
|
+
// RegionTracer reg0(TaskManager::GetThreadId(), t0);
|
|
885
|
+
|
|
886
|
+
Vec<DIM, Mat<DIM,DIM,SIMD<double>>> hesse;
|
|
887
|
+
mir.GetTransformation().CalcHesse (mir.IR()[i], hesse);
|
|
888
|
+
|
|
889
|
+
// RegionTracer reg1(TaskManager::GetThreadId(), t1);
|
|
890
|
+
|
|
891
|
+
Mat<DIM,DIM,AutoDiff<DIM,SIMD<double>> > f_tilde;
|
|
892
|
+
for(int i = 0; i < DIM; i++)
|
|
893
|
+
for(int j = 0; j < DIM; j++)
|
|
894
|
+
{
|
|
895
|
+
f_tilde(i,j).Value() = jac(i,j);
|
|
896
|
+
for(int k = 0; k < DIM; k++)
|
|
897
|
+
f_tilde(i,j).DValue(k) = hesse[i](j,k);
|
|
898
|
+
}
|
|
899
|
+
|
|
900
|
+
AutoDiff<DIM,SIMD<double>> ad_det = Det (f_tilde);
|
|
901
|
+
AutoDiff<DIM, SIMD<double>> iad_det = 1.0 / ad_det;
|
|
902
|
+
f_tilde *= iad_det;
|
|
903
|
+
|
|
904
|
+
for(int i=0; i<DIM; i++)
|
|
905
|
+
{
|
|
906
|
+
finvT_h_tilde_finv[i] = 0;
|
|
907
|
+
for(int alpha=0; alpha<DIM; alpha++)
|
|
908
|
+
for(int beta=0; beta<DIM; beta++)
|
|
909
|
+
for(int gamma=0; gamma<DIM; gamma++)
|
|
910
|
+
for(int delta=0; delta<DIM; delta++)
|
|
911
|
+
finvT_h_tilde_finv[i](alpha,beta) += inv_jac(gamma,alpha)*f_tilde(i,gamma).DValue(delta)*inv_jac(delta,beta);
|
|
912
|
+
}
|
|
913
|
+
for (int j = 0; j < DIM; j++)
|
|
914
|
+
finvT_h_tilde_finv[j] *= mir[i].GetJacobiDet();
|
|
915
|
+
|
|
916
|
+
// Vec<DIM,AutoDiff<DIM,SIMD<double>>> adp = mir[i];
|
|
917
|
+
// TIP<DIM,AutoDiffDiff<DIM,SIMD<double>>> addp(adp);
|
|
918
|
+
// TIP<DIM,AutoDiff<DIM,SIMD<double>>> addp(adp);
|
|
919
|
+
// RegionTracer reg2(TaskManager::GetThreadId(), t2);
|
|
920
|
+
/* Cast() -> */ T_CalcShape
|
|
921
|
+
(GetTIP(mir[i]), // TIP<DIM,AutoDiff<DIM,SIMD<double>>>(adp),
|
|
922
|
+
SBLambda([&](int nr,auto val)
|
|
923
|
+
{
|
|
924
|
+
BareSliceVector<SIMD<double>> divshape = divshapes.Rows(nr*DIM,(nr+1)*DIM).Col(i);
|
|
925
|
+
|
|
926
|
+
Vec<DIM,SIMD<double>> div1 = val.DivShape();
|
|
927
|
+
Vec<DIM_STRESS,SIMD<double>> vecshape = val.Shape();
|
|
928
|
+
Vec<DIM*DIM,SIMD<double>> matshape;
|
|
929
|
+
VecToSymMat<DIM> (vecshape, matshape);
|
|
930
|
+
|
|
931
|
+
for(size_t k = 0; k < DIM; k++)
|
|
932
|
+
{
|
|
933
|
+
SIMD<double> sum = div1(k);
|
|
934
|
+
for(size_t j = 0; j < DIM*DIM; j++)
|
|
935
|
+
sum += finvT_h_tilde_finv[k](j) * matshape(j);
|
|
936
|
+
divshape(k) = sum;
|
|
937
|
+
}
|
|
938
|
+
}));
|
|
939
|
+
}
|
|
940
|
+
}
|
|
941
|
+
}
|
|
942
|
+
|
|
943
|
+
virtual void EvaluateDiv (const SIMD_BaseMappedIntegrationRule & bmir, BareSliceVector<> coefs,
|
|
944
|
+
BareSliceMatrix<SIMD<double>> values) const override
|
|
945
|
+
{
|
|
946
|
+
auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIM>&> (bmir);
|
|
947
|
+
if(!mir.GetTransformation().IsCurvedElement()) // non-curved element
|
|
948
|
+
{
|
|
949
|
+
for (size_t i = 0; i < bmir.Size(); i++)
|
|
950
|
+
{
|
|
951
|
+
double *pcoefs = &coefs(0);
|
|
952
|
+
const size_t dist = coefs.Dist();
|
|
953
|
+
|
|
954
|
+
Vec<DIM,SIMD<double>> sum(0.0);
|
|
955
|
+
// Vec<DIM,AutoDiff<DIM,SIMD<double>>> adp = bmir.IR()[i];
|
|
956
|
+
// TIP<DIM,AutoDiffDiff<DIM,SIMD<double>>> addp(adp);
|
|
957
|
+
|
|
958
|
+
/* Cast() -> */ T_CalcShape (GetTIPGrad<DIM>(bmir.IR()[i]), // TIP<DIM,AutoDiff<DIM,SIMD<double>>>(adp),
|
|
959
|
+
SBLambda ([&sum,&pcoefs,dist] (size_t j, auto val)
|
|
960
|
+
{
|
|
961
|
+
sum += (*pcoefs)*val.DivShape();
|
|
962
|
+
pcoefs += dist;
|
|
963
|
+
}));
|
|
964
|
+
|
|
965
|
+
Iterate<4-DIM>
|
|
966
|
+
([values,&bmir,i,sum](auto CODIM)
|
|
967
|
+
{
|
|
968
|
+
constexpr auto DIMSPACE = DIM+CODIM.value;
|
|
969
|
+
if (bmir.DimSpace() == DIMSPACE)
|
|
970
|
+
{
|
|
971
|
+
auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIMSPACE>&> (bmir);
|
|
972
|
+
auto jac = mir[i].GetJacobian();
|
|
973
|
+
auto d2 = sqr(mir[i].GetJacobiDet());
|
|
974
|
+
Vec<DIMSPACE,SIMD<double>> physvec = 1/d2 * (jac * sum);
|
|
975
|
+
for (size_t k=0; k < DIMSPACE; k++)
|
|
976
|
+
values(k,i) = physvec(k);
|
|
977
|
+
}
|
|
978
|
+
});
|
|
979
|
+
}
|
|
980
|
+
}
|
|
981
|
+
else
|
|
982
|
+
{
|
|
983
|
+
throw ExceptionNOSIMD(string("HDivDiv - EvaluateDiv SIMD only for noncurved elements"));
|
|
984
|
+
}
|
|
985
|
+
}
|
|
986
|
+
|
|
987
|
+
virtual void AddDivTrans (const SIMD_BaseMappedIntegrationRule & bmir, BareSliceMatrix<SIMD<double>> values,
|
|
988
|
+
BareSliceVector<> coefs) const override
|
|
989
|
+
{
|
|
990
|
+
auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIM>&> (bmir);
|
|
991
|
+
if(!mir.GetTransformation().IsCurvedElement()) // non-curved element
|
|
992
|
+
{
|
|
993
|
+
for (size_t i = 0; i < bmir.Size(); i++)
|
|
994
|
+
{
|
|
995
|
+
Vec<DIM,SIMD<double>> vec;
|
|
996
|
+
|
|
997
|
+
Iterate<4-DIM>
|
|
998
|
+
([&bmir,i,&vec,values](auto CODIM)
|
|
999
|
+
{
|
|
1000
|
+
constexpr auto DIMSPACE = DIM+CODIM.value;
|
|
1001
|
+
if (bmir.DimSpace() == DIMSPACE)
|
|
1002
|
+
{
|
|
1003
|
+
auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIMSPACE>&> (bmir);
|
|
1004
|
+
|
|
1005
|
+
auto jac = mir[i].GetJacobian();
|
|
1006
|
+
auto d2 = sqr(mir[i].GetJacobiDet());
|
|
1007
|
+
|
|
1008
|
+
Vec<DIMSPACE,SIMD<double>> physvec{};
|
|
1009
|
+
for (size_t k = 0; k < DIMSPACE; k++)
|
|
1010
|
+
physvec(k) = values(k,i);
|
|
1011
|
+
vec = 1/d2 * Trans(jac) * physvec;
|
|
1012
|
+
}
|
|
1013
|
+
});
|
|
1014
|
+
|
|
1015
|
+
// Vec<DIM,AutoDiff<DIM,SIMD<double>>> adp = bmir.IR()[i];
|
|
1016
|
+
// TIP<DIM,AutoDiffDiff<DIM,SIMD<double>>> addp(adp);
|
|
1017
|
+
double *pcoefs = &coefs(0);
|
|
1018
|
+
const size_t dist = coefs.Dist();
|
|
1019
|
+
|
|
1020
|
+
/* Cast() -> */ T_CalcShape (GetTIPGrad<DIM> (bmir.IR()[i]), // TIP<DIM,AutoDiff<DIM,SIMD<double>>>(adp),
|
|
1021
|
+
SBLambda ([vec,&pcoefs,dist] (size_t j, auto val)
|
|
1022
|
+
{
|
|
1023
|
+
*pcoefs += HSum(InnerProduct(vec,val.DivShape()));
|
|
1024
|
+
pcoefs += dist;
|
|
1025
|
+
}));
|
|
1026
|
+
}
|
|
1027
|
+
}
|
|
1028
|
+
else
|
|
1029
|
+
{
|
|
1030
|
+
throw ExceptionNOSIMD(string("HDivDiv - AddTrans SIMD only for noncurved elements"));
|
|
1031
|
+
|
|
1032
|
+
}
|
|
1033
|
+
}
|
|
1034
|
+
|
|
1035
|
+
};
|
|
1036
|
+
|
|
1037
|
+
|
|
1038
|
+
|
|
1039
|
+
#ifdef FILE_HDIVDIVFE_CPP
|
|
1040
|
+
#define HDIVDIVFE_EXTERN
|
|
1041
|
+
#else
|
|
1042
|
+
#define HDIVDIVFE_EXTERN extern
|
|
1043
|
+
#endif
|
|
1044
|
+
|
|
1045
|
+
extern template class HDivDivFiniteElement<2>;
|
|
1046
|
+
extern template class HDivDivFiniteElement<3>;
|
|
1047
|
+
|
|
1048
|
+
|
|
1049
|
+
// ***************** SigmaGrad ****************************** */
|
|
1050
|
+
// sigma (nabla u)
|
|
1051
|
+
|
|
1052
|
+
template <int D, typename T> class T_SigmaGrad;
|
|
1053
|
+
template <typename T> class T_SigmaGrad<2,T>
|
|
1054
|
+
{
|
|
1055
|
+
AutoDiffDiff<2,T> u;
|
|
1056
|
+
public:
|
|
1057
|
+
T_SigmaGrad (AutoDiffDiff<2,T> au) : u(au) { ; }
|
|
1058
|
+
Vec<3,T> Shape() { return Vec<3,T> (u.DDValue(1,1), u.DDValue(0,0), -u.DDValue(1,0)); }
|
|
1059
|
+
Vec<2,T> DivShape() { return Vec<2,T> (0.0, 0.0); }
|
|
1060
|
+
};
|
|
1061
|
+
|
|
1062
|
+
template <int D, typename T>
|
|
1063
|
+
auto SigmaGrad (AutoDiffDiff<D,T> au) { return T_SigmaGrad<D,T>(au); }
|
|
1064
|
+
|
|
1065
|
+
|
|
1066
|
+
// ***************** Sigma_u_Gradv ****************************** */
|
|
1067
|
+
// sigma (u nabla v)
|
|
1068
|
+
|
|
1069
|
+
template <int D, typename T> class T_Sigma_u_Gradv;
|
|
1070
|
+
template <typename T> class T_Sigma_u_Gradv<2,T>
|
|
1071
|
+
{
|
|
1072
|
+
AutoDiffDiff<2,T> u, v;
|
|
1073
|
+
public:
|
|
1074
|
+
T_Sigma_u_Gradv (AutoDiffDiff<2,T> au, AutoDiffDiff<2,T> av) : u(au), v(av) { ; }
|
|
1075
|
+
Vec<3,T> Shape() { return Vec<3,T> ((u.Value()*v.DDValue(1,1) + u.DValue(1)*v.DValue(1)),
|
|
1076
|
+
(u.Value()*v.DDValue(0,0) + u.DValue(0)*v.DValue(0)),
|
|
1077
|
+
-u.Value()*v.DDValue(1,0) - 0.5 * (u.DValue(0)*v.DValue(1)+u.DValue(1)*v.DValue(0))); }
|
|
1078
|
+
Vec<2,T> DivShape()
|
|
1079
|
+
{
|
|
1080
|
+
T uxx = u.DDValue(0,0), uyy = u.DDValue(1,1), uxy = u.DDValue(0,1);
|
|
1081
|
+
T ux = u.DValue(0), uy = u.DValue(1);
|
|
1082
|
+
T vxx = v.DDValue(0,0), vyy = v.DDValue(1,1), vxy = v.DDValue(0,1);
|
|
1083
|
+
T vx = v.DValue(0), vy = v.DValue(1);
|
|
1084
|
+
|
|
1085
|
+
return -0.5 * Vec<2,T> (uyy*vx - uxy*vy + uy*vxy - ux*vyy,
|
|
1086
|
+
-uxy*vx + uxx*vy - uy*vxx + ux*vxy);
|
|
1087
|
+
}
|
|
1088
|
+
};
|
|
1089
|
+
|
|
1090
|
+
template <int D, typename T>
|
|
1091
|
+
auto Sigma_u_Gradv (AutoDiffDiff<D,T> au, AutoDiffDiff<D,T> av) { return T_Sigma_u_Gradv<D,T>(au, av); }
|
|
1092
|
+
|
|
1093
|
+
// ***************** Type2 ****************************** */
|
|
1094
|
+
// ????
|
|
1095
|
+
|
|
1096
|
+
template <int D, typename T> class T_Type2;
|
|
1097
|
+
template <typename T> class T_Type2<2,T>
|
|
1098
|
+
{
|
|
1099
|
+
AutoDiffDiff<2,T> u,v;
|
|
1100
|
+
public:
|
|
1101
|
+
T_Type2 (AutoDiffDiff<2,T> au, AutoDiffDiff<2,T> av) : u(au), v(av) { ; }
|
|
1102
|
+
Vec<3,T> Shape() { return Vec<3,T> (u.DDValue(1,1)*v.Value() - 2*u.DValue(1)*v.DValue(1) + u.Value()*v.DDValue(1,1),
|
|
1103
|
+
u.DDValue(0,0)*v.Value() - 2*u.DValue(0)*v.DValue(0) + u.Value()*v.DDValue(0,0),
|
|
1104
|
+
-(u.DDValue(0,1)*v.Value() - u.DValue(0)*v.DValue(1) -
|
|
1105
|
+
u.DValue(1)*v.DValue(0) + u.Value()*v.DDValue(1,0))); }
|
|
1106
|
+
|
|
1107
|
+
Vec<2,T> DivShape()
|
|
1108
|
+
{
|
|
1109
|
+
T uxx = u.DDValue(0,0), uyy = u.DDValue(1,1), uxy = u.DDValue(0,1);
|
|
1110
|
+
T ux = u.DValue(0), uy = u.DValue(1);
|
|
1111
|
+
T vxx = v.DDValue(0,0), vyy = v.DDValue(1,1), vxy = v.DDValue(0,1);
|
|
1112
|
+
T vx = v.DValue(0), vy = v.DValue(1);
|
|
1113
|
+
|
|
1114
|
+
return Vec<2,T> (2*uyy*vx + 2*ux*vyy - 2*uxy*vy - 2*uy*vxy, 2*uxx*vy + 2*uy*vxx - 2*uxy*vx - 2*ux*vxy);
|
|
1115
|
+
}
|
|
1116
|
+
};
|
|
1117
|
+
|
|
1118
|
+
template <int D, typename T>
|
|
1119
|
+
auto Type2 (AutoDiffDiff<D,T> au, AutoDiffDiff<D,T> av) { return T_Type2<D,T>(au, av); }
|
|
1120
|
+
|
|
1121
|
+
// ***************** Type3 ****************************** */
|
|
1122
|
+
// ????
|
|
1123
|
+
|
|
1124
|
+
template <int D, typename T> class T_Type3;
|
|
1125
|
+
template <typename T> class T_Type3<2,T>
|
|
1126
|
+
{
|
|
1127
|
+
AutoDiffDiff<2,T> u,v;
|
|
1128
|
+
public:
|
|
1129
|
+
T_Type3 (AutoDiffDiff<2,T> au, AutoDiffDiff<2,T> av) : u(au), v(av) { ; }
|
|
1130
|
+
Vec<3,T> Shape() { return Vec<3,T> (u.DDValue(1,1)*v.Value() - u.Value()*v.DDValue(1,1),
|
|
1131
|
+
u.DDValue(0,0)*v.Value() - u.Value()*v.DDValue(0,0),
|
|
1132
|
+
-(u.DDValue(0,1)*v.Value() - u.Value()*v.DDValue(1,0))); }
|
|
1133
|
+
Vec<2,T> DivShape()
|
|
1134
|
+
{
|
|
1135
|
+
T uxx = u.DDValue(0,0), uyy = u.DDValue(1,1), uxy = u.DDValue(0,1);
|
|
1136
|
+
T ux = u.DValue(0), uy = u.DValue(1);
|
|
1137
|
+
T vxx = v.DDValue(0,0), vyy = v.DDValue(1,1), vxy = v.DDValue(0,1);
|
|
1138
|
+
T vx = v.DValue(0), vy = v.DValue(1);
|
|
1139
|
+
|
|
1140
|
+
return Vec<2,T> (uyy*vx - uxy*vy - ux*vyy + uy*vxy, uxx*vy - uxy*vx - uy*vxx + ux*vxy);
|
|
1141
|
+
}
|
|
1142
|
+
};
|
|
1143
|
+
|
|
1144
|
+
template <int D, typename T>
|
|
1145
|
+
auto Type3 (AutoDiffDiff<D,T> au, AutoDiffDiff<D,T> av) { return T_Type3<D,T>(au, av); }
|
|
1146
|
+
|
|
1147
|
+
|
|
1148
|
+
template <int D, typename T> class T_vSigmaGradu;
|
|
1149
|
+
template <typename T> class T_vSigmaGradu<2,T>
|
|
1150
|
+
{
|
|
1151
|
+
AutoDiffDiff<2,T> u,v;
|
|
1152
|
+
public:
|
|
1153
|
+
T_vSigmaGradu (AutoDiffDiff<2,T> au, AutoDiffDiff<2,T> av) : u(au), v(av) { ; }
|
|
1154
|
+
Vec<3,T> Shape() { return Vec<3,T> (u.DDValue(1,1)*v.Value(),
|
|
1155
|
+
u.DDValue(0,0)*v.Value(), -(u.DDValue(0,1)*v.Value()));}
|
|
1156
|
+
Vec<2,T> DivShape()
|
|
1157
|
+
{
|
|
1158
|
+
T uxx = u.DDValue(0,0), uyy = u.DDValue(1,1), uxy = u.DDValue(0,1);
|
|
1159
|
+
// T ux = u.DValue(0), uy = u.DValue(1);
|
|
1160
|
+
// T vxx = v.DDValue(0,0), vyy = v.DDValue(1,1), vxy = v.DDValue(0,1);
|
|
1161
|
+
T vx = v.DValue(0), vy = v.DValue(1);
|
|
1162
|
+
|
|
1163
|
+
return Vec<2,T> (uyy*vx- uxy*vy, uxx*vy- uxy*vx);
|
|
1164
|
+
}
|
|
1165
|
+
};
|
|
1166
|
+
|
|
1167
|
+
template <int D, typename T>
|
|
1168
|
+
auto vSigmaGradu (AutoDiffDiff<D,T> au, AutoDiffDiff<D,T> av) { return T_vSigmaGradu<D,T>(au, av); }
|
|
1169
|
+
|
|
1170
|
+
// ***************** Sigma ((vDu - uDv) w) ****************************** */
|
|
1171
|
+
// where u, v are NOW POSSIBLY NON-linear hat basis functions (i.e. vDu - uDv is Nedelec0 edge basis function)
|
|
1172
|
+
template <int D, typename T> class T_Sigma_Duv_minus_uDv_w;
|
|
1173
|
+
template <typename T> class T_Sigma_Duv_minus_uDv_w<2,T>
|
|
1174
|
+
{
|
|
1175
|
+
AutoDiffDiff<2,T> u,v,w;
|
|
1176
|
+
public:
|
|
1177
|
+
T_Sigma_Duv_minus_uDv_w (AutoDiffDiff<2,T> au, AutoDiffDiff<2,T> av, AutoDiffDiff<2,T> aw) : u(au), v(av), w(aw) { ; }
|
|
1178
|
+
Vec<3,T> Shape() { return Vec<3,T> (w.DValue(1)*(v.DValue(1)*u.Value()-u.DValue(1)*v.Value()),
|
|
1179
|
+
w.DValue(0)*(v.DValue(0)*u.Value()-u.DValue(0)*v.Value()),
|
|
1180
|
+
-0.5*( w.DValue(0)*(v.DValue(1)*u.Value()-u.DValue(1)*v.Value()) +
|
|
1181
|
+
w.DValue(1)*(v.DValue(0)*u.Value()-u.DValue(0)*v.Value()) )
|
|
1182
|
+
); }
|
|
1183
|
+
|
|
1184
|
+
Vec<2,T> DivShape()
|
|
1185
|
+
{
|
|
1186
|
+
T uxx = u.DDValue(0,0), uyy = u.DDValue(1,1), uxy = u.DDValue(0,1);
|
|
1187
|
+
T ux = u.DValue(0), uy = u.DValue(1);
|
|
1188
|
+
T vxx = v.DDValue(0,0), vyy = v.DDValue(1,1), vxy = v.DDValue(0,1);
|
|
1189
|
+
T vx = v.DValue(0), vy = v.DValue(1);
|
|
1190
|
+
T wxx = w.DDValue(0,0), wyy = w.DDValue(1,1), wxy = w.DDValue(0,1);
|
|
1191
|
+
T wx = w.DValue(0), wy = w.DValue(1);
|
|
1192
|
+
|
|
1193
|
+
return Vec<2,T> (0.5*wxy*(vy*u.Value() - uy*v.Value())
|
|
1194
|
+
-0.5*wyy*(vx*u.Value() - ux*v.Value())
|
|
1195
|
+
+1.5*wy*(vy*ux - uy*vx) + 0.5*wy*(vxy*u.Value()-uxy*v.Value())
|
|
1196
|
+
-0.5*wx*(vyy*u.Value()-uyy*v.Value()),
|
|
1197
|
+
0.5*wxy*(vx*u.Value() - ux*v.Value())
|
|
1198
|
+
-0.5*wxx*(vy*u.Value() - uy*v.Value())
|
|
1199
|
+
+1.5*wx*(vx*uy - ux*vy) + 0.5*wx*(vxy*u.Value()-uxy*v.Value())
|
|
1200
|
+
-0.5*wy*(vxx*u.Value()-uxx*v.Value())
|
|
1201
|
+
);
|
|
1202
|
+
}
|
|
1203
|
+
|
|
1204
|
+
};
|
|
1205
|
+
|
|
1206
|
+
|
|
1207
|
+
|
|
1208
|
+
|
|
1209
|
+
class T_SymRotRot_Dl2xDl1_v
|
|
1210
|
+
{
|
|
1211
|
+
AutoDiff<2> l1,l2,v;
|
|
1212
|
+
public:
|
|
1213
|
+
T_SymRotRot_Dl2xDl1_v (AutoDiff<2> lam1, AutoDiff<2> lam2, AutoDiff<2> av) : l1(lam1), l2(lam2), v(av) { ; }
|
|
1214
|
+
Vec<3> Shape() { return Vec<3> (v.Value()*(l1.DValue(1)*l2.DValue(1)),
|
|
1215
|
+
v.Value()*(l1.DValue(0)*l2.DValue(0)),
|
|
1216
|
+
-0.5*v.Value()*(l1.DValue(1)*l2.DValue(0) + l1.DValue(0)*l2.DValue(1))
|
|
1217
|
+
); }
|
|
1218
|
+
|
|
1219
|
+
Vec<2> DivShape()
|
|
1220
|
+
{
|
|
1221
|
+
// todo
|
|
1222
|
+
// double lam1 = l1.Value();
|
|
1223
|
+
double lam1x = l1.DValue(0);
|
|
1224
|
+
double lam1y = l1.DValue(1);
|
|
1225
|
+
// double lam2 = l2.Value();
|
|
1226
|
+
double lam2x = l2.DValue(0);
|
|
1227
|
+
double lam2y = l2.DValue(1);
|
|
1228
|
+
return Vec<2> (
|
|
1229
|
+
v.DValue(0)*(lam1y*lam2y) - 0.5*v.DValue(1)*(lam1x*lam2y+lam1y*lam2x),
|
|
1230
|
+
-0.5*v.DValue(0)*(lam1x*lam2y+lam1y*lam2x) + v.DValue(1)*(lam1x*lam2x)
|
|
1231
|
+
);
|
|
1232
|
+
}
|
|
1233
|
+
|
|
1234
|
+
};
|
|
1235
|
+
|
|
1236
|
+
template <int D, typename T>
|
|
1237
|
+
auto Sigma_Duv_minus_uDv_w (AutoDiffDiff<D,T> au, AutoDiffDiff<D,T> av, AutoDiffDiff<D,T> aw)
|
|
1238
|
+
{ return T_Sigma_Duv_minus_uDv_w<D,T>(au, av, aw); }
|
|
1239
|
+
|
|
1240
|
+
|
|
1241
|
+
template <ELEMENT_TYPE ET> class HDivDivFE : public T_HDivDivFE<ET>
|
|
1242
|
+
{
|
|
1243
|
+
protected:
|
|
1244
|
+
using T_HDivDivFE<ET> :: order;
|
|
1245
|
+
using T_HDivDivFE<ET> :: ndof;
|
|
1246
|
+
public:
|
|
1247
|
+
template <typename T, typename TFA>
|
|
1248
|
+
void T_CalcShape (TIP<ET_trait<ET>::DIM,AutoDiffDiff<ET_trait<ET>::DIM,T>> ip, TFA & shape) const
|
|
1249
|
+
{
|
|
1250
|
+
throw Exception ("Hdivdivfe not implementend for element type");
|
|
1251
|
+
}
|
|
1252
|
+
|
|
1253
|
+
template <typename MIP, typename TFA>
|
|
1254
|
+
void CalcDualShape2 (const MIP & mip, TFA & shape) const
|
|
1255
|
+
{
|
|
1256
|
+
throw Exception ("Hdivdivfe not implementend for element type");
|
|
1257
|
+
}
|
|
1258
|
+
};
|
|
1259
|
+
|
|
1260
|
+
|
|
1261
|
+
template <> class HDivDivFE<ET_TRIG> : public T_HDivDivFE<ET_TRIG>
|
|
1262
|
+
{
|
|
1263
|
+
|
|
1264
|
+
public:
|
|
1265
|
+
using T_HDivDivFE<ET_TRIG> :: T_HDivDivFE;
|
|
1266
|
+
|
|
1267
|
+
virtual void ComputeNDof()
|
|
1268
|
+
{
|
|
1269
|
+
order = 0;
|
|
1270
|
+
ndof = 0;
|
|
1271
|
+
for (int i=0; i<3; i++)
|
|
1272
|
+
{
|
|
1273
|
+
ndof += order_facet[i][0]+1;
|
|
1274
|
+
order = max2(order, order_facet[i][0]);
|
|
1275
|
+
}
|
|
1276
|
+
int ninner = 3*order_inner[0]*(order_inner[0]+1)/2 ;
|
|
1277
|
+
order = max2(order, order_inner[0]);
|
|
1278
|
+
if (plus)
|
|
1279
|
+
{
|
|
1280
|
+
order ++;
|
|
1281
|
+
ninner += 2*order_inner[0];
|
|
1282
|
+
}
|
|
1283
|
+
ndof += ninner;
|
|
1284
|
+
|
|
1285
|
+
}
|
|
1286
|
+
template <typename T, typename TFA>
|
|
1287
|
+
void T_CalcShape (TIP<2,AutoDiffDiff<2,T>> ip, TFA & shape) const
|
|
1288
|
+
{
|
|
1289
|
+
// typedef decltype(ip.x.Value()+ip.x.Value()) T;
|
|
1290
|
+
typedef AutoDiffDiff<2, T> Tx;
|
|
1291
|
+
Tx x = ip.x, y = ip.y;
|
|
1292
|
+
Tx ddlami[3] ={ x, y, 1-x-y };
|
|
1293
|
+
|
|
1294
|
+
int ii = 0;
|
|
1295
|
+
|
|
1296
|
+
int maxorder_facet =
|
|
1297
|
+
max2(order_facet[0][0],max2(order_facet[1][0],order_facet[2][0]));
|
|
1298
|
+
|
|
1299
|
+
const EDGE * edges = ElementTopology::GetEdges(ET_TRIG);
|
|
1300
|
+
|
|
1301
|
+
ArrayMem<Tx,20> ha(maxorder_facet+1);
|
|
1302
|
+
ArrayMem<Tx,20> u(order_inner[0]+2), v(order_inner[0]+2);
|
|
1303
|
+
|
|
1304
|
+
for (int i = 0; i < 3; i++)
|
|
1305
|
+
{
|
|
1306
|
+
int es = edges[i][0], ee = edges[i][1];
|
|
1307
|
+
if (vnums[es] > vnums[ee]) swap (es,ee);
|
|
1308
|
+
|
|
1309
|
+
Tx ls = ddlami[es], le = ddlami[ee];
|
|
1310
|
+
|
|
1311
|
+
// edge functions are all div-free!
|
|
1312
|
+
IntegratedLegendreMonomialExt::CalcTrigExt(maxorder_facet+2,
|
|
1313
|
+
le-ls, 1-le-ls, ha);
|
|
1314
|
+
|
|
1315
|
+
//ScaledLegendrePolynomial(maxorder_facet,le-ls, 1-le-ls,ha);
|
|
1316
|
+
|
|
1317
|
+
|
|
1318
|
+
for (int l = 0; l <= order_facet[i][0]; l++)
|
|
1319
|
+
shape[ii++] = SigmaGrad (ha[l]);
|
|
1320
|
+
//shape[ii++] = SymRotRot_Dl2xDl1_v_diffdiff(le, ls, ha[l]);
|
|
1321
|
+
}
|
|
1322
|
+
|
|
1323
|
+
int es = 0; int ee = 1; int et = 2;
|
|
1324
|
+
Tx ls = ddlami[es];
|
|
1325
|
+
Tx le = ddlami[ee];
|
|
1326
|
+
Tx lt = ddlami[et];
|
|
1327
|
+
|
|
1328
|
+
int oi=order_inner[0];
|
|
1329
|
+
int oi_plus = oi; //plus ? oi+1 : oi;
|
|
1330
|
+
|
|
1331
|
+
|
|
1332
|
+
IntegratedLegendreMonomialExt::CalcTrigExt(oi_plus+3,le-ls,1-le-ls,u);
|
|
1333
|
+
LegendrePolynomial::EvalMult(oi_plus+1, 2*lt-1, lt, v);
|
|
1334
|
+
|
|
1335
|
+
|
|
1336
|
+
for(int i = 0; i <= oi-1; i++)
|
|
1337
|
+
{
|
|
1338
|
+
for(int j = 0; j+i <= oi-1; j++)
|
|
1339
|
+
{
|
|
1340
|
+
shape[ii++] = SigmaGrad(u[i]*v[j]);
|
|
1341
|
+
shape[ii++] = Type2(u[i],v[j]);
|
|
1342
|
+
}
|
|
1343
|
+
}
|
|
1344
|
+
for(int i = 0; i <= oi_plus-1; i++)
|
|
1345
|
+
{
|
|
1346
|
+
for(int j = 0; j+i <= oi_plus-1; j++)
|
|
1347
|
+
{
|
|
1348
|
+
if(j > 0)
|
|
1349
|
+
shape[ii++] = Type3(u[i],v[j]);
|
|
1350
|
+
}
|
|
1351
|
+
}
|
|
1352
|
+
|
|
1353
|
+
for (int i = 0; i < oi_plus; i++)
|
|
1354
|
+
shape[ii++] = Sigma_Duv_minus_uDv_w (le, -ls, v[i]);
|
|
1355
|
+
|
|
1356
|
+
//// element bubbles for Sigma+ space
|
|
1357
|
+
if (plus)
|
|
1358
|
+
for (int i = 0; i <= oi-1; i++)
|
|
1359
|
+
{
|
|
1360
|
+
Tx bubble = u[i]*v[oi-1-i];
|
|
1361
|
+
shape[ii++] = Sigma_u_Gradv(bubble, x);
|
|
1362
|
+
shape[ii++] = Sigma_u_Gradv(bubble, y);
|
|
1363
|
+
}
|
|
1364
|
+
};
|
|
1365
|
+
|
|
1366
|
+
template <typename MIP, typename TFA>
|
|
1367
|
+
void CalcDualShape2 (const MIP & mip, TFA & shape) const
|
|
1368
|
+
{
|
|
1369
|
+
auto & ip = mip.IP();
|
|
1370
|
+
typedef typename std::remove_const<typename std::remove_reference<decltype(mip.IP()(0))>::type>::type T;
|
|
1371
|
+
T x = ip(0), y = ip(1);
|
|
1372
|
+
T lam[3] = { x, y, 1-x-y };
|
|
1373
|
+
Vec<2,T> pnts[3] = { { 1, 0 }, { 0, 1 } , { 0, 0 } };
|
|
1374
|
+
int facetnr = ip.FacetNr();
|
|
1375
|
+
|
|
1376
|
+
int ii = 0;
|
|
1377
|
+
|
|
1378
|
+
// const EDGE * edges = ElementTopology::GetEdges(ET_TRIG);
|
|
1379
|
+
|
|
1380
|
+
if (ip.VB() == BND)
|
|
1381
|
+
{ // facet shapes
|
|
1382
|
+
for (int i = 0; i < 3; i++)
|
|
1383
|
+
{
|
|
1384
|
+
int p = order_facet[i][0];
|
|
1385
|
+
|
|
1386
|
+
if (i == facetnr)
|
|
1387
|
+
{
|
|
1388
|
+
IVec<2> e = ET_trait<ET_TRIG>::GetEdgeSort (i, vnums);
|
|
1389
|
+
|
|
1390
|
+
T xi = lam[e[0]]-lam[e[1]];
|
|
1391
|
+
Vec<2,T> tauref = pnts[e[0]] - pnts[e[1]];
|
|
1392
|
+
|
|
1393
|
+
Vec<2,T> nvref = Vec<2,T>(tauref[1],-tauref[0]);
|
|
1394
|
+
auto nv = Trans(mip.GetJacobianInverse())*nvref;
|
|
1395
|
+
auto nn = DyadProd(nv,nv);
|
|
1396
|
+
|
|
1397
|
+
LegendrePolynomial::Eval
|
|
1398
|
+
(p, xi,
|
|
1399
|
+
SBLambda([&] (size_t nr, T val)
|
|
1400
|
+
{
|
|
1401
|
+
shape[nr+ii] = mip.GetMeasure()*val*nn;
|
|
1402
|
+
}));
|
|
1403
|
+
}
|
|
1404
|
+
ii += (p+1);
|
|
1405
|
+
}
|
|
1406
|
+
}
|
|
1407
|
+
else
|
|
1408
|
+
{
|
|
1409
|
+
for (int i = 0; i < 3; i++)
|
|
1410
|
+
ii += order_facet[i][0]+1;
|
|
1411
|
+
}
|
|
1412
|
+
if (ip.VB() == VOL)
|
|
1413
|
+
{
|
|
1414
|
+
auto p = order_inner[0]-1;
|
|
1415
|
+
if( p >= 0 )
|
|
1416
|
+
{
|
|
1417
|
+
DubinerBasis::Eval (p, lam[0], lam[1],
|
|
1418
|
+
SBLambda([&] (size_t nr, T val)
|
|
1419
|
+
{
|
|
1420
|
+
shape[ii++] = val*mip.GetMeasure()*mip.GetJacobian()*Mat<2,2>({{1,0},{0,0}})*Trans(mip.GetJacobian());
|
|
1421
|
+
shape[ii++] = val*mip.GetMeasure()*mip.GetJacobian()*Mat<2,2>({{0,0},{0,1}})*Trans(mip.GetJacobian());
|
|
1422
|
+
shape[ii++] = val*mip.GetMeasure()*mip.GetJacobian()*Mat<2,2>({{0,1},{1,0}})*Trans(mip.GetJacobian());
|
|
1423
|
+
}));
|
|
1424
|
+
}
|
|
1425
|
+
}
|
|
1426
|
+
}
|
|
1427
|
+
|
|
1428
|
+
};
|
|
1429
|
+
|
|
1430
|
+
template <> class HDivDivFE<ET_QUAD> : public T_HDivDivFE<ET_QUAD>
|
|
1431
|
+
{
|
|
1432
|
+
|
|
1433
|
+
public:
|
|
1434
|
+
using T_HDivDivFE<ET_QUAD> :: T_HDivDivFE;
|
|
1435
|
+
|
|
1436
|
+
enum {incsg = -1};
|
|
1437
|
+
enum {incsugv = -1};
|
|
1438
|
+
|
|
1439
|
+
virtual void ComputeNDof()
|
|
1440
|
+
{
|
|
1441
|
+
order = 0;
|
|
1442
|
+
ndof = 0;
|
|
1443
|
+
for (int i=0; i<4; i++)
|
|
1444
|
+
{
|
|
1445
|
+
ndof += order_facet[i][0]+1;
|
|
1446
|
+
order = max2(order, order_facet[i][0]);
|
|
1447
|
+
}
|
|
1448
|
+
int ninner = (order_inner[0]+1+incsg)*(order_inner[0]+1+incsg) +
|
|
1449
|
+
(order_inner[0]+2)*(order_inner[0]) *2 +
|
|
1450
|
+
2*(order_inner[0]+1+incsugv) +1;
|
|
1451
|
+
|
|
1452
|
+
/*
|
|
1453
|
+
int ninner = (order_inner[0]+1+incsg)*(order_inner[0]+1+incsg) +
|
|
1454
|
+
(order_inner[0]+1)*(order_inner[0]) *2 +
|
|
1455
|
+
2*(order_inner[0]+1+incsugv) +2;
|
|
1456
|
+
if (plus) ninner += order_inner[0]*2;
|
|
1457
|
+
*/
|
|
1458
|
+
order = max2(order, order_inner[0]);
|
|
1459
|
+
order += 1;
|
|
1460
|
+
ndof += ninner;
|
|
1461
|
+
|
|
1462
|
+
}
|
|
1463
|
+
template <typename T, typename TFA>
|
|
1464
|
+
void T_CalcShape (TIP<2,AutoDiffDiff<2,T>> ip, TFA & shape) const
|
|
1465
|
+
{
|
|
1466
|
+
// typedef decltype(ip.x.Value()+ip.x.Value()) T;
|
|
1467
|
+
typedef AutoDiffDiff<2, T> Tx;
|
|
1468
|
+
|
|
1469
|
+
Tx x = ip.x, y = ip.y;
|
|
1470
|
+
Tx lx[4] ={1-x, x, x, 1-x};
|
|
1471
|
+
Tx ly[4] = {1-y, 1-y, y, y};
|
|
1472
|
+
|
|
1473
|
+
int ii = 0;
|
|
1474
|
+
|
|
1475
|
+
const EDGE * edges = ElementTopology::GetEdges(ET_QUAD);
|
|
1476
|
+
|
|
1477
|
+
ArrayMem<Tx,20> u(order+2), v(order+2);
|
|
1478
|
+
|
|
1479
|
+
for (int i = 0; i < 4; i++)
|
|
1480
|
+
{
|
|
1481
|
+
int es = edges[i][0], ee = edges[i][1];
|
|
1482
|
+
if (vnums[es] > vnums[ee]) swap (es,ee);
|
|
1483
|
+
|
|
1484
|
+
Tx xi = lx[ee]+ly[ee]-lx[es]-ly[es];
|
|
1485
|
+
Tx eta = lx[es]*ly[es]+lx[ee]*ly[ee];
|
|
1486
|
+
|
|
1487
|
+
IntegratedLegendreMonomialExt::Calc(order_facet[i][0]+2,xi,u);
|
|
1488
|
+
|
|
1489
|
+
|
|
1490
|
+
for (int l = 0; l <= order_facet[i][0]; l++)
|
|
1491
|
+
// shape[ii++] = SigmaGrad (eta*u[l]);
|
|
1492
|
+
shape[ii++] = Sigma_u_Gradv (eta, u[l]);
|
|
1493
|
+
// shape[ii++] = vSigmaGradu(u[i],eta);
|
|
1494
|
+
}
|
|
1495
|
+
|
|
1496
|
+
|
|
1497
|
+
int oi=order_inner[0];
|
|
1498
|
+
|
|
1499
|
+
IntegratedLegendreMonomialExt::Calc(oi+3,lx[0]-lx[1],u);
|
|
1500
|
+
IntegratedLegendreMonomialExt::Calc(oi+3,ly[0]-ly[2],v);
|
|
1501
|
+
|
|
1502
|
+
// original
|
|
1503
|
+
for(int i = 0; i <= oi+incsg; i++)
|
|
1504
|
+
{
|
|
1505
|
+
for(int j = 0; j <= oi+incsg; j++)
|
|
1506
|
+
{
|
|
1507
|
+
shape[ii++] = SigmaGrad(u[i]*v[j]);
|
|
1508
|
+
}
|
|
1509
|
+
}
|
|
1510
|
+
for(int i = 0; i <= oi+1; i++)
|
|
1511
|
+
{
|
|
1512
|
+
for(int j = 0; j <= oi-1; j++)
|
|
1513
|
+
{
|
|
1514
|
+
shape[ii++] = vSigmaGradu(u[i],v[j]);
|
|
1515
|
+
shape[ii++] = vSigmaGradu(v[i],u[j]);
|
|
1516
|
+
}
|
|
1517
|
+
}
|
|
1518
|
+
|
|
1519
|
+
shape[ii++] = Sigma_u_Gradv(lx[0], ly[0]);
|
|
1520
|
+
|
|
1521
|
+
for(int i = 0; i <= oi+incsugv; i++)
|
|
1522
|
+
{
|
|
1523
|
+
shape[ii++] = Sigma_u_Gradv(u[i], ly[0]);
|
|
1524
|
+
shape[ii++] = Sigma_u_Gradv(v[i], lx[0]); //
|
|
1525
|
+
}
|
|
1526
|
+
|
|
1527
|
+
return;
|
|
1528
|
+
|
|
1529
|
+
|
|
1530
|
+
|
|
1531
|
+
for (int i = 0; i <= oi+incsg+1; i++)
|
|
1532
|
+
for (int j = 0; j <= oi+incsg+1; j++)
|
|
1533
|
+
shape[ii++] = SigmaGrad(u[i]*v[j]);
|
|
1534
|
+
|
|
1535
|
+
/*
|
|
1536
|
+
for (int j = 0; j <= oi-1; j++)
|
|
1537
|
+
{
|
|
1538
|
+
shape[ii++] = SigmaGrad(u[oi+incsg+1]*v[j]);
|
|
1539
|
+
shape[ii++] = SigmaGrad(v[oi+incsg+1]*u[j]);
|
|
1540
|
+
}
|
|
1541
|
+
*/
|
|
1542
|
+
|
|
1543
|
+
for (int i = 0; i <= oi-1; i++)
|
|
1544
|
+
for (int j = 0; j <= oi-1; j++)
|
|
1545
|
+
{
|
|
1546
|
+
shape[ii++] = vSigmaGradu(u[i],v[j]);
|
|
1547
|
+
shape[ii++] = vSigmaGradu(v[i],u[j]);
|
|
1548
|
+
}
|
|
1549
|
+
|
|
1550
|
+
if (plus)
|
|
1551
|
+
for (int j = 0; j <= oi-1; j++)
|
|
1552
|
+
{
|
|
1553
|
+
// shape[ii++] = vSigmaGradu(u[oi+1],v[j]);
|
|
1554
|
+
// shape[ii++] = vSigmaGradu(v[oi+1],u[j]);
|
|
1555
|
+
|
|
1556
|
+
shape[ii++] = Sigma_u_Gradv(v[j], u[oi]);
|
|
1557
|
+
shape[ii++] = Sigma_u_Gradv(u[j], v[oi]);
|
|
1558
|
+
}
|
|
1559
|
+
|
|
1560
|
+
// shape[ii++] = Sigma_u_Gradv(lx[0], ly[0]);
|
|
1561
|
+
shape[ii++] = SigmaGrad((2*x-1)*(2*y-1));
|
|
1562
|
+
|
|
1563
|
+
for (int i = 0; i <= oi+incsugv; i++)
|
|
1564
|
+
{
|
|
1565
|
+
shape[ii++] = Sigma_u_Gradv(u[i], ly[0]);
|
|
1566
|
+
shape[ii++] = Sigma_u_Gradv(v[i], lx[0]); //
|
|
1567
|
+
}
|
|
1568
|
+
};
|
|
1569
|
+
|
|
1570
|
+
template <typename MIP, typename TFA>
|
|
1571
|
+
void CalcDualShape2 (const MIP & mip, TFA & shape) const
|
|
1572
|
+
{
|
|
1573
|
+
throw Exception ("Hdivdivfe not implementend for element type");
|
|
1574
|
+
}
|
|
1575
|
+
|
|
1576
|
+
};
|
|
1577
|
+
|
|
1578
|
+
|
|
1579
|
+
|
|
1580
|
+
class HDivDivFE_QuadFullPol : public T_HDivDivFE<ET_QUAD, HDivDivFE_QuadFullPol>
|
|
1581
|
+
{
|
|
1582
|
+
|
|
1583
|
+
public:
|
|
1584
|
+
using T_HDivDivFE<ET_QUAD,HDivDivFE_QuadFullPol> :: T_HDivDivFE;
|
|
1585
|
+
|
|
1586
|
+
virtual void ComputeNDof()
|
|
1587
|
+
{
|
|
1588
|
+
order = 0;
|
|
1589
|
+
ndof = 0;
|
|
1590
|
+
for (int i=0; i<4; i++)
|
|
1591
|
+
{
|
|
1592
|
+
ndof += order_facet[i][0]+1;
|
|
1593
|
+
order = max2(order, order_facet[i][0]);
|
|
1594
|
+
}
|
|
1595
|
+
|
|
1596
|
+
int ninner = 1 // sigma grad(xy)
|
|
1597
|
+
+ 2 * (order_inner[0]+1)*(order_inner[0]+2) // inner nedelec
|
|
1598
|
+
+ sqr(order_inner[0]+1)
|
|
1599
|
+
;
|
|
1600
|
+
if (plus)
|
|
1601
|
+
ninner += 4*order_inner[0] + 4;
|
|
1602
|
+
order = max2(order, order_inner[0]);
|
|
1603
|
+
order += 2;
|
|
1604
|
+
if (plus) order++;
|
|
1605
|
+
ndof += ninner;
|
|
1606
|
+
}
|
|
1607
|
+
|
|
1608
|
+
template <typename T, typename TFA>
|
|
1609
|
+
void T_CalcShape (TIP<2,AutoDiffDiff<2,T>> ip, TFA & shape) const
|
|
1610
|
+
{
|
|
1611
|
+
typedef AutoDiffDiff<2, T> Tx;
|
|
1612
|
+
|
|
1613
|
+
Tx x = ip.x, y = ip.y;
|
|
1614
|
+
Tx lx[4] ={1-x, x, x, 1-x};
|
|
1615
|
+
Tx ly[4] = {1-y, 1-y, y, y};
|
|
1616
|
+
|
|
1617
|
+
int ii = 0;
|
|
1618
|
+
|
|
1619
|
+
const EDGE * edges = ElementTopology::GetEdges(ET_QUAD);
|
|
1620
|
+
|
|
1621
|
+
ArrayMem<Tx,20> u(order+2), v(order+2);
|
|
1622
|
+
|
|
1623
|
+
for (int i = 0; i < 4; i++)
|
|
1624
|
+
{
|
|
1625
|
+
int es = edges[i][0], ee = edges[i][1];
|
|
1626
|
+
if (vnums[es] > vnums[ee]) swap (es,ee);
|
|
1627
|
+
|
|
1628
|
+
Tx xi = lx[ee]+ly[ee]-lx[es]-ly[es];
|
|
1629
|
+
Tx eta = lx[es]*ly[es]+lx[ee]*ly[ee];
|
|
1630
|
+
|
|
1631
|
+
IntegratedLegendreMonomialExt::Calc(order_facet[i][0]+2,xi,u);
|
|
1632
|
+
|
|
1633
|
+
for (int l = 0; l <= order_facet[i][0]; l++)
|
|
1634
|
+
// shape[ii++] = SigmaGrad (eta*u[l]);
|
|
1635
|
+
shape[ii++] = Sigma_u_Gradv (eta, u[l]);
|
|
1636
|
+
}
|
|
1637
|
+
|
|
1638
|
+
// shape[ii++] = SigmaGrad((2*x-1)*(2*y-1));
|
|
1639
|
+
shape[ii++] = Sigma_u_Gradv((2*x-1),(2*y-1));
|
|
1640
|
+
|
|
1641
|
+
int oi=order_inner[0];
|
|
1642
|
+
|
|
1643
|
+
LegendrePolynomial (oi+1, 2*x-1, u);
|
|
1644
|
+
LegendrePolynomial (oi+1, 2*y-1, v);
|
|
1645
|
+
auto bubx = x*(1-x);
|
|
1646
|
+
auto buby = y*(1-y);
|
|
1647
|
+
for (int i = 0; i <= oi; i++)
|
|
1648
|
+
for (int j = 0; j <= oi+1; j++)
|
|
1649
|
+
{
|
|
1650
|
+
shape[ii++] = Sigma_u_Gradv(bubx*u[i]*v[j], 2*y-1);
|
|
1651
|
+
shape[ii++] = Sigma_u_Gradv(buby*u[j]*v[i], 2*x-1);
|
|
1652
|
+
}
|
|
1653
|
+
|
|
1654
|
+
if (plus)
|
|
1655
|
+
{
|
|
1656
|
+
for (int i = 0; i <= oi; i++)
|
|
1657
|
+
{
|
|
1658
|
+
shape[ii++] = Sigma_u_Gradv(bubx*buby*u[i]*v[oi], 2*y-1);
|
|
1659
|
+
shape[ii++] = Sigma_u_Gradv(bubx*buby*u[oi]*v[i], 2*x-1);
|
|
1660
|
+
shape[ii++] = Sigma_u_Gradv(bubx*buby*u[i]*v[oi+1], 2*y-1);
|
|
1661
|
+
shape[ii++] = Sigma_u_Gradv(bubx*buby*u[oi+1]*v[i], 2*x-1);
|
|
1662
|
+
}
|
|
1663
|
+
}
|
|
1664
|
+
|
|
1665
|
+
for (int i = 0; i <= oi; i++)
|
|
1666
|
+
for (int j = 0; j <= oi; j++)
|
|
1667
|
+
shape[ii++] = vSigmaGradu(bubx,u[i]*v[j]*buby);
|
|
1668
|
+
|
|
1669
|
+
|
|
1670
|
+
if (ii != ndof)
|
|
1671
|
+
cerr << "Hdivdivfe, full quad, ndof = " << ndof << " != ii = " << ii << endl;
|
|
1672
|
+
}
|
|
1673
|
+
|
|
1674
|
+
|
|
1675
|
+
template <typename MIP, typename TFA>
|
|
1676
|
+
void CalcDualShape2 (const MIP & mip, TFA & shape) const
|
|
1677
|
+
{
|
|
1678
|
+
throw Exception ("Hdivdivfe not implementend for quadfullpol");
|
|
1679
|
+
}
|
|
1680
|
+
|
|
1681
|
+
};
|
|
1682
|
+
|
|
1683
|
+
|
|
1684
|
+
|
|
1685
|
+
|
|
1686
|
+
|
|
1687
|
+
|
|
1688
|
+
|
|
1689
|
+
|
|
1690
|
+
|
|
1691
|
+
|
|
1692
|
+
|
|
1693
|
+
// ***************** S_zz(uvw) ****************************** */
|
|
1694
|
+
// write uvw into zz component
|
|
1695
|
+
template <int D> class T_S_zz;
|
|
1696
|
+
template <> class T_S_zz<3>
|
|
1697
|
+
{
|
|
1698
|
+
AutoDiff<2> u, v;
|
|
1699
|
+
AutoDiff<1> w;
|
|
1700
|
+
public:
|
|
1701
|
+
T_S_zz ( AutoDiff<2> au, AutoDiff<2> av, AutoDiff<1> aw) : u(au), v(av), w(aw) { ; }
|
|
1702
|
+
Vec<6> Shape()
|
|
1703
|
+
{
|
|
1704
|
+
Vec<6> sigma(0.);
|
|
1705
|
+
sigma[2] = u.Value()*v.Value()*w.Value();
|
|
1706
|
+
return sigma;
|
|
1707
|
+
}
|
|
1708
|
+
|
|
1709
|
+
Vec<3> DivShape()
|
|
1710
|
+
{
|
|
1711
|
+
return Vec<3> (0., 0., u.Value()*v.Value()*w.DValue(0));
|
|
1712
|
+
}
|
|
1713
|
+
|
|
1714
|
+
};
|
|
1715
|
+
|
|
1716
|
+
template <int D>
|
|
1717
|
+
auto S_zz (AutoDiff<D> au, AutoDiff<D> av, AutoDiff<1> aw)
|
|
1718
|
+
{ return T_S_zz<D+1>(au, av, aw); }
|
|
1719
|
+
|
|
1720
|
+
// ***************** S_xz ****************************** */
|
|
1721
|
+
template <int D, typename T> class T_S_xz;
|
|
1722
|
+
template <typename T> class T_S_xz<3,T>
|
|
1723
|
+
{
|
|
1724
|
+
AutoDiff<2,T> uv;
|
|
1725
|
+
AutoDiff<1,T> w;
|
|
1726
|
+
|
|
1727
|
+
int comp;
|
|
1728
|
+
public:
|
|
1729
|
+
T_S_xz ( int acomp, AutoDiff<2,T> auv, AutoDiff<1,T> aw) : uv(auv), w(aw), comp(acomp) { ; }
|
|
1730
|
+
Vec<6,T> Shape()
|
|
1731
|
+
{
|
|
1732
|
+
Vec<6,T> sigma;
|
|
1733
|
+
sigma = 0.;
|
|
1734
|
+
if (comp==0)
|
|
1735
|
+
sigma[4] = uv.Value()*w.Value();
|
|
1736
|
+
else
|
|
1737
|
+
sigma[3] = uv.Value()*w.Value();
|
|
1738
|
+
return sigma;
|
|
1739
|
+
}
|
|
1740
|
+
|
|
1741
|
+
Vec<3,T> DivShape()
|
|
1742
|
+
{
|
|
1743
|
+
if (comp == 0)
|
|
1744
|
+
return Vec<3,T> (uv.Value()*w.DValue(0), 0, uv.DValue(0)*w.Value() );
|
|
1745
|
+
else
|
|
1746
|
+
return Vec<3,T> (0, uv.Value()*w.DValue(0), uv.DValue(1)*w.Value() );
|
|
1747
|
+
}
|
|
1748
|
+
|
|
1749
|
+
};
|
|
1750
|
+
|
|
1751
|
+
template <int D, typename T>
|
|
1752
|
+
auto S_xz (int comp, AutoDiff<D,T> auv, AutoDiff<1,T> aw)
|
|
1753
|
+
{ return T_S_xz<D+1,T>(comp,auv, aw); }
|
|
1754
|
+
|
|
1755
|
+
|
|
1756
|
+
|
|
1757
|
+
template <typename T>
|
|
1758
|
+
class T_Prism_wSigmaGradu
|
|
1759
|
+
{
|
|
1760
|
+
AutoDiffDiff<2,T> u;
|
|
1761
|
+
AutoDiff<1,T> w;
|
|
1762
|
+
public:
|
|
1763
|
+
T_Prism_wSigmaGradu ( AutoDiffDiff<2,T> au, AutoDiff<1,T> aw) : u(au), w(aw) { ; }
|
|
1764
|
+
Vec<6,T> Shape()
|
|
1765
|
+
{
|
|
1766
|
+
Vec<3,T> sigma2d = T_SigmaGrad<2,T>(u).Shape();
|
|
1767
|
+
Vec<6,T> sigma(0.);
|
|
1768
|
+
sigma[0] = w.Value()*sigma2d[0];
|
|
1769
|
+
sigma[1] = w.Value()*sigma2d[1];
|
|
1770
|
+
sigma[5] = w.Value()*sigma2d[2];
|
|
1771
|
+
return sigma;
|
|
1772
|
+
}
|
|
1773
|
+
|
|
1774
|
+
Vec<3,T> DivShape()
|
|
1775
|
+
{
|
|
1776
|
+
return Vec<3,T> (0., 0., 0);
|
|
1777
|
+
}
|
|
1778
|
+
|
|
1779
|
+
};
|
|
1780
|
+
|
|
1781
|
+
template <typename T>
|
|
1782
|
+
auto Prism_wSigmaGradu ( AutoDiffDiff<2,T> au, AutoDiff<1,T> aw)
|
|
1783
|
+
{ return T_Prism_wSigmaGradu<T>(au, aw); }
|
|
1784
|
+
|
|
1785
|
+
|
|
1786
|
+
template <typename T>
|
|
1787
|
+
class T_Prism_wType2
|
|
1788
|
+
{
|
|
1789
|
+
AutoDiffDiff<2,T> u, v;
|
|
1790
|
+
AutoDiff<1,T> w;
|
|
1791
|
+
public:
|
|
1792
|
+
T_Prism_wType2 ( AutoDiffDiff<2,T> au, AutoDiffDiff<2,T> av, AutoDiff<1,T> aw) : u(au), v(av), w(aw) { ; }
|
|
1793
|
+
Vec<6,T> Shape()
|
|
1794
|
+
{
|
|
1795
|
+
Vec<3,T> sigma2d = T_Type2<2,T>(u,v).Shape();
|
|
1796
|
+
Vec<6,T> sigma(0.);
|
|
1797
|
+
sigma[0] = w.Value()*sigma2d[0];
|
|
1798
|
+
sigma[1] = w.Value()*sigma2d[1];
|
|
1799
|
+
sigma[5] = w.Value()*sigma2d[2];
|
|
1800
|
+
return sigma;
|
|
1801
|
+
}
|
|
1802
|
+
|
|
1803
|
+
Vec<3,T> DivShape()
|
|
1804
|
+
{
|
|
1805
|
+
Vec<2> divsigma2d = w.Value()*T_Type2<2,T>(u,v).DivShape();
|
|
1806
|
+
return Vec<3,T> (divsigma2d[0], divsigma2d[1], 0);
|
|
1807
|
+
}
|
|
1808
|
+
|
|
1809
|
+
};
|
|
1810
|
+
|
|
1811
|
+
template <typename T>
|
|
1812
|
+
auto Prism_wType2 (AutoDiffDiff<2,T> au, AutoDiffDiff<2,T> av, AutoDiff<1,T> aw)
|
|
1813
|
+
{ return T_Prism_wType2<T>(au, av, aw); }
|
|
1814
|
+
|
|
1815
|
+
|
|
1816
|
+
template <typename T>
|
|
1817
|
+
class T_Prism_wType3
|
|
1818
|
+
{
|
|
1819
|
+
AutoDiffDiff<2,T> u, v;
|
|
1820
|
+
AutoDiff<1,T> w;
|
|
1821
|
+
public:
|
|
1822
|
+
T_Prism_wType3 ( AutoDiffDiff<2,T> au, AutoDiffDiff<2,T> av, AutoDiff<1,T> aw) : u(au), v(av), w(aw) { ; }
|
|
1823
|
+
Vec<6> Shape()
|
|
1824
|
+
{
|
|
1825
|
+
Vec<3,T> sigma2d = T_Type3<2,T>(u,v).Shape();
|
|
1826
|
+
Vec<6,T> sigma(0.);
|
|
1827
|
+
sigma[0] = w.Value()*sigma2d[0];
|
|
1828
|
+
sigma[1] = w.Value()*sigma2d[1];
|
|
1829
|
+
sigma[5] = w.Value()*sigma2d[2];
|
|
1830
|
+
return sigma;
|
|
1831
|
+
}
|
|
1832
|
+
|
|
1833
|
+
Vec<3,T> DivShape()
|
|
1834
|
+
{
|
|
1835
|
+
Vec<2,T> divsigma2d = w.Value()*T_Type3<2,T>(u,v).DivShape();
|
|
1836
|
+
return Vec<3,T> (divsigma2d[0], divsigma2d[1], 0);
|
|
1837
|
+
}
|
|
1838
|
+
};
|
|
1839
|
+
|
|
1840
|
+
template <typename T>
|
|
1841
|
+
auto Prism_wType3 (AutoDiffDiff<2,T> au, AutoDiffDiff<2,T> av, AutoDiff<1,T> aw)
|
|
1842
|
+
{ return T_Prism_wType3<T>(au, av, aw); }
|
|
1843
|
+
|
|
1844
|
+
|
|
1845
|
+
template <typename T>
|
|
1846
|
+
class T_Prism_wType4
|
|
1847
|
+
{
|
|
1848
|
+
AutoDiffDiff<2,T> u, v, w;
|
|
1849
|
+
AutoDiff<1,T> wz;
|
|
1850
|
+
public:
|
|
1851
|
+
T_Prism_wType4 ( AutoDiffDiff<2,T> au, AutoDiffDiff<2,T> av, AutoDiffDiff<2,T> aw, AutoDiff<1,T> awz) : u(au), v(av), w(aw), wz(awz) { ; }
|
|
1852
|
+
Vec<6,T> Shape()
|
|
1853
|
+
{
|
|
1854
|
+
Vec<3,T> sigma2d = wz.Value()*T_Sigma_Duv_minus_uDv_w<2,T>(u,v,w).Shape();
|
|
1855
|
+
Vec<6,T> sigma(0.);
|
|
1856
|
+
sigma[0] = sigma2d[0];
|
|
1857
|
+
sigma[1] = sigma2d[1];
|
|
1858
|
+
sigma[5] = sigma2d[2];
|
|
1859
|
+
return sigma;
|
|
1860
|
+
}
|
|
1861
|
+
|
|
1862
|
+
Vec<3,T> DivShape()
|
|
1863
|
+
{
|
|
1864
|
+
Vec<2,T> divsigma2d = wz.Value()*T_Sigma_Duv_minus_uDv_w<2,T>(u,v,w).DivShape();
|
|
1865
|
+
return Vec<3,T> (divsigma2d[0], divsigma2d[1], 0);
|
|
1866
|
+
}
|
|
1867
|
+
|
|
1868
|
+
};
|
|
1869
|
+
|
|
1870
|
+
template <typename T>
|
|
1871
|
+
auto Prism_wType4 (AutoDiffDiff<2,T> au, AutoDiffDiff<2,T> av, AutoDiffDiff<2,T> aw, AutoDiff<1,T> awz)
|
|
1872
|
+
{ return T_Prism_wType4<T>(au, av, aw, awz); }
|
|
1873
|
+
|
|
1874
|
+
|
|
1875
|
+
|
|
1876
|
+
class Prism_SymRotRot_Dl2xDl1_vw
|
|
1877
|
+
{
|
|
1878
|
+
AutoDiff<2> l1,l2,v;
|
|
1879
|
+
AutoDiff<1> wz;
|
|
1880
|
+
public:
|
|
1881
|
+
Prism_SymRotRot_Dl2xDl1_vw ( AutoDiff<2> lam1, AutoDiff<2> lam2, AutoDiff<2> av, AutoDiff<1> awz) : l1(lam1), l2(lam2), v(av), wz(awz) { ; }
|
|
1882
|
+
Vec<6> Shape()
|
|
1883
|
+
{
|
|
1884
|
+
Vec<3> sigma2d = wz.Value()*T_SymRotRot_Dl2xDl1_v(l1,l2,v).Shape();
|
|
1885
|
+
Vec<6> sigma(0.);
|
|
1886
|
+
sigma[0] = sigma2d[0];
|
|
1887
|
+
sigma[1] = sigma2d[1];
|
|
1888
|
+
sigma[5] = sigma2d[2];
|
|
1889
|
+
return sigma;
|
|
1890
|
+
}
|
|
1891
|
+
|
|
1892
|
+
Vec<3> DivShape()
|
|
1893
|
+
{
|
|
1894
|
+
Vec<2> divsigma2d = wz.Value()*T_SymRotRot_Dl2xDl1_v(l1,l2,v).DivShape();
|
|
1895
|
+
return Vec<3> (divsigma2d[0], divsigma2d[1], 0);
|
|
1896
|
+
}
|
|
1897
|
+
|
|
1898
|
+
};
|
|
1899
|
+
|
|
1900
|
+
template <typename T>
|
|
1901
|
+
class Prism_Dl1xDl3_symtensor_Dl2xDl4_u
|
|
1902
|
+
{
|
|
1903
|
+
AutoDiff<3,T> l1,l2,l3, l4;
|
|
1904
|
+
AutoDiff<3,T> u;
|
|
1905
|
+
public:
|
|
1906
|
+
Prism_Dl1xDl3_symtensor_Dl2xDl4_u ( AutoDiff<3,T> lam1, AutoDiff<3,T> lam2, AutoDiff<3,T> alz1, AutoDiff<3,T> alz2, AutoDiff<3,T> av)
|
|
1907
|
+
: l1(lam1), l2(lam2), l3(alz1), l4(alz2), u(av) { ; }
|
|
1908
|
+
INLINE Vec<6,T> Shape()
|
|
1909
|
+
{
|
|
1910
|
+
auto rotlam1 = Cross(l1, l3);
|
|
1911
|
+
auto rotlam2 = Cross(l2, l4);
|
|
1912
|
+
|
|
1913
|
+
Vec<6,T> sigma(0.);
|
|
1914
|
+
sigma[0] = u.Value()*rotlam1.DValue(0)*rotlam2.DValue(0);
|
|
1915
|
+
sigma[1] = u.Value()*rotlam1.DValue(1)*rotlam2.DValue(1);
|
|
1916
|
+
sigma[2] = u.Value()*rotlam1.DValue(2)*rotlam2.DValue(2);
|
|
1917
|
+
sigma[3] = 0.5*u.Value()*(rotlam1.DValue(2)*rotlam2.DValue(1) + rotlam2.DValue(2)*rotlam1.DValue(1));
|
|
1918
|
+
sigma[4] = 0.5*u.Value()*(rotlam1.DValue(2)*rotlam2.DValue(0) + rotlam2.DValue(2)*rotlam1.DValue(0));
|
|
1919
|
+
sigma[5] = 0.5*u.Value()*(rotlam1.DValue(0)*rotlam2.DValue(1) + rotlam2.DValue(0)*rotlam1.DValue(1));
|
|
1920
|
+
return sigma;
|
|
1921
|
+
}
|
|
1922
|
+
|
|
1923
|
+
INLINE AutoDiff<3,T> Cross (const AutoDiff<3,T> & x,
|
|
1924
|
+
const AutoDiff<3,T> & y)
|
|
1925
|
+
{
|
|
1926
|
+
T hv[3];
|
|
1927
|
+
hv[0] = x.DValue(1)*y.DValue(2)-x.DValue(2)*y.DValue(1);
|
|
1928
|
+
hv[1] = x.DValue(2)*y.DValue(0)-x.DValue(0)*y.DValue(2);
|
|
1929
|
+
hv[2] = x.DValue(0)*y.DValue(1)-x.DValue(1)*y.DValue(0);
|
|
1930
|
+
return AutoDiff<3,T> (0,hv);
|
|
1931
|
+
}
|
|
1932
|
+
Vec<3,T> DivShape()
|
|
1933
|
+
{
|
|
1934
|
+
auto lam1 = Cross(l1, l3);
|
|
1935
|
+
auto lam2 = Cross(l2, l4);
|
|
1936
|
+
return Vec<3,T> (u.DValue(0)*lam1.DValue(0)*lam2.DValue(0) +
|
|
1937
|
+
0.5*(u.DValue(1)*(lam1.DValue(0)*lam2.DValue(1)+lam2.DValue(0)*lam1.DValue(1)) + u.DValue(2)*(lam1.DValue(0)*lam2.DValue(2)+lam2.DValue(0)*lam1.DValue(2))),
|
|
1938
|
+
u.DValue(1)*lam1.DValue(1)*lam2.DValue(1) +
|
|
1939
|
+
0.5*(u.DValue(0)*(lam1.DValue(0)*lam2.DValue(1)+lam2.DValue(0)*lam1.DValue(1)) + u.DValue(2)*(lam1.DValue(1)*lam2.DValue(2)+lam2.DValue(1)*lam1.DValue(2))),
|
|
1940
|
+
u.DValue(2)*lam1.DValue(2)*lam2.DValue(2) +
|
|
1941
|
+
0.5*(u.DValue(0)*(lam1.DValue(0)*lam2.DValue(2)+lam2.DValue(0)*lam1.DValue(2)) + u.DValue(1)*(lam1.DValue(1)*lam2.DValue(2)+lam2.DValue(1)*lam1.DValue(2)))
|
|
1942
|
+
);
|
|
1943
|
+
}
|
|
1944
|
+
|
|
1945
|
+
};
|
|
1946
|
+
|
|
1947
|
+
|
|
1948
|
+
template <typename T>
|
|
1949
|
+
class t1_symtensor_t2_u
|
|
1950
|
+
{
|
|
1951
|
+
AutoDiff<3,T> t1, t2;
|
|
1952
|
+
AutoDiff<3,T> u;
|
|
1953
|
+
public:
|
|
1954
|
+
t1_symtensor_t2_u (AutoDiff<3,T> at1, AutoDiff<3,T> at2, AutoDiff<3,T> au)
|
|
1955
|
+
: t1(at1), t2(at2), u(au) { ; }
|
|
1956
|
+
INLINE Vec<6,T> Shape()
|
|
1957
|
+
{
|
|
1958
|
+
//auto rotlam1 = t1;
|
|
1959
|
+
//auto rotlam2 = t2;
|
|
1960
|
+
|
|
1961
|
+
Vec<6,T> sigma(0.);
|
|
1962
|
+
sigma[0] = t1.DValue(0)*t2.DValue(0);
|
|
1963
|
+
sigma[1] = t1.DValue(1)*t2.DValue(1);
|
|
1964
|
+
sigma[2] = t1.DValue(2)*t2.DValue(2);
|
|
1965
|
+
sigma[3] = 0.5*(t1.DValue(2)*t2.DValue(1) + t2.DValue(2)*t1.DValue(1));
|
|
1966
|
+
sigma[4] = 0.5*(t1.DValue(2)*t2.DValue(0) + t2.DValue(2)*t1.DValue(0));
|
|
1967
|
+
sigma[5] = 0.5*(t1.DValue(0)*t2.DValue(1) + t2.DValue(0)*t1.DValue(1));
|
|
1968
|
+
return u.Value()*sigma;
|
|
1969
|
+
}
|
|
1970
|
+
|
|
1971
|
+
Vec<3,T> DivShape()
|
|
1972
|
+
{
|
|
1973
|
+
T ut1 = 0.5*(u.DValue(0)*t1.DValue(0) + u.DValue(1)*t1.DValue(1) + u.DValue(2)*t1.DValue(2));
|
|
1974
|
+
T ut2 = 0.5*(u.DValue(0)*t2.DValue(0) + u.DValue(1)*t2.DValue(1) + u.DValue(2)*t2.DValue(2));
|
|
1975
|
+
return Vec<3,T> (ut1*t2.DValue(0) + ut2*t1.DValue(0),
|
|
1976
|
+
ut1*t2.DValue(1) + ut2*t1.DValue(1),
|
|
1977
|
+
ut1*t2.DValue(2) + ut2*t1.DValue(2));
|
|
1978
|
+
}
|
|
1979
|
+
|
|
1980
|
+
};
|
|
1981
|
+
|
|
1982
|
+
|
|
1983
|
+
|
|
1984
|
+
|
|
1985
|
+
template <> class HDivDivFE<ET_PRISM> : public T_HDivDivFE<ET_PRISM>
|
|
1986
|
+
{
|
|
1987
|
+
public:
|
|
1988
|
+
// order k+1 for certain components, for inner and boundary shapes
|
|
1989
|
+
// analysis from TDNNS paper for case xx1=0, zz1=xx2=zz2=1 for inner and boundary shapes
|
|
1990
|
+
// however, works also when boundary order is not increased.. check
|
|
1991
|
+
enum { incrorder_xx1 = 0};
|
|
1992
|
+
enum { incrorder_zz1 = 1};
|
|
1993
|
+
enum { incrorder_xx2 = 1};
|
|
1994
|
+
enum { incrorder_zz2 = 1};
|
|
1995
|
+
enum { incrorder_xx1_bd = 0};
|
|
1996
|
+
enum { incrorder_zz1_bd = 0};
|
|
1997
|
+
enum { incrorder_xx2_bd = 0};
|
|
1998
|
+
enum { incrorder_zz2_bd = 0};
|
|
1999
|
+
using T_HDivDivFE<ET_PRISM> :: T_HDivDivFE;
|
|
2000
|
+
|
|
2001
|
+
virtual void ComputeNDof()
|
|
2002
|
+
{
|
|
2003
|
+
order = 0;
|
|
2004
|
+
ndof = 0;
|
|
2005
|
+
for (int i=0; i<2; i++)
|
|
2006
|
+
{
|
|
2007
|
+
ndof += (order_facet[i][0]+1+incrorder_zz1_bd)*(order_facet[i][0]+2+incrorder_zz1_bd)/2;
|
|
2008
|
+
order = max2(order, order_facet[i][0]+incrorder_zz1_bd);
|
|
2009
|
+
}
|
|
2010
|
+
for (int i=2; i<5; i++)
|
|
2011
|
+
{
|
|
2012
|
+
ndof += (order_facet[i][0]+1+incrorder_xx1_bd)*(order_facet[i][1]+1+incrorder_xx2_bd);
|
|
2013
|
+
order = max2(order, order_facet[i][0]+incrorder_xx2_bd);
|
|
2014
|
+
}
|
|
2015
|
+
int oi0 = order_inner[0];
|
|
2016
|
+
int oi2 = order_inner[2];
|
|
2017
|
+
int ninner = 3*((oi0+1+incrorder_xx1)*(oi0+incrorder_xx1))/2 *(oi2+1+incrorder_xx2)
|
|
2018
|
+
+ (oi0+1)*(oi0+2)*(oi2+1)
|
|
2019
|
+
+ (oi0+1+incrorder_zz1)*(oi0+2+incrorder_zz1)*(oi2-1+incrorder_zz2)/2;
|
|
2020
|
+
ndof += ninner;
|
|
2021
|
+
|
|
2022
|
+
order = max3(order, oi0+incrorder_zz1, oi2+incrorder_zz2);
|
|
2023
|
+
|
|
2024
|
+
}
|
|
2025
|
+
|
|
2026
|
+
// works only with old-style Transformation
|
|
2027
|
+
// does not work with CalcMappedShape
|
|
2028
|
+
template <typename Tx, typename TFA>
|
|
2029
|
+
void T_CalcShape_Complex (TIP<3,Tx> ip, TFA & shape) const
|
|
2030
|
+
{
|
|
2031
|
+
AutoDiffDiff<2> x(ip.x.Value(),0);
|
|
2032
|
+
AutoDiffDiff<2> y(ip.y.Value(),1);
|
|
2033
|
+
AutoDiff<2> xd(ip.x.Value(),0);
|
|
2034
|
+
AutoDiff<2> yd(ip.y.Value(),1);
|
|
2035
|
+
AutoDiff<1> z(ip.z.Value(), 0);
|
|
2036
|
+
AutoDiffDiff<2> lami[6] ={ x,y,1-x-y,x,y,1-x-y };
|
|
2037
|
+
AutoDiff<2> lamid[6] ={ xd,yd,1-xd-yd,xd,yd,1-xd-yd };
|
|
2038
|
+
AutoDiff<1> lamiz[6] ={ 1-z,1-z,1-z,z,z,z };
|
|
2039
|
+
|
|
2040
|
+
int ii = 0;
|
|
2041
|
+
|
|
2042
|
+
int maxorder_facet =
|
|
2043
|
+
max2(order_facet[0][0],max2(order_facet[1][0],order_facet[2][0]));
|
|
2044
|
+
|
|
2045
|
+
const FACE * faces = ElementTopology::GetFaces(ET_PRISM);
|
|
2046
|
+
|
|
2047
|
+
ArrayMem<AutoDiffDiff<2>,20> ha(maxorder_facet+2);
|
|
2048
|
+
ArrayMem<AutoDiffDiff<2>,20> u(order+2), v(order+3);
|
|
2049
|
+
ArrayMem<AutoDiff<2>,20> leg_u(order+2), leg_v(order+3);
|
|
2050
|
+
ArrayMem<AutoDiff<1>,20> leg_w(order+2);
|
|
2051
|
+
|
|
2052
|
+
|
|
2053
|
+
// Trig faces, (p+1)(p+2)/2
|
|
2054
|
+
for (int fa=0; fa<2; fa++)
|
|
2055
|
+
{
|
|
2056
|
+
int fav[3] ={faces[fa][0],faces[fa][1],faces[fa][2]};
|
|
2057
|
+
|
|
2058
|
+
//Sort vertices first edge op minimal vertex
|
|
2059
|
+
if(vnums[fav[0]] > vnums[fav[1]]) swap(fav[0],fav[1]);
|
|
2060
|
+
if(vnums[fav[1]] > vnums[fav[2]]) swap(fav[1],fav[2]);
|
|
2061
|
+
if(vnums[fav[0]] > vnums[fav[1]]) swap(fav[0],fav[1]);
|
|
2062
|
+
|
|
2063
|
+
leg_u.SetSize(order_facet[fa][0]+incrorder_zz1_bd+1);
|
|
2064
|
+
leg_v.SetSize(order_facet[fa][0]+incrorder_zz1_bd+1);
|
|
2065
|
+
ScaledLegendrePolynomial(order_facet[fa][0]+incrorder_zz1_bd,lamid[fav[0]]-lamid[fav[1]],1-lamid[fav[0]]-lamid[fav[1]],leg_u);
|
|
2066
|
+
LegendrePolynomial::Eval(order_facet[fa][0]+incrorder_zz1_bd,2 * lamid[fav[2]] - 1,leg_v);
|
|
2067
|
+
|
|
2068
|
+
for(int j = 0; j <= order_facet[fa][0]+incrorder_zz1_bd; j++)
|
|
2069
|
+
for(int k = 0; k <= order_facet[fa][0]+incrorder_zz1_bd-j; k++)
|
|
2070
|
+
shape[ii++] = S_zz(leg_u[j],leg_v[k],lamiz[fav[0]]);
|
|
2071
|
+
}
|
|
2072
|
+
// quad faces -- use face bubbles of trig multiplied by leg_w
|
|
2073
|
+
// (px+1)(pz+1)
|
|
2074
|
+
for(int fa = 2; fa < 5; fa++)
|
|
2075
|
+
{
|
|
2076
|
+
int fmax = 0;
|
|
2077
|
+
for(int j = 1; j < 4; j++)
|
|
2078
|
+
if(vnums[faces[fa][j]] > vnums[faces[fa][fmax]]) fmax = j;
|
|
2079
|
+
|
|
2080
|
+
int fz,ftrig;
|
|
2081
|
+
|
|
2082
|
+
fz = 3 - fmax;
|
|
2083
|
+
ftrig = fmax^1;
|
|
2084
|
+
|
|
2085
|
+
fmax = faces[fa][fmax];
|
|
2086
|
+
fz = faces[fa][fz];
|
|
2087
|
+
ftrig = faces[fa][ftrig];
|
|
2088
|
+
|
|
2089
|
+
|
|
2090
|
+
// int orderz = order_facet[fa][1];
|
|
2091
|
+
|
|
2092
|
+
bool rotate = false;
|
|
2093
|
+
if(vnums[fz] > vnums[ftrig]) rotate = true;
|
|
2094
|
+
leg_w.SetSize(order_facet[fa][1]+incrorder_xx2_bd+1);
|
|
2095
|
+
ha.SetSize(order_facet[fa][0]+incrorder_xx1_bd+1);
|
|
2096
|
+
LegendrePolynomial::Eval(order_facet[fa][1]+incrorder_xx2_bd,lamiz[fmax]*2-1,leg_w);
|
|
2097
|
+
|
|
2098
|
+
|
|
2099
|
+
// edge functions are all div-free!
|
|
2100
|
+
IntegratedLegendreMonomialExt::CalcTrigExt(order_facet[fa][0]+incrorder_xx1_bd+2,
|
|
2101
|
+
lami[fmax]-lami[ftrig],1-lami[fmax]-lami[ftrig],ha);
|
|
2102
|
+
|
|
2103
|
+
if(rotate)
|
|
2104
|
+
for(int k = 0; k <= order_facet[fa][1]+incrorder_xx2_bd; k++)
|
|
2105
|
+
for(int l = 0; l <= order_facet[fa][0]+incrorder_xx1_bd; l++)
|
|
2106
|
+
{
|
|
2107
|
+
shape[ii++] = Prism_wSigmaGradu(ha[l],leg_w[k]);
|
|
2108
|
+
}
|
|
2109
|
+
|
|
2110
|
+
else
|
|
2111
|
+
for(int l = 0; l <= order_facet[fa][0]+incrorder_xx1_bd; l++)
|
|
2112
|
+
for(int k = 0; k <= order_facet[fa][1]+incrorder_xx2_bd; k++)
|
|
2113
|
+
{
|
|
2114
|
+
shape[ii++] = Prism_wSigmaGradu(ha[l],leg_w[k]);
|
|
2115
|
+
}
|
|
2116
|
+
|
|
2117
|
+
|
|
2118
|
+
}
|
|
2119
|
+
|
|
2120
|
+
|
|
2121
|
+
|
|
2122
|
+
int oi = order_inner[0];
|
|
2123
|
+
leg_u.SetSize(oi+incrorder_zz1+1);
|
|
2124
|
+
leg_v.SetSize(oi+incrorder_zz1+1);
|
|
2125
|
+
leg_w.SetSize(oi+incrorder_xx2+1);
|
|
2126
|
+
u.SetSize(oi-1+incrorder_xx1+1);
|
|
2127
|
+
v.SetSize(oi-1+incrorder_xx1+1);
|
|
2128
|
+
|
|
2129
|
+
ScaledLegendrePolynomial(oi+incrorder_zz1, lamid[0]-lamid[1], 1-lamid[0]-lamid[1], leg_u);
|
|
2130
|
+
LegendrePolynomial::Eval(oi+incrorder_zz1, 2*lamid[2]-1, leg_v);
|
|
2131
|
+
LegendrePolynomial::Eval(oi+incrorder_xx2, 2*lamiz[0]-1, leg_w);
|
|
2132
|
+
|
|
2133
|
+
// ------------------------------------
|
|
2134
|
+
// based on elasticity-complex-based triangle shapes
|
|
2135
|
+
IntegratedLegendreMonomialExt::CalcTrigExt(oi-1+incrorder_xx1+2,lami[0]-lami[1],1-lami[0]-lami[1],u);
|
|
2136
|
+
LegendrePolynomial::EvalMult(oi-1+incrorder_xx1,2*lami[2]-1, lami[2], v);
|
|
2137
|
+
for(int k=0; k<=oi+incrorder_xx2; k++)
|
|
2138
|
+
{
|
|
2139
|
+
for(int i = 0; i <= oi-1+incrorder_xx1; i++)
|
|
2140
|
+
{
|
|
2141
|
+
for(int j = 0; j+i <= oi-1+incrorder_xx1; j++)
|
|
2142
|
+
{
|
|
2143
|
+
shape[ii++] = Prism_wSigmaGradu(u[i]*v[j],leg_w[k]);
|
|
2144
|
+
shape[ii++] = Prism_wType2(u[i],v[j],leg_w[k]);
|
|
2145
|
+
}
|
|
2146
|
+
}
|
|
2147
|
+
for(int i = 0; i <= oi-1+incrorder_xx1; i++)
|
|
2148
|
+
{
|
|
2149
|
+
for(int j = 0; j+i <= oi-1+incrorder_xx1; j++)
|
|
2150
|
+
{
|
|
2151
|
+
if(j > 0)
|
|
2152
|
+
{
|
|
2153
|
+
shape[ii++] = Prism_wType3(u[i],v[j],leg_w[k]);
|
|
2154
|
+
}
|
|
2155
|
+
}
|
|
2156
|
+
}
|
|
2157
|
+
for (int i = 0; i < oi+incrorder_xx1; i++)
|
|
2158
|
+
{
|
|
2159
|
+
shape[ii++] = Prism_wType4 (lami[0], -lami[1], v[i],leg_w[k]);
|
|
2160
|
+
}
|
|
2161
|
+
|
|
2162
|
+
}
|
|
2163
|
+
|
|
2164
|
+
// S_xz
|
|
2165
|
+
for (int i=0; i<=oi; i++)
|
|
2166
|
+
{
|
|
2167
|
+
for (int j=0; j+i<=oi; j++)
|
|
2168
|
+
{
|
|
2169
|
+
AutoDiff<2> uv = leg_u[i]*leg_v[j];
|
|
2170
|
+
for (int k=0; k<=oi; k++)
|
|
2171
|
+
{
|
|
2172
|
+
shape[ii++] = S_xz(0,uv, leg_w[k]);
|
|
2173
|
+
shape[ii++] = S_xz(1,uv, leg_w[k]);
|
|
2174
|
+
}
|
|
2175
|
+
}
|
|
2176
|
+
}
|
|
2177
|
+
|
|
2178
|
+
// S_zz
|
|
2179
|
+
for(int k=0; k<=oi-2+incrorder_zz2; k++)
|
|
2180
|
+
{
|
|
2181
|
+
AutoDiff<1> bubw = leg_w[k]*lamiz[0]*(1-lamiz[0]);
|
|
2182
|
+
for(int i=0; i<=oi+incrorder_zz1; i++)
|
|
2183
|
+
{
|
|
2184
|
+
for(int j=0; j<=oi+incrorder_zz1-i; j++)
|
|
2185
|
+
{
|
|
2186
|
+
shape[ii++] = S_zz(leg_u[i],leg_v[j],bubw);
|
|
2187
|
+
}
|
|
2188
|
+
}
|
|
2189
|
+
}
|
|
2190
|
+
|
|
2191
|
+
|
|
2192
|
+
};
|
|
2193
|
+
|
|
2194
|
+
|
|
2195
|
+
|
|
2196
|
+
|
|
2197
|
+
// alternative to T_CalcShape, with "simpler" shape functions,
|
|
2198
|
+
// that are described in anisotropic paper
|
|
2199
|
+
// works with CalcMappedShape etc. routines, also for curved elements
|
|
2200
|
+
template <typename T, typename TFA>
|
|
2201
|
+
void T_CalcShape/*_nocomplex*/ (TIP<3,AutoDiff<3,T>> ip, TFA & shape) const
|
|
2202
|
+
{
|
|
2203
|
+
// Tx x = ip.x, y = ip.y, z = ip.z;
|
|
2204
|
+
AutoDiffDiff<3,T> x = ip.x, y = ip.y, z = ip.z;
|
|
2205
|
+
// typedef decltype(x.Value()+x.Value()) T;
|
|
2206
|
+
AutoDiff<3,T> xx(x.Value(), &x.DValue(0));
|
|
2207
|
+
AutoDiff<3,T> yy(y.Value(), &y.DValue(0));
|
|
2208
|
+
AutoDiff<3,T> zz(z.Value(), &z.DValue(0));
|
|
2209
|
+
AutoDiff<3,T> lx[6] ={ xx, yy, 1-xx-yy, xx, yy, 1-xx-yy };
|
|
2210
|
+
AutoDiff<3,T> lz[6] ={ 1-zz,1-zz,1-zz,zz,zz,zz };
|
|
2211
|
+
int ii = 0;
|
|
2212
|
+
|
|
2213
|
+
// int maxorder_facet =
|
|
2214
|
+
// max2(order_facet[0][0],max2(order_facet[1][0],order_facet[2][0]));
|
|
2215
|
+
|
|
2216
|
+
const FACE * faces = ElementTopology::GetFaces(ET_PRISM);
|
|
2217
|
+
|
|
2218
|
+
ArrayMem<AutoDiff<3,T>,20> leg_u(order+2), leg_v(order+3);
|
|
2219
|
+
ArrayMem<AutoDiff<3,T>,20> leg_w(order+2);
|
|
2220
|
+
|
|
2221
|
+
|
|
2222
|
+
// Trig faces, (p+1)(p+2)/2
|
|
2223
|
+
for (int fa=0; fa<2; fa++)
|
|
2224
|
+
{
|
|
2225
|
+
int fav[3] ={faces[fa][0],faces[fa][1],faces[fa][2]};
|
|
2226
|
+
|
|
2227
|
+
//Sort vertices first edge op minimal vertex
|
|
2228
|
+
if(vnums[fav[0]] > vnums[fav[1]]) swap(fav[0],fav[1]);
|
|
2229
|
+
if(vnums[fav[1]] > vnums[fav[2]]) swap(fav[1],fav[2]);
|
|
2230
|
+
if(vnums[fav[0]] > vnums[fav[1]]) swap(fav[0],fav[1]);
|
|
2231
|
+
|
|
2232
|
+
leg_u.SetSize(order_facet[fa][0]+incrorder_zz1_bd+1);
|
|
2233
|
+
leg_v.SetSize(order_facet[fa][0]+incrorder_zz1_bd+1);
|
|
2234
|
+
ScaledLegendrePolynomial(order_facet[fa][0]+incrorder_zz1_bd,lx[fav[0]]-lx[fav[1]],lx[fav[0]]+lx[fav[1]],leg_u);
|
|
2235
|
+
LegendrePolynomial::Eval(order_facet[fa][0]+incrorder_zz1_bd,2 * lx[fav[2]] - 1,leg_v);
|
|
2236
|
+
|
|
2237
|
+
for(int j = 0; j <= order_facet[fa][0]+incrorder_zz1_bd; j++)
|
|
2238
|
+
for(int k = 0; k <= order_facet[fa][0]+incrorder_zz1_bd-j; k++)
|
|
2239
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lx[fav[0]], lx[fav[1]], lx[fav[2]], lx[fav[2]], leg_u[j]*leg_v[k]*lz[fav[0]]);
|
|
2240
|
+
}
|
|
2241
|
+
// quad faces -- use face bubbles of trig multiplied by leg_w
|
|
2242
|
+
// (px+1)(pz+1)
|
|
2243
|
+
for(int fa = 2; fa < 5; fa++)
|
|
2244
|
+
{
|
|
2245
|
+
int fmax = 0;
|
|
2246
|
+
for(int j = 1; j < 4; j++)
|
|
2247
|
+
if(vnums[faces[fa][j]] > vnums[faces[fa][fmax]]) fmax = j;
|
|
2248
|
+
|
|
2249
|
+
int fz,ftrig;
|
|
2250
|
+
|
|
2251
|
+
fz = 3 - fmax;
|
|
2252
|
+
ftrig = fmax^1;
|
|
2253
|
+
|
|
2254
|
+
fmax = faces[fa][fmax];
|
|
2255
|
+
fz = faces[fa][fz];
|
|
2256
|
+
ftrig = faces[fa][ftrig];
|
|
2257
|
+
|
|
2258
|
+
|
|
2259
|
+
// int orderz = order_facet[fa][1];
|
|
2260
|
+
|
|
2261
|
+
bool rotate = false;
|
|
2262
|
+
if(vnums[fz] > vnums[ftrig]) rotate = true;
|
|
2263
|
+
leg_w.SetSize(order_facet[fa][1]+incrorder_xx2_bd+1);
|
|
2264
|
+
LegendrePolynomial::Eval(order_facet[fa][1]+incrorder_xx2_bd,lz[fmax]*2-1,leg_w);
|
|
2265
|
+
|
|
2266
|
+
|
|
2267
|
+
ScaledLegendrePolynomial(order_facet[fa][0]+incrorder_xx1_bd, lx[fmax]-lx[ftrig], lx[fmax]+lx[ftrig], leg_u);
|
|
2268
|
+
|
|
2269
|
+
if(rotate)
|
|
2270
|
+
for(int k = 0; k <= order_facet[fa][1]+incrorder_xx2_bd; k++)
|
|
2271
|
+
for(int l = 0; l <= order_facet[fa][0]+incrorder_xx1_bd; l++)
|
|
2272
|
+
{
|
|
2273
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lz[fmax], lz[fz], lx[fmax], lx[ftrig], leg_u[l]* leg_w[k]);
|
|
2274
|
+
}
|
|
2275
|
+
|
|
2276
|
+
else
|
|
2277
|
+
for(int l = 0; l <= order_facet[fa][0]+incrorder_xx1_bd; l++)
|
|
2278
|
+
for(int k = 0; k <= order_facet[fa][1]+incrorder_xx2_bd; k++)
|
|
2279
|
+
{
|
|
2280
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lx[fmax], lx[ftrig], lz[fmax], lz[fz], leg_u[l]* leg_w[k]);
|
|
2281
|
+
}
|
|
2282
|
+
|
|
2283
|
+
|
|
2284
|
+
}
|
|
2285
|
+
|
|
2286
|
+
|
|
2287
|
+
|
|
2288
|
+
int oi = order_inner[0];
|
|
2289
|
+
leg_u.SetSize(oi+incrorder_zz1+1);
|
|
2290
|
+
leg_v.SetSize(oi+incrorder_zz1+1);
|
|
2291
|
+
leg_w.SetSize(oi+incrorder_xx2+1);
|
|
2292
|
+
|
|
2293
|
+
ScaledLegendrePolynomial(oi+incrorder_zz1, lx[0]-lx[1], lx[0]+lx[1], leg_u);
|
|
2294
|
+
LegendrePolynomial::Eval(oi+incrorder_zz1, 2*lx[2]-1, leg_v);
|
|
2295
|
+
LegendrePolynomial::Eval(oi+incrorder_xx2, 2*lz[0]-1, leg_w);
|
|
2296
|
+
|
|
2297
|
+
for(int k=0; k<=oi+incrorder_xx2; k++)
|
|
2298
|
+
{
|
|
2299
|
+
for(int i = 0; i <= oi-1+incrorder_xx1; i++)
|
|
2300
|
+
{
|
|
2301
|
+
for(int j = 0; j+i <= oi-1+incrorder_xx1; j++)
|
|
2302
|
+
{
|
|
2303
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lx[0], lx[1], lz[0], lz[0], lx[2]*leg_u[i]*leg_v[j]* leg_w[k]);
|
|
2304
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lx[2], lx[0], lz[0], lz[0], lx[1]*leg_u[i]*leg_v[j]* leg_w[k]);
|
|
2305
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lx[1], lx[2], lz[0], lz[0], lx[0]*leg_u[i]*leg_v[j]* leg_w[k]);
|
|
2306
|
+
}
|
|
2307
|
+
}
|
|
2308
|
+
}
|
|
2309
|
+
|
|
2310
|
+
|
|
2311
|
+
// S_xz
|
|
2312
|
+
for (int i=0; i<=oi; i++)
|
|
2313
|
+
{
|
|
2314
|
+
for (int j=0; j+i<=oi; j++)
|
|
2315
|
+
{
|
|
2316
|
+
for (int k=0; k<=oi; k++)
|
|
2317
|
+
{
|
|
2318
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lz[0], lx[1], lx[0], lx[0], leg_u[i]*leg_v[j]*leg_w[k]);
|
|
2319
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lz[0], lx[0], lx[1], lx[1], leg_u[i]*leg_v[j]*leg_w[k]);
|
|
2320
|
+
}
|
|
2321
|
+
}
|
|
2322
|
+
}
|
|
2323
|
+
|
|
2324
|
+
// S_zz
|
|
2325
|
+
for(int k=0; k<=oi-2+incrorder_zz2; k++)
|
|
2326
|
+
{
|
|
2327
|
+
AutoDiff<3,T> bubw = leg_w[k]*lz[0]*(1-lz[0]);
|
|
2328
|
+
for(int i=0; i<=oi+incrorder_zz1; i++)
|
|
2329
|
+
{
|
|
2330
|
+
for(int j=0; j<=oi+incrorder_zz1-i; j++)
|
|
2331
|
+
{
|
|
2332
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lx[0], lx[2], lx[1], lx[1], leg_u[i]*leg_v[j]*bubw);
|
|
2333
|
+
}
|
|
2334
|
+
}
|
|
2335
|
+
}
|
|
2336
|
+
|
|
2337
|
+
|
|
2338
|
+
};
|
|
2339
|
+
|
|
2340
|
+
template <typename MIP, typename TFA>
|
|
2341
|
+
void CalcDualShape2 (const MIP & mip, TFA & shape) const
|
|
2342
|
+
{
|
|
2343
|
+
throw Exception ("Hdivdivfe not implementend for element type");
|
|
2344
|
+
}
|
|
2345
|
+
|
|
2346
|
+
|
|
2347
|
+
};
|
|
2348
|
+
|
|
2349
|
+
|
|
2350
|
+
template <> class HDivDivFE<ET_TET> : public T_HDivDivFE<ET_TET>
|
|
2351
|
+
{
|
|
2352
|
+
public:
|
|
2353
|
+
using T_HDivDivFE<ET_TET> :: T_HDivDivFE;
|
|
2354
|
+
|
|
2355
|
+
virtual void ComputeNDof()
|
|
2356
|
+
{
|
|
2357
|
+
order = 0;
|
|
2358
|
+
ndof = 0;
|
|
2359
|
+
for (int i=0; i<4; i++)
|
|
2360
|
+
{
|
|
2361
|
+
ndof += (order_facet[i][0]+1)*(order_facet[i][0]+2)/2;
|
|
2362
|
+
order = max2(order, order_facet[i][0]);
|
|
2363
|
+
}
|
|
2364
|
+
int p = order_inner[0];
|
|
2365
|
+
int ninner = (p+1)*(p+2)*(p+1);
|
|
2366
|
+
ndof += ninner;
|
|
2367
|
+
|
|
2368
|
+
order = max2(order, p);
|
|
2369
|
+
if (plus)
|
|
2370
|
+
{
|
|
2371
|
+
ndof += 2*(p+1)*(p+2);
|
|
2372
|
+
order = max2(order, p+1);
|
|
2373
|
+
}
|
|
2374
|
+
}
|
|
2375
|
+
|
|
2376
|
+
|
|
2377
|
+
template <typename T, typename TFA>
|
|
2378
|
+
void T_CalcShape (TIP<3,AutoDiff<3,T>> ip, TFA & shape) const
|
|
2379
|
+
{
|
|
2380
|
+
AutoDiff<3,T> lam[4] = { ip.x, ip.y, ip.z, 1.0-ip.x-ip.y-ip.z };
|
|
2381
|
+
size_t ii = 0;
|
|
2382
|
+
|
|
2383
|
+
//const FACE * faces = ElementTopology::GetFaces(ET_TET);
|
|
2384
|
+
|
|
2385
|
+
/*
|
|
2386
|
+
ArrayMem<AutoDiff<3,T>,20> leg_u(order+2), leg_v(order+3);
|
|
2387
|
+
ArrayMem<AutoDiff<3,T>,20> leg_w(order+2);
|
|
2388
|
+
*/
|
|
2389
|
+
|
|
2390
|
+
typedef AutoDiff<3,T> ADT;
|
|
2391
|
+
STACK_ARRAY(ADT, leg_u, order+2);
|
|
2392
|
+
STACK_ARRAY(ADT, leg_v, order+3);
|
|
2393
|
+
|
|
2394
|
+
for(int fa = 0; fa < 4; fa++)
|
|
2395
|
+
{
|
|
2396
|
+
int p = order_facet[fa][0];
|
|
2397
|
+
/*
|
|
2398
|
+
// int fav[3] = {faces[fa][0], faces[fa][1], faces[fa][2]};
|
|
2399
|
+
//Sort vertices first edge op minimal vertex
|
|
2400
|
+
if(vnums[fav[0]] > vnums[fav[1]]) swap(fav[0], fav[1]);
|
|
2401
|
+
if(vnums[fav[1]] > vnums[fav[2]]) swap(fav[1], fav[2]);
|
|
2402
|
+
if(vnums[fav[0]] > vnums[fav[1]]) swap(fav[0], fav[1]);
|
|
2403
|
+
*/
|
|
2404
|
+
|
|
2405
|
+
IVec<4> fav = GetVertexOrientedFace (fa);
|
|
2406
|
+
|
|
2407
|
+
ScaledLegendrePolynomial(p+1, lam[fav[0]]-lam[fav[1]],lam[fav[0]]+lam[fav[1]], &leg_u[0]);
|
|
2408
|
+
LegendrePolynomial::Eval(p+1, 2 * lam[fav[2]] - 1, &leg_v[0]);
|
|
2409
|
+
|
|
2410
|
+
auto t1 = Cross(lam[fav[0]], lam[fav[2]]);
|
|
2411
|
+
auto t2 = Cross(lam[fav[1]], lam[fav[2]]);
|
|
2412
|
+
for(int j = 0; j <= p; j++)
|
|
2413
|
+
for(int k = 0; k+j <= p; k++)
|
|
2414
|
+
{
|
|
2415
|
+
/*
|
|
2416
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lam[fav[0]], lam[fav[1]],
|
|
2417
|
+
lam[fav[2]], lam[fav[2]],leg_u[j]* leg_v[k]);
|
|
2418
|
+
*/
|
|
2419
|
+
shape[ii++] = t1_symtensor_t2_u<T>(t1, t2, leg_u[j]* leg_v[k]);
|
|
2420
|
+
}
|
|
2421
|
+
}
|
|
2422
|
+
|
|
2423
|
+
int oi = order_inner[0];
|
|
2424
|
+
/*
|
|
2425
|
+
leg_u.SetSize(oi+1);
|
|
2426
|
+
leg_v.SetSize(oi+1);
|
|
2427
|
+
leg_w.SetSize(oi+1);
|
|
2428
|
+
|
|
2429
|
+
ScaledLegendrePolynomial(oi+1,lam[0]-lam[1],lam[0]+lam[1],leg_u);
|
|
2430
|
+
ScaledLegendrePolynomial(oi+1,lam[2]-lam[0]-lam[1],lam[0]+lam[1]+lam[2],leg_v);
|
|
2431
|
+
LegendrePolynomial::Eval(oi+1,2 * lam[3] - 1,leg_w);
|
|
2432
|
+
|
|
2433
|
+
|
|
2434
|
+
for(int k=0; k<=oi; k++)
|
|
2435
|
+
{
|
|
2436
|
+
for(int i = 0; i+k <= oi; i++)
|
|
2437
|
+
{
|
|
2438
|
+
for(int j = 0; j+i+k <= oi; j++)
|
|
2439
|
+
{
|
|
2440
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lam[0], lam[1], lam[2], lam[3], leg_u[i]*leg_v[k]* leg_w[j]);
|
|
2441
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lam[0], lam[2], lam[1], lam[3], leg_u[i]*leg_v[j]* leg_w[k]);
|
|
2442
|
+
}
|
|
2443
|
+
}
|
|
2444
|
+
}
|
|
2445
|
+
|
|
2446
|
+
for(int fa = 0; fa < 4; fa++)
|
|
2447
|
+
{
|
|
2448
|
+
int fav[3] = {faces[fa][0], faces[fa][1], faces[fa][2]};
|
|
2449
|
+
for(int k=0; k<=oi-1; k++)
|
|
2450
|
+
{
|
|
2451
|
+
for(int i = 0; i+k <= oi-1; i++)
|
|
2452
|
+
{
|
|
2453
|
+
for(int j = 0; j+i+k <= oi-1; j++)
|
|
2454
|
+
{
|
|
2455
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lam[fav[0]],lam[fav[0]],lam[fav[1]],lam[fav[2]],
|
|
2456
|
+
(1-lam[fav[0]]-lam[fav[1]]-lam[fav[2]])*leg_u[i]*leg_v[k]* leg_w[j]);
|
|
2457
|
+
}
|
|
2458
|
+
}
|
|
2459
|
+
}
|
|
2460
|
+
|
|
2461
|
+
}
|
|
2462
|
+
*/
|
|
2463
|
+
auto l0 = lam[0];
|
|
2464
|
+
auto l1 = lam[1];
|
|
2465
|
+
auto l2 = lam[2];
|
|
2466
|
+
auto l3 = lam[3];
|
|
2467
|
+
auto t01 = Cross(lam[0], lam[1]);
|
|
2468
|
+
auto t02 = Cross(lam[0], lam[2]);
|
|
2469
|
+
auto t03 = Cross(lam[0], lam[3]);
|
|
2470
|
+
auto t12 = Cross(lam[1], lam[2]);
|
|
2471
|
+
auto t13 = Cross(lam[1], lam[3]);
|
|
2472
|
+
auto t23 = Cross(lam[2], lam[3]);
|
|
2473
|
+
DubinerBasis3D::Eval
|
|
2474
|
+
(oi, lam[0], lam[1], lam[2],
|
|
2475
|
+
SBLambda([shape, &ii, t02, t13, t01, t23] (size_t nr, auto val) LAMBDA_INLINE
|
|
2476
|
+
{
|
|
2477
|
+
/*
|
|
2478
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lam[0], lam[1], lam[2], lam[3], val);
|
|
2479
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lam[0], lam[2], lam[1], lam[3], val);
|
|
2480
|
+
*/
|
|
2481
|
+
shape[ii++] = t1_symtensor_t2_u<T>(t02, t13, val);
|
|
2482
|
+
shape[ii++] = t1_symtensor_t2_u<T>(t01, t23, val);
|
|
2483
|
+
}));
|
|
2484
|
+
|
|
2485
|
+
DubinerBasis3D::Eval
|
|
2486
|
+
(oi-1 + (plus?1:0), lam[0], lam[1], lam[2],
|
|
2487
|
+
SBLambda([shape, &ii, t02, t03, t12, t13, t01, t23, l0,l1,l2,l3] (size_t nr, auto val) LAMBDA_INLINE
|
|
2488
|
+
{
|
|
2489
|
+
shape[ii++] = t1_symtensor_t2_u<T>(t01, t02, l3*val);
|
|
2490
|
+
shape[ii++] = t1_symtensor_t2_u<T>(t03, t13, l2*val);
|
|
2491
|
+
shape[ii++] = t1_symtensor_t2_u<T>(t23, t02, l1*val);
|
|
2492
|
+
shape[ii++] = t1_symtensor_t2_u<T>(t12, t13, l0*val);
|
|
2493
|
+
/*
|
|
2494
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lam[0], lam[0], lam[1], lam[2], lam[3]*val);
|
|
2495
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lam[3], lam[3], lam[0], lam[1], lam[2]*val);
|
|
2496
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lam[2], lam[2], lam[3], lam[0], lam[1]*val);
|
|
2497
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lam[1], lam[1], lam[2], lam[3], lam[0]*val);
|
|
2498
|
+
*/
|
|
2499
|
+
}));
|
|
2500
|
+
|
|
2501
|
+
/*
|
|
2502
|
+
if (plus)
|
|
2503
|
+
{
|
|
2504
|
+
// needs AutoDiffDiff !!!
|
|
2505
|
+
auto l0 = lam[0];
|
|
2506
|
+
auto l1 = lam[1];
|
|
2507
|
+
auto l2 = lam[2];
|
|
2508
|
+
auto l3 = lam[3];
|
|
2509
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T> (l0, l1, l1*l2*l3, l2, AutoDiff<3,T>(1.0));
|
|
2510
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T> (l0, l1, l1*l2*l3, l3, AutoDiff<3,T>(1.0));
|
|
2511
|
+
|
|
2512
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T> (l1, l2, l0*l2*l3, l0, AutoDiff<3,T>(1.0));
|
|
2513
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T> (l1, l2, l0*l2*l3, l3, AutoDiff<3,T>(1.0));
|
|
2514
|
+
|
|
2515
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T> (l2, l3, l1*l0*l3, l0, AutoDiff<3,T>(1.0));
|
|
2516
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T> (l2, l3, l1*l0*l3, l1, AutoDiff<3,T>(1.0));
|
|
2517
|
+
|
|
2518
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T> (l3, l0, l1*l2*l0, l1, AutoDiff<3,T>(1.0));
|
|
2519
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T> (l3, l0, l1*l2*l0, l2, AutoDiff<3,T>(1.0));
|
|
2520
|
+
}
|
|
2521
|
+
*/
|
|
2522
|
+
};
|
|
2523
|
+
|
|
2524
|
+
template <typename MIP, typename TFA>
|
|
2525
|
+
void CalcDualShape2 (const MIP & mip, TFA & shape) const
|
|
2526
|
+
{
|
|
2527
|
+
throw Exception ("Hdivdivfe not implementend for element type");
|
|
2528
|
+
}
|
|
2529
|
+
|
|
2530
|
+
};
|
|
2531
|
+
|
|
2532
|
+
|
|
2533
|
+
|
|
2534
|
+
template <> class HDivDivFE<ET_HEX> : public T_HDivDivFE<ET_HEX>
|
|
2535
|
+
{
|
|
2536
|
+
public:
|
|
2537
|
+
using T_HDivDivFE<ET_HEX> :: T_HDivDivFE;
|
|
2538
|
+
|
|
2539
|
+
virtual void ComputeNDof()
|
|
2540
|
+
{
|
|
2541
|
+
order = 0;
|
|
2542
|
+
ndof = 0;
|
|
2543
|
+
for (int i=0; i<6; i++)
|
|
2544
|
+
{
|
|
2545
|
+
ndof += (order_facet[i][0]+1)*(order_facet[i][0]+1);
|
|
2546
|
+
order = max2(order, order_facet[i][0]+1);
|
|
2547
|
+
}
|
|
2548
|
+
int p = order_inner[0];
|
|
2549
|
+
int ninner = 3*p*(p+2)*(p+2) + 3*(p+2)*(p+1)*(p+1);
|
|
2550
|
+
ndof += ninner;
|
|
2551
|
+
|
|
2552
|
+
order = max2(order, p+1);
|
|
2553
|
+
|
|
2554
|
+
}
|
|
2555
|
+
|
|
2556
|
+
|
|
2557
|
+
template <typename T, typename TFA>
|
|
2558
|
+
void T_CalcShape (TIP<3,AutoDiff<3,T>> ip, TFA & shape) const
|
|
2559
|
+
{
|
|
2560
|
+
AutoDiffDiff<3,T> x = ip.x, y = ip.y, z = ip.z;
|
|
2561
|
+
// typedef decltype(x.Value()+x.Value()) T;
|
|
2562
|
+
AutoDiff<3,T> xx(x.Value(), &x.DValue(0));
|
|
2563
|
+
AutoDiff<3,T> yy(y.Value(), &y.DValue(0));
|
|
2564
|
+
AutoDiff<3,T> zz(z.Value(), &z.DValue(0));
|
|
2565
|
+
AutoDiff<3,T> lx[2] ={ 1-xx, xx};
|
|
2566
|
+
AutoDiff<3,T> ly[2] ={ 1-yy, yy};
|
|
2567
|
+
AutoDiff<3,T> lz[2] ={ 1-zz, zz};
|
|
2568
|
+
AutoDiff<3,T> sigma[8] = {1-xx + 1-yy + 1-zz,
|
|
2569
|
+
xx + 1-yy + 1-zz,
|
|
2570
|
+
xx + yy + 1-zz,
|
|
2571
|
+
1-xx + yy + 1-zz,
|
|
2572
|
+
1-xx + 1-yy + zz,
|
|
2573
|
+
xx + 1-yy + zz,
|
|
2574
|
+
xx + yy + zz,
|
|
2575
|
+
1-xx + yy + zz};
|
|
2576
|
+
int ii = 0;
|
|
2577
|
+
|
|
2578
|
+
// int maxorder_facet =
|
|
2579
|
+
// max2(order_facet[0][0],max2(order_facet[1][0],order_facet[2][0]));
|
|
2580
|
+
|
|
2581
|
+
const FACE * faces = ElementTopology::GetFaces(ET_HEX);
|
|
2582
|
+
|
|
2583
|
+
ArrayMem<AutoDiff<3,T>,20> leg_u(order+2), leg_v(order+3);
|
|
2584
|
+
ArrayMem<AutoDiff<3,T>,20> leg_w(order+2);
|
|
2585
|
+
AutoDiff<3,T> lam_face;
|
|
2586
|
+
|
|
2587
|
+
for(int fa = 0; fa < 6; fa++)
|
|
2588
|
+
{
|
|
2589
|
+
int fmax = 0;
|
|
2590
|
+
lam_face = -1 + 0.25*sigma[faces[fa][0]];
|
|
2591
|
+
for(int j = 1; j < 4; j++)
|
|
2592
|
+
{
|
|
2593
|
+
if(vnums[faces[fa][j]] > vnums[faces[fa][fmax]]) fmax = j;
|
|
2594
|
+
lam_face += sigma[faces[fa][j]]*0.25;
|
|
2595
|
+
}
|
|
2596
|
+
|
|
2597
|
+
int fz,ftrig;
|
|
2598
|
+
|
|
2599
|
+
fz = 3 - fmax;
|
|
2600
|
+
ftrig = fmax^1;
|
|
2601
|
+
|
|
2602
|
+
fmax = faces[fa][fmax];
|
|
2603
|
+
fz = faces[fa][fz];
|
|
2604
|
+
ftrig = faces[fa][ftrig];
|
|
2605
|
+
|
|
2606
|
+
|
|
2607
|
+
// int orderz = order_facet[fa][1];
|
|
2608
|
+
|
|
2609
|
+
if(vnums[fz] < vnums[ftrig]) swap(fz, ftrig);
|
|
2610
|
+
int p = order_facet[fa][0];
|
|
2611
|
+
LegendrePolynomial::Eval(p, sigma[fmax] - sigma[ftrig],leg_u);
|
|
2612
|
+
LegendrePolynomial::Eval(p, sigma[fmax] - sigma[fz],leg_v);
|
|
2613
|
+
|
|
2614
|
+
for(int k = 0; k <= p; k++)
|
|
2615
|
+
for(int l = 0; l <= p; l++)
|
|
2616
|
+
{
|
|
2617
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(0.5*(sigma[fmax] - sigma[fz]),-0.5*(sigma[fmax] - sigma[fz]),
|
|
2618
|
+
0.5*(sigma[fmax] - sigma[ftrig]),-0.5*(sigma[fmax] - sigma[ftrig]),leg_u[l]* leg_v[k]*lam_face);
|
|
2619
|
+
}
|
|
2620
|
+
|
|
2621
|
+
|
|
2622
|
+
|
|
2623
|
+
}
|
|
2624
|
+
|
|
2625
|
+
|
|
2626
|
+
|
|
2627
|
+
int oi = order_inner[0];
|
|
2628
|
+
leg_u.SetSize(oi+2);
|
|
2629
|
+
leg_v.SetSize(oi+2);
|
|
2630
|
+
leg_w.SetSize(oi+2);
|
|
2631
|
+
|
|
2632
|
+
LegendrePolynomial::Eval(oi+1,sigma[0] - sigma[1],leg_u);
|
|
2633
|
+
LegendrePolynomial::Eval(oi+1,sigma[0] - sigma[3],leg_v);
|
|
2634
|
+
LegendrePolynomial::Eval(oi+1,sigma[0] - sigma[4],leg_w);
|
|
2635
|
+
|
|
2636
|
+
for(int k=0; k<=oi-1; k++)
|
|
2637
|
+
{
|
|
2638
|
+
for(int i = 0; i <= oi+1; i++)
|
|
2639
|
+
{
|
|
2640
|
+
for(int j = 0; j <= oi+1; j++)
|
|
2641
|
+
{
|
|
2642
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lx[0], lx[1], lz[0], lz[1], ly[0]*ly[1]*leg_u[i]*leg_v[k]* leg_w[j]);
|
|
2643
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lx[0], lx[1], ly[0], ly[1], lz[0]*lz[1]*leg_u[i]*leg_v[j]* leg_w[k]);
|
|
2644
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(ly[0], ly[1], lz[0], lz[1], lx[0]*lx[1]*leg_u[k]*leg_v[j]* leg_w[i]);
|
|
2645
|
+
}
|
|
2646
|
+
}
|
|
2647
|
+
}
|
|
2648
|
+
|
|
2649
|
+
|
|
2650
|
+
// S_xz
|
|
2651
|
+
for (int i=0; i<=oi; i++)
|
|
2652
|
+
{
|
|
2653
|
+
for (int j=0; j<=oi; j++)
|
|
2654
|
+
{
|
|
2655
|
+
for (int k=0; k<=oi+1; k++)
|
|
2656
|
+
{
|
|
2657
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lx[0], lx[0], ly[0], lz[0], leg_u[k]*leg_v[j]*leg_w[i]);
|
|
2658
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(ly[0], ly[0], lx[0], lz[0], leg_u[i]*leg_v[k]*leg_w[j]);
|
|
2659
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lz[0], lz[0], lx[0], ly[0], leg_u[i]*leg_v[j]*leg_w[k]);
|
|
2660
|
+
}
|
|
2661
|
+
}
|
|
2662
|
+
}
|
|
2663
|
+
|
|
2664
|
+
|
|
2665
|
+
};
|
|
2666
|
+
|
|
2667
|
+
template <typename MIP, typename TFA>
|
|
2668
|
+
void CalcDualShape2 (const MIP & mip, TFA & shape) const
|
|
2669
|
+
{
|
|
2670
|
+
throw Exception ("Hdivdivfe not implementend for element type");
|
|
2671
|
+
}
|
|
2672
|
+
|
|
2673
|
+
|
|
2674
|
+
};
|
|
2675
|
+
|
|
2676
|
+
|
|
2677
|
+
|
|
2678
|
+
|
|
2679
|
+
////////////////////// SURFACE ////////////////////////////
|
|
2680
|
+
template <int DIM>
|
|
2681
|
+
class HDivDivSurfaceFiniteElement : public FiniteElement
|
|
2682
|
+
{
|
|
2683
|
+
public:
|
|
2684
|
+
using FiniteElement::FiniteElement;
|
|
2685
|
+
using FiniteElement::ndof;
|
|
2686
|
+
using FiniteElement::order;
|
|
2687
|
+
|
|
2688
|
+
virtual void CalcMappedShape_Matrix (const MappedIntegrationPoint<DIM,DIM+1> & mip,
|
|
2689
|
+
BareSliceMatrix<double> shape) const = 0;
|
|
2690
|
+
|
|
2691
|
+
virtual void CalcMappedShape_Vector (const MappedIntegrationPoint<DIM,DIM+1> & mip,
|
|
2692
|
+
BareSliceMatrix<double> shape) const = 0;
|
|
2693
|
+
|
|
2694
|
+
};
|
|
2695
|
+
|
|
2696
|
+
|
|
2697
|
+
template <ELEMENT_TYPE ET> class HDivDivSurfaceFE;
|
|
2698
|
+
|
|
2699
|
+
|
|
2700
|
+
template <ELEMENT_TYPE ET>
|
|
2701
|
+
class T_HDivDivSurfaceFE : public HDivDivSurfaceFiniteElement<ET_trait<ET>::DIM>,
|
|
2702
|
+
public VertexOrientedFE<ET>
|
|
2703
|
+
{
|
|
2704
|
+
protected:
|
|
2705
|
+
enum { DIM = ET_trait<ET>::DIM };
|
|
2706
|
+
enum { DIM_STRESS = ((DIM+2)*(DIM+1))/2 };
|
|
2707
|
+
|
|
2708
|
+
using VertexOrientedFE<ET>::vnums;
|
|
2709
|
+
using HDivDivSurfaceFiniteElement<ET_trait<ET>::DIM>::ndof;
|
|
2710
|
+
using HDivDivSurfaceFiniteElement<ET_trait<ET>::DIM>::order;
|
|
2711
|
+
|
|
2712
|
+
IVec<DIM> order_inner;
|
|
2713
|
+
|
|
2714
|
+
|
|
2715
|
+
public:
|
|
2716
|
+
using VertexOrientedFE<ET>::SetVertexNumbers;
|
|
2717
|
+
|
|
2718
|
+
T_HDivDivSurfaceFE (int aorder)
|
|
2719
|
+
{
|
|
2720
|
+
order = aorder;
|
|
2721
|
+
order_inner = aorder;
|
|
2722
|
+
}
|
|
2723
|
+
|
|
2724
|
+
virtual ELEMENT_TYPE ElementType() const { return ET; }
|
|
2725
|
+
const HDivDivSurfaceFE<ET> * Cast() const { return static_cast<const HDivDivSurfaceFE<ET>*> (this); }
|
|
2726
|
+
|
|
2727
|
+
INLINE void SetOrderInner (IVec<DIM,int> order) { order_inner = order; }
|
|
2728
|
+
|
|
2729
|
+
virtual void ComputeNDof()
|
|
2730
|
+
{
|
|
2731
|
+
cout << "Error, T_HDivDivSurfaceFE<ET>:: ComputeNDof not available for base class" << endl;
|
|
2732
|
+
}
|
|
2733
|
+
|
|
2734
|
+
virtual void CalcMappedShape_Vector (const MappedIntegrationPoint<DIM,DIM+1> & mip,
|
|
2735
|
+
BareSliceMatrix<double> shape) const
|
|
2736
|
+
{
|
|
2737
|
+
Vec<DIM, AutoDiff<DIM+1>> adp = mip;
|
|
2738
|
+
TIP<DIM, AutoDiffDiff<DIM+1>> addp(adp, mip.IP().FacetNr(), mip.IP().VB());
|
|
2739
|
+
|
|
2740
|
+
Cast() -> T_CalcShape (addp, SBLambda([&] (int nr, auto val)
|
|
2741
|
+
{
|
|
2742
|
+
shape.Row(nr).Range(0,DIM_STRESS) = val.Shape();
|
|
2743
|
+
}));
|
|
2744
|
+
}
|
|
2745
|
+
|
|
2746
|
+
|
|
2747
|
+
virtual void CalcMappedShape_Matrix (const MappedIntegrationPoint<DIM,DIM+1> & mip,
|
|
2748
|
+
BareSliceMatrix<double> shape) const
|
|
2749
|
+
{
|
|
2750
|
+
Vec<DIM, AutoDiff<DIM+1>> adp = mip;
|
|
2751
|
+
TIP<DIM, AutoDiffDiff<DIM+1>> addp(adp, mip.IP().FacetNr(), mip.IP().VB());
|
|
2752
|
+
|
|
2753
|
+
Cast() -> T_CalcShape (addp, SBLambda([&](int nr,auto val)
|
|
2754
|
+
{
|
|
2755
|
+
Vec<DIM_STRESS> vecshape = val.Shape();
|
|
2756
|
+
BareVector<double> matshape = shape.Row(nr);
|
|
2757
|
+
VecToSymMat<DIM+1> (vecshape, matshape);
|
|
2758
|
+
}));
|
|
2759
|
+
}
|
|
2760
|
+
|
|
2761
|
+
|
|
2762
|
+
};
|
|
2763
|
+
|
|
2764
|
+
template <> class HDivDivSurfaceFE<ET_SEGM> : public T_HDivDivSurfaceFE<ET_SEGM>
|
|
2765
|
+
{
|
|
2766
|
+
|
|
2767
|
+
public:
|
|
2768
|
+
using T_HDivDivSurfaceFE<ET_SEGM> :: T_HDivDivSurfaceFE;
|
|
2769
|
+
|
|
2770
|
+
virtual void ComputeNDof()
|
|
2771
|
+
{
|
|
2772
|
+
order = 0;
|
|
2773
|
+
ndof = 0;
|
|
2774
|
+
ndof += order_inner[0]+1;
|
|
2775
|
+
order = max2(order,order_inner[0]);
|
|
2776
|
+
|
|
2777
|
+
}
|
|
2778
|
+
template <typename Tx, typename TFA>
|
|
2779
|
+
void T_CalcShape (TIP<1,Tx> ip/*AutoDiffDiff<2> hx[2]*/, TFA & shape) const
|
|
2780
|
+
{
|
|
2781
|
+
auto x = ip.x;
|
|
2782
|
+
AutoDiffDiff<2> ddlami[2] ={ x, 1-x };
|
|
2783
|
+
|
|
2784
|
+
int ii = 0;
|
|
2785
|
+
|
|
2786
|
+
ArrayMem<AutoDiffDiff<2>,20> u(order_inner[0]+2);
|
|
2787
|
+
|
|
2788
|
+
int es = 0,ee = 1;
|
|
2789
|
+
if(vnums[es] > vnums[ee]) swap (es,ee);
|
|
2790
|
+
|
|
2791
|
+
AutoDiffDiff<2> ls = ddlami[es],le = ddlami[ee];
|
|
2792
|
+
|
|
2793
|
+
IntegratedLegendreMonomialExt::Calc(order_inner[0]+2, le-ls,u);
|
|
2794
|
+
|
|
2795
|
+
for(int l = 0; l <= order_inner[0]; l++)
|
|
2796
|
+
shape[ii++] = SigmaGrad (u[l]);
|
|
2797
|
+
|
|
2798
|
+
|
|
2799
|
+
};
|
|
2800
|
+
};
|
|
2801
|
+
|
|
2802
|
+
|
|
2803
|
+
template <> class HDivDivSurfaceFE<ET_TRIG> : public T_HDivDivSurfaceFE<ET_TRIG>
|
|
2804
|
+
{
|
|
2805
|
+
|
|
2806
|
+
public:
|
|
2807
|
+
using T_HDivDivSurfaceFE<ET_TRIG> :: T_HDivDivSurfaceFE;
|
|
2808
|
+
|
|
2809
|
+
virtual void ComputeNDof()
|
|
2810
|
+
{
|
|
2811
|
+
order = 0;
|
|
2812
|
+
ndof = 0;
|
|
2813
|
+
ndof += (order_inner[0]+1+HDivDivFE<ET_PRISM>::incrorder_zz1_bd)*(order_inner[0]+2+HDivDivFE<ET_PRISM>::incrorder_zz1_bd)/2;
|
|
2814
|
+
order = max2(order, order_inner[0]+HDivDivFE<ET_PRISM>::incrorder_zz1_bd);
|
|
2815
|
+
}
|
|
2816
|
+
|
|
2817
|
+
|
|
2818
|
+
template <typename Tx, typename TFA>
|
|
2819
|
+
void T_CalcShape (TIP<2,Tx> ip, TFA & shape) const
|
|
2820
|
+
{
|
|
2821
|
+
Tx x = ip.x, y = ip.y;
|
|
2822
|
+
typedef decltype(x.Value()+x.Value()) T;
|
|
2823
|
+
AutoDiff<3,T> xx(x.Value(), &x.DValue(0));
|
|
2824
|
+
AutoDiff<3,T> yy(y.Value(), &y.DValue(0));
|
|
2825
|
+
AutoDiff<3,T> lx[6] ={ xx, yy, 1-xx-yy};
|
|
2826
|
+
int ii = 0;
|
|
2827
|
+
|
|
2828
|
+
ArrayMem<AutoDiff<3,T>,20> leg_u(order_inner[0]+2), leg_v(order_inner[0]+3);
|
|
2829
|
+
|
|
2830
|
+
|
|
2831
|
+
int fav[3] ={0,1,2};
|
|
2832
|
+
|
|
2833
|
+
//Sort vertices first edge op minimal vertex
|
|
2834
|
+
if(vnums[fav[0]] > vnums[fav[1]]) swap(fav[0],fav[1]);
|
|
2835
|
+
if(vnums[fav[1]] > vnums[fav[2]]) swap(fav[1],fav[2]);
|
|
2836
|
+
if(vnums[fav[0]] > vnums[fav[1]]) swap(fav[0],fav[1]);
|
|
2837
|
+
|
|
2838
|
+
leg_u.SetSize(order_inner[0]+HDivDivFE<ET_PRISM>::incrorder_zz1_bd+1);
|
|
2839
|
+
leg_v.SetSize(order_inner[0]+HDivDivFE<ET_PRISM>::incrorder_zz1_bd+1);
|
|
2840
|
+
ScaledLegendrePolynomial(order_inner[0]+HDivDivFE<ET_PRISM>::incrorder_zz1_bd,lx[fav[0]]-lx[fav[1]],lx[fav[0]]+lx[fav[1]],leg_u);
|
|
2841
|
+
LegendrePolynomial::Eval(order_inner[0]+HDivDivFE<ET_PRISM>::incrorder_zz1_bd,2 * lx[fav[2]] - 1,leg_v);
|
|
2842
|
+
|
|
2843
|
+
for(int j = 0; j <= order_inner[0]+HDivDivFE<ET_PRISM>::incrorder_zz1_bd; j++)
|
|
2844
|
+
for(int k = 0; k <= order_inner[0]+HDivDivFE<ET_PRISM>::incrorder_zz1_bd-j; k++)
|
|
2845
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(lx[fav[0]], lx[fav[1]], lx[fav[2]], lx[fav[2]], leg_u[j]*leg_v[k]);
|
|
2846
|
+
}
|
|
2847
|
+
};
|
|
2848
|
+
|
|
2849
|
+
|
|
2850
|
+
template <> class HDivDivSurfaceFE<ET_QUAD> : public T_HDivDivSurfaceFE<ET_QUAD>
|
|
2851
|
+
{
|
|
2852
|
+
|
|
2853
|
+
public:
|
|
2854
|
+
using T_HDivDivSurfaceFE<ET_QUAD> :: T_HDivDivSurfaceFE;
|
|
2855
|
+
|
|
2856
|
+
virtual void ComputeNDof()
|
|
2857
|
+
{
|
|
2858
|
+
order = 0;
|
|
2859
|
+
ndof = 0;
|
|
2860
|
+
ndof += (order_inner[0]+1+HDivDivFE<ET_PRISM>::incrorder_xx1_bd)*(order_inner[1]+1+HDivDivFE<ET_PRISM>::incrorder_xx2_bd);
|
|
2861
|
+
order = max2(order, order_inner[0]+HDivDivFE<ET_PRISM>::incrorder_xx1_bd);
|
|
2862
|
+
order = max2(order, order_inner[1]+HDivDivFE<ET_PRISM>::incrorder_xx2_bd);
|
|
2863
|
+
}
|
|
2864
|
+
|
|
2865
|
+
|
|
2866
|
+
template <typename Tx, typename TFA>
|
|
2867
|
+
void T_CalcShape (TIP<2,Tx> ip, TFA & shape) const
|
|
2868
|
+
{
|
|
2869
|
+
AutoDiffDiff<3> x = ip.x, z = ip.y;
|
|
2870
|
+
typedef decltype(x.Value()+x.Value()) T;
|
|
2871
|
+
AutoDiff<3> xx(x.Value(), &x.DValue(0));
|
|
2872
|
+
AutoDiff<3> zz(z.Value(), &z.DValue(0));
|
|
2873
|
+
AutoDiff<3> sigma[4] = {1-xx+1-zz, xx+1-zz, xx+zz, 1-xx+zz};
|
|
2874
|
+
int ii = 0;
|
|
2875
|
+
|
|
2876
|
+
|
|
2877
|
+
ArrayMem<AutoDiff<3>,20> leg_u(order_inner[0]+2);
|
|
2878
|
+
ArrayMem<AutoDiff<3>,20> leg_w(order_inner[1]+2);
|
|
2879
|
+
|
|
2880
|
+
|
|
2881
|
+
int fmax = 0;
|
|
2882
|
+
for(int j = 1; j < 4; j++)
|
|
2883
|
+
if(vnums[j] > vnums[fmax]) fmax = j;
|
|
2884
|
+
|
|
2885
|
+
int f1, f2;
|
|
2886
|
+
f1 = (fmax+1)%4;
|
|
2887
|
+
f2 = (fmax+3)%4;
|
|
2888
|
+
|
|
2889
|
+
|
|
2890
|
+
if(vnums[f1] > vnums[f2])
|
|
2891
|
+
{
|
|
2892
|
+
swap(f1,f2);
|
|
2893
|
+
}
|
|
2894
|
+
|
|
2895
|
+
LegendrePolynomial::Eval(order_inner[0],sigma[fmax] - sigma[f1],leg_u);
|
|
2896
|
+
LegendrePolynomial::Eval(order_inner[0],sigma[fmax] - sigma[f2],leg_w);
|
|
2897
|
+
|
|
2898
|
+
for(int k = 0; k <= order_inner[0]+HDivDivFE<ET_PRISM>::incrorder_xx2_bd; k++)
|
|
2899
|
+
for(int l = 0; l <= order_inner[0]+HDivDivFE<ET_PRISM>::incrorder_xx1_bd; l++)
|
|
2900
|
+
{
|
|
2901
|
+
shape[ii++] = Prism_Dl1xDl3_symtensor_Dl2xDl4_u<T>(0.5*(sigma[fmax]-sigma[f2]),-0.5*(sigma[fmax]-sigma[f2]),
|
|
2902
|
+
0.5*(sigma[fmax]-sigma[f1]),-0.5*(sigma[fmax]-sigma[f1]),leg_u[l]* leg_w[k]);
|
|
2903
|
+
}
|
|
2904
|
+
|
|
2905
|
+
|
|
2906
|
+
}
|
|
2907
|
+
};
|
|
2908
|
+
|
|
2909
|
+
|
|
2910
|
+
HDIVDIVFE_EXTERN template class T_HDivDivFE<ET_TRIG>;
|
|
2911
|
+
HDIVDIVFE_EXTERN template class T_HDivDivFE<ET_QUAD>;
|
|
2912
|
+
HDIVDIVFE_EXTERN template class T_HDivDivFE<ET_TET>;
|
|
2913
|
+
HDIVDIVFE_EXTERN template class T_HDivDivFE<ET_PRISM>;
|
|
2914
|
+
HDIVDIVFE_EXTERN template class T_HDivDivFE<ET_HEX>;
|
|
2915
|
+
HDIVDIVFE_EXTERN template class T_HDivDivSurfaceFE<ET_SEGM>;
|
|
2916
|
+
HDIVDIVFE_EXTERN template class T_HDivDivSurfaceFE<ET_QUAD>;
|
|
2917
|
+
HDIVDIVFE_EXTERN template class T_HDivDivSurfaceFE<ET_TRIG>;
|
|
2918
|
+
|
|
2919
|
+
}
|
|
2920
|
+
|
|
2921
|
+
|
|
2922
|
+
#endif
|
|
2923
|
+
|