ngsolve 6.2.2506.post75.dev0__cp314-cp314-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ngsolve might be problematic. Click here for more details.
- ngsolve-6.2.2506.post75.dev0.data/data/bin/ngs_nvcc +14 -0
- ngsolve-6.2.2506.post75.dev0.data/data/bin/ngs_nvlink +14 -0
- ngsolve-6.2.2506.post75.dev0.data/data/bin/ngscxx +15 -0
- ngsolve-6.2.2506.post75.dev0.data/data/bin/ngsld +11 -0
- ngsolve-6.2.2506.post75.dev0.data/data/bin/ngsolve.tcl +648 -0
- ngsolve-6.2.2506.post75.dev0.data/data/bin/ngspy +2 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/analytic_integrals.hpp +10 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/arnoldi.hpp +55 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/bandmatrix.hpp +334 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/basematrix.hpp +957 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/basevector.hpp +1268 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/bdbequations.hpp +2805 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/bdbintegrator.hpp +1660 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/bem_diffops.hpp +475 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/bessel.hpp +1064 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/bilinearform.hpp +963 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/bla.hpp +29 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/blockalloc.hpp +95 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/blockjacobi.hpp +328 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/bspline.hpp +116 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/calcinverse.hpp +141 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/cg.hpp +368 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/chebyshev.hpp +44 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/cholesky.hpp +720 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/clapack.h +7254 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/code_generation.hpp +296 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/coefficient.hpp +2033 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/coefficient_impl.hpp +19 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/coefficient_stdmath.hpp +167 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/commutingAMG.hpp +106 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/comp.hpp +79 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/compatibility.hpp +41 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/complex_wrapper.hpp +73 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/compressedfespace.hpp +110 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/contact.hpp +235 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/cuda_linalg.hpp +175 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/cuda_ngbla.hpp +226 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/cuda_ngstd.hpp +527 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/cuda_profiler.hpp +240 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/diagonalmatrix.hpp +154 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/differentialoperator.hpp +276 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/diffop.hpp +1286 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/diffop_impl.hpp +328 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/diffopwithfactor.hpp +123 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/discontinuous.hpp +84 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/dump.hpp +949 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/ectypes.hpp +121 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/eigen.hpp +60 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/eigensystem.hpp +18 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/elasticity_equations.hpp +595 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/elementbyelement.hpp +195 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/elementtopology.hpp +1760 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/elementtransformation.hpp +339 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/evalfunc.hpp +405 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/expr.hpp +1686 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/facetfe.hpp +175 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/facetfespace.hpp +180 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/facethofe.hpp +111 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/facetsurffespace.hpp +112 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/fe_interfaces.hpp +32 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/fem.hpp +87 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/fesconvert.hpp +14 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/fespace.hpp +1449 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/finiteelement.hpp +286 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/globalinterfacespace.hpp +77 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/globalspace.hpp +115 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/gridfunction.hpp +525 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/h1amg.hpp +124 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/h1hofe.hpp +188 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/h1hofe_impl.hpp +1262 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/h1hofefo.hpp +148 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/h1hofefo_impl.hpp +185 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/h1hofespace.hpp +167 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/h1lofe.hpp +1240 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/h1lumping.hpp +41 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurl_equations.hpp +1381 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurlcurlfe.hpp +2241 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurlcurlfespace.hpp +78 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurlfe.hpp +259 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurlfe_utils.hpp +107 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurlhdiv_dshape.hpp +857 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurlhdivfes.hpp +308 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurlhofe.hpp +175 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurlhofe_impl.hpp +1871 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurlhofespace.hpp +193 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hcurllofe.hpp +1146 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdiv_equations.hpp +880 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivdivfe.hpp +2923 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivdivsurfacespace.hpp +76 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivfe.hpp +206 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivfe_utils.hpp +717 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivfes.hpp +75 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivhofe.hpp +447 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivhofe_impl.hpp +1107 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivhofefo.hpp +229 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivhofespace.hpp +177 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivhosurfacefespace.hpp +106 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hdivlofe.hpp +773 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hidden.hpp +74 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/householder.hpp +181 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hypre_ams_precond.hpp +123 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/hypre_precond.hpp +73 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/integrator.hpp +2012 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/integratorcf.hpp +253 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/interpolate.hpp +49 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/intrule.hpp +2542 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/intrules_SauterSchwab.hpp +25 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/irspace.hpp +49 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/jacobi.hpp +153 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/kernels.hpp +762 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/l2hofe.hpp +194 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/l2hofe_impl.hpp +564 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/l2hofefo.hpp +542 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/l2hofespace.hpp +344 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/la.hpp +38 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/linalg_kernels.hpp +102 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/linearform.hpp +266 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/matrix.hpp +2140 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/memusage.hpp +41 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/meshaccess.hpp +1359 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/mgpre.hpp +204 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/mp_coefficient.hpp +145 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/mptools.hpp +2281 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/multigrid.hpp +42 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/multivector.hpp +447 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/mumpsinverse.hpp +187 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/mycomplex.hpp +361 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/ng_lapack.hpp +1661 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/ngblas.hpp +1232 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/ngs_defines.hpp +30 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/ngs_stdcpp_include.hpp +106 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/ngs_utils.hpp +121 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/ngsobject.hpp +1019 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/ngsstream.hpp +113 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/ngstd.hpp +72 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/nodalhofe.hpp +96 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/nodalhofe_impl.hpp +141 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/normalfacetfe.hpp +223 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/normalfacetfespace.hpp +98 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/normalfacetsurfacefespace.hpp +84 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/order.hpp +251 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/parallel_matrices.hpp +222 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/paralleldofs.hpp +340 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/parallelngs.hpp +23 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/parallelvector.hpp +269 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/pardisoinverse.hpp +200 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/periodic.hpp +129 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/plateaufespace.hpp +25 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/pml.hpp +275 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/pmltrafo.hpp +631 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/postproc.hpp +142 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/potentialtools.hpp +22 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/precomp.hpp +60 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/preconditioner.hpp +602 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/prolongation.hpp +377 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/python_comp.hpp +107 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/python_fem.hpp +89 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/python_linalg.hpp +58 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/python_ngstd.hpp +386 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/recursive_pol.hpp +4896 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/recursive_pol_tet.hpp +395 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/recursive_pol_trig.hpp +492 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/reorderedfespace.hpp +81 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/sample_sort.hpp +105 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/scalarfe.hpp +335 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/shapefunction_utils.hpp +113 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/simd_complex.hpp +329 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/smoother.hpp +253 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/solve.hpp +89 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/sparsecholesky.hpp +313 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/sparsematrix.hpp +1038 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/sparsematrix_dyn.hpp +90 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/sparsematrix_impl.hpp +1013 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/special_matrix.hpp +463 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/specialelement.hpp +125 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/statushandler.hpp +33 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/stringops.hpp +12 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/superluinverse.hpp +136 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/symbolicintegrator.hpp +850 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/symmetricmatrix.hpp +144 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/tangentialfacetfe.hpp +224 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/tangentialfacetfespace.hpp +91 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/tensor.hpp +522 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/tensorcoefficient.hpp +446 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/tensorproductintegrator.hpp +113 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/thcurlfe.hpp +128 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/thcurlfe_impl.hpp +380 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/thdivfe.hpp +80 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/thdivfe_impl.hpp +492 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/tpdiffop.hpp +461 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/tpfes.hpp +133 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/tpintrule.hpp +224 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/triangular.hpp +465 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/tscalarfe.hpp +245 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/tscalarfe_impl.hpp +1029 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/umfpackinverse.hpp +148 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/unifiedvector.hpp +103 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/vector.hpp +1273 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/voxelcoefficientfunction.hpp +41 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/vtkoutput.hpp +198 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/vvector.hpp +208 -0
- ngsolve-6.2.2506.post75.dev0.data/data/include/netgen/webgui.hpp +92 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/cmake/ngsolve/NGSolveConfig.cmake +102 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/cmake/ngsolve/ngsolve-targets-release.cmake +89 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/cmake/ngsolve/ngsolve-targets.cmake +173 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/netgen_mesher.libs/libngbla.so +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/netgen_mesher.libs/libngcomp.so +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/netgen_mesher.libs/libngfem.so +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/netgen_mesher.libs/libngla.so +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/netgen_mesher.libs/libngsbem.so +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/netgen_mesher.libs/libngscudalib.so +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/netgen_mesher.libs/libngsolve.so +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/netgen_mesher.libs/libngstd.so +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/TensorProductTools.py +210 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/__console.py +94 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/__expr.py +181 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/__init__.py +148 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/_scikit_build_core_dependencies.py +30 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/bvp.py +78 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/config/__init__.py +1 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/config/__main__.py +4 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/config/config.py +60 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/TensorProduct/__init__.py +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/TensorProduct/tp_dg_1d_1d.py +80 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/TensorProduct/tp_dg_1d_2d.py +73 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/TensorProduct/tp_dg_2d_1d.py +72 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/TensorProduct/tp_dg_2d_2d.py +66 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/__init__.py +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/__init__.py +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/hhj.py +44 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/hybrid_dg.py +53 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/mixed.py +30 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/nonlin.py +29 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/pickling.py +26 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/pml.py +31 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/taskmanager.py +20 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/tdnns.py +47 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/timeDG-skeleton.py +45 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/timeDG.py +38 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/timeDGlap.py +42 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/howto/timeDGwave.py +61 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/intro/__init__.py +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/intro/adaptive.py +123 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/intro/cmagnet.py +59 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/intro/elasticity.py +76 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/intro/navierstokes.py +74 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/intro/poisson.ipynb +170 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/intro/poisson.py +41 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/mpi/__init__.py +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/mpi/mpi_cmagnet.py +87 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/mpi/mpi_navierstokes.py +117 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/mpi/mpi_poisson.py +89 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/demos/mpi/mpi_timeDG.py +82 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/directsolvers.py +26 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/eigenvalues.py +364 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/internal.py +89 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/krylovspace.py +1013 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/meshes.py +748 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/ngs2petsc.py +310 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/ngscuda.so +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/ngscxx.py +42 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/ngslib.so +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/nonlinearsolvers.py +203 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/preconditioners.py +11 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/solve_implementation.py +168 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/solvers.py +7 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/timestepping.py +185 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/timing.py +108 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/utils.py +167 -0
- ngsolve-6.2.2506.post75.dev0.data/data/lib/python3.14/site-packages/ngsolve/webgui.py +670 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/beam.geo +17 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/beam.vol +240 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/chip.in2d +41 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/chip.vol +614 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/coil.geo +12 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/coil.vol +2560 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/coilshield.geo +24 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/coilshield.vol +3179 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/cube.geo +19 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/cube.vol +1832 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d10_DGdoubleglazing.pde +50 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d11_chip_nitsche.pde +40 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d1_square.pde +43 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d2_chip.pde +35 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d3_helmholtz.pde +22 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d4_cube.pde +46 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d5_beam.pde +74 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d6_shaft.pde +73 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d7_coil.pde +50 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d8_coilshield.pde +49 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/d9_hybridDG.pde +72 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/doubleglazing.in2d +27 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/doubleglazing.vol +737 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/piezo2d40round4.vol.gz +0 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/shaft.geo +73 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/shaft.vol +4291 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/square.in2d +17 -0
- ngsolve-6.2.2506.post75.dev0.data/data/share/ngsolve/square.vol +149 -0
- ngsolve-6.2.2506.post75.dev0.dist-info/METADATA +14 -0
- ngsolve-6.2.2506.post75.dev0.dist-info/RECORD +303 -0
- ngsolve-6.2.2506.post75.dev0.dist-info/WHEEL +5 -0
- ngsolve-6.2.2506.post75.dev0.dist-info/licenses/LICENSE +504 -0
- ngsolve-6.2.2506.post75.dev0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1871 @@
|
|
|
1
|
+
#ifndef FILE_HCURLHOFE_IMPL
|
|
2
|
+
#define FILE_HCURLHOFE_IMPL
|
|
3
|
+
|
|
4
|
+
/*********************************************************************/
|
|
5
|
+
/* File: hcurlhofe.hpp */
|
|
6
|
+
/* Author: Sabine Zaglmayr, Joachim Schoeber */
|
|
7
|
+
/* Date: 20. Maerz 2003 */
|
|
8
|
+
/* */
|
|
9
|
+
/* AutoCurl - revision: J. Schoeberl, March 2009 */
|
|
10
|
+
/*********************************************************************/
|
|
11
|
+
|
|
12
|
+
#include "recursive_pol.hpp"
|
|
13
|
+
// #include "thdivfe.hpp"
|
|
14
|
+
#include "hcurlhofe.hpp"
|
|
15
|
+
#include "hcurlfe_utils.hpp"
|
|
16
|
+
|
|
17
|
+
namespace ngfem
|
|
18
|
+
{
|
|
19
|
+
|
|
20
|
+
// declaration of the shapes ...
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
template <ELEMENT_TYPE ET, template <ELEMENT_TYPE ET2> class TSHAPES, typename BASE>
|
|
25
|
+
void HCurlHighOrderFE<ET,TSHAPES,BASE> :: ComputeNDof()
|
|
26
|
+
{
|
|
27
|
+
ndof = N_EDGE;
|
|
28
|
+
|
|
29
|
+
for (int i = 0; i < N_EDGE; i++)
|
|
30
|
+
if(order_edge[i] > 0)
|
|
31
|
+
ndof += usegrad_edge[i]*order_edge[i];
|
|
32
|
+
|
|
33
|
+
for(int i = 0; i < N_FACE; i++)
|
|
34
|
+
if (FaceType(i) == ET_TRIG)
|
|
35
|
+
{
|
|
36
|
+
if (order_face[i][0] > 1)
|
|
37
|
+
{
|
|
38
|
+
int p = order_face[i][0];
|
|
39
|
+
int pg = p - (type1 ? 1 : 0);
|
|
40
|
+
ndof += usegrad_face[i]*pg*(pg-1)/2;
|
|
41
|
+
ndof += (p+2)*(p-1)/2;
|
|
42
|
+
// ndof += ((usegrad_face[i]+1)*order_face[i][0]+2)*(order_face[i][0]-1)/2;
|
|
43
|
+
}
|
|
44
|
+
}
|
|
45
|
+
else
|
|
46
|
+
{
|
|
47
|
+
if(order_face[i][0]>=0 && order_face[i][1]>=0)
|
|
48
|
+
ndof += (usegrad_face[i]+1)*order_face[i][0]*order_face[i][1]
|
|
49
|
+
+ order_face[i][0] + order_face[i][1];
|
|
50
|
+
}
|
|
51
|
+
|
|
52
|
+
switch (ET)
|
|
53
|
+
{
|
|
54
|
+
case ET_TET:
|
|
55
|
+
if(order_cell[0] > 2) {
|
|
56
|
+
if (type1)
|
|
57
|
+
ndof += usegrad_cell*(order_cell[0]-3)*(order_cell[0]-2)*(order_cell[0]-1)/6 + (order_cell[0]-2)*(order_cell[0]-1)*(2*order_cell[0]+3)/6 ;
|
|
58
|
+
else
|
|
59
|
+
ndof += ((usegrad_cell + 2) * order_cell[0] + 3)
|
|
60
|
+
* (order_cell[0]-2) * (order_cell[0]-1) / 6;
|
|
61
|
+
}
|
|
62
|
+
break;
|
|
63
|
+
case ET_PRISM:
|
|
64
|
+
if(order_cell[2] > 0 && order_cell[0] > 1)
|
|
65
|
+
ndof += ((usegrad_cell+2)*order_cell[2] + 1) * order_cell[0]*(order_cell[0]-1)/2
|
|
66
|
+
+ (order_cell[0]-1)*order_cell[2];
|
|
67
|
+
break;
|
|
68
|
+
case ET_PYRAMID:
|
|
69
|
+
{
|
|
70
|
+
int pc = order_cell[0]; //SZ: no problem to do anisotropic, but for the moment
|
|
71
|
+
// is it worth getting crazy :-)
|
|
72
|
+
if(order_cell[0]>1)
|
|
73
|
+
ndof += usegrad_cell*(pc-1)*pc*(2*pc-1)/6 + pc*(2*pc*pc+3*pc-2)/3;
|
|
74
|
+
break;
|
|
75
|
+
}
|
|
76
|
+
case ET_HEX:
|
|
77
|
+
if(order_cell[0] >= 0 && order_cell[1]>= 0 && order_cell[2]>=0)
|
|
78
|
+
ndof += (usegrad_cell + 2)* order_cell[0] * order_cell[1] * order_cell[2]
|
|
79
|
+
+ order_cell[1]*order_cell[2] + order_cell[0]*(order_cell[1] + order_cell[2]);
|
|
80
|
+
break;
|
|
81
|
+
default:
|
|
82
|
+
;
|
|
83
|
+
}
|
|
84
|
+
|
|
85
|
+
TORDER horder = 0;
|
|
86
|
+
for (int i = 0; i < N_EDGE; i++)
|
|
87
|
+
horder = max2 (horder, order_edge[i]);
|
|
88
|
+
|
|
89
|
+
for(int i=0; i < N_FACE; i++)
|
|
90
|
+
if (ET_trait<ET>::FaceType(i) == ET_TRIG)
|
|
91
|
+
horder = max2 (horder, order_face[i][0]);
|
|
92
|
+
else
|
|
93
|
+
horder = max2 (horder, Max (order_face[i]));
|
|
94
|
+
|
|
95
|
+
if (DIM == 3)
|
|
96
|
+
horder = max2 (horder, Max(order_cell));
|
|
97
|
+
|
|
98
|
+
// for integration order ..
|
|
99
|
+
if (ET == ET_PRISM || ET == ET_HEX || ET == ET_PYRAMID || ET == ET_QUAD)
|
|
100
|
+
horder++;
|
|
101
|
+
else
|
|
102
|
+
if (horder==0) horder++;
|
|
103
|
+
order = horder;
|
|
104
|
+
}
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
template <ELEMENT_TYPE ET>
|
|
110
|
+
class HCurlHighOrderFE_Shape : public HCurlHighOrderFE<ET>
|
|
111
|
+
{
|
|
112
|
+
using ET_trait<ET>::DIM;
|
|
113
|
+
public:
|
|
114
|
+
template<typename Tx, typename TFA>
|
|
115
|
+
void T_CalcShape (TIP<DIM,Tx> ip, TFA & shape) const;
|
|
116
|
+
|
|
117
|
+
template <typename MIP, typename TFA>
|
|
118
|
+
inline void CalcDualShape2 (const MIP & mip, TFA & shape) const
|
|
119
|
+
{
|
|
120
|
+
throw Exception(string("CalcDualShape missing for HighOrderHCurl element ")+ElementTopology::GetElementName(ET));
|
|
121
|
+
}
|
|
122
|
+
};
|
|
123
|
+
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
//------------------------------------------------------------------------
|
|
128
|
+
// HCurlHighOrderSegm
|
|
129
|
+
//------------------------------------------------------------------------
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
template<> template<typename Tx, typename TFA>
|
|
133
|
+
void HCurlHighOrderFE_Shape<ET_SEGM> :: T_CalcShape (TIP<1,Tx> ip, TFA & shape) const
|
|
134
|
+
{
|
|
135
|
+
Tx x = ip.x;
|
|
136
|
+
Tx lam[2] = { x, 1-x };
|
|
137
|
+
|
|
138
|
+
IVec<2> e = GetEdgeSort (0, vnums);
|
|
139
|
+
|
|
140
|
+
//Nedelec low order edge shape function
|
|
141
|
+
shape[0] = uDv_minus_vDu (lam[e[0]], lam[e[1]]);
|
|
142
|
+
|
|
143
|
+
int p = order_edge[0]; //order_cell[0];
|
|
144
|
+
//HO-Edge shapes (Gradient Fields)
|
|
145
|
+
if(p > 0 && usegrad_cell)
|
|
146
|
+
{
|
|
147
|
+
// LegendrePolynomial::
|
|
148
|
+
size_t ii = 1;
|
|
149
|
+
EdgeOrthoPol::
|
|
150
|
+
EvalScaledMult (p-1,
|
|
151
|
+
lam[e[1]]-lam[e[0]], lam[e[0]]+lam[e[1]],
|
|
152
|
+
lam[e[0]]*lam[e[1]],
|
|
153
|
+
SBLambda ([&](int nr, Tx val)
|
|
154
|
+
{
|
|
155
|
+
shape[ii++] = Du (val);
|
|
156
|
+
}));
|
|
157
|
+
}
|
|
158
|
+
}
|
|
159
|
+
|
|
160
|
+
|
|
161
|
+
|
|
162
|
+
|
|
163
|
+
//------------------------------------------------------------------------
|
|
164
|
+
// HCurlHighOrderTrig
|
|
165
|
+
//------------------------------------------------------------------------
|
|
166
|
+
|
|
167
|
+
template<> template<typename Tx, typename TFA>
|
|
168
|
+
INLINE void HCurlHighOrderFE_Shape<ET_TRIG> :: T_CalcShape (TIP<2,Tx> ip, TFA & shape) const
|
|
169
|
+
{
|
|
170
|
+
Tx x = ip.x, y = ip.y;
|
|
171
|
+
Tx lam[3] = { x, y, 1-x-y };
|
|
172
|
+
|
|
173
|
+
|
|
174
|
+
int ii = 3;
|
|
175
|
+
for (int i = 0; i < 3; i++)
|
|
176
|
+
{
|
|
177
|
+
IVec<2> e = GetEdgeSort (i, vnums);
|
|
178
|
+
|
|
179
|
+
//Nedelec low order edge shape function
|
|
180
|
+
shape[i] = uDv_minus_vDu (lam[e[0]], lam[e[1]]);
|
|
181
|
+
|
|
182
|
+
int p = order_edge[i];
|
|
183
|
+
//HO-Edge shapes (Gradient Fields)
|
|
184
|
+
if(p > 0 && usegrad_edge[i])
|
|
185
|
+
{
|
|
186
|
+
// LegendrePolynomial::
|
|
187
|
+
EdgeOrthoPol::
|
|
188
|
+
EvalScaledMult (order_edge[i]-1,
|
|
189
|
+
lam[e[1]]-lam[e[0]], lam[e[0]]+lam[e[1]],
|
|
190
|
+
lam[e[0]]*lam[e[1]],
|
|
191
|
+
// adpol1
|
|
192
|
+
SBLambda ([&](int nr, Tx val)
|
|
193
|
+
{
|
|
194
|
+
shape[ii++] = Du (val);
|
|
195
|
+
}));
|
|
196
|
+
}
|
|
197
|
+
}
|
|
198
|
+
|
|
199
|
+
//Inner shapes (Face)
|
|
200
|
+
int p = order_face[0][0];
|
|
201
|
+
if(p > 1)
|
|
202
|
+
{
|
|
203
|
+
IVec<4> fav = GetFaceSort (0, vnums);
|
|
204
|
+
|
|
205
|
+
// Tx xi = lam[fav[2]]-lam[fav[1]];
|
|
206
|
+
// Tx eta = lam[fav[0]];
|
|
207
|
+
int pg = p - 2 - (type1 ? 1 : 0);
|
|
208
|
+
|
|
209
|
+
// gradients:
|
|
210
|
+
if (usegrad_face[0] && pg >=0)
|
|
211
|
+
|
|
212
|
+
// DubinerBasis
|
|
213
|
+
TrigOrthoPolGrad::EvalMult
|
|
214
|
+
(pg, lam[fav[0]], lam[fav[1]],
|
|
215
|
+
lam[fav[0]]*lam[fav[1]]*lam[fav[2]],
|
|
216
|
+
SBLambda
|
|
217
|
+
([&](int nr, Tx val)
|
|
218
|
+
{
|
|
219
|
+
shape[ii++] = Du (val);
|
|
220
|
+
}));
|
|
221
|
+
|
|
222
|
+
// now ready: compatibility with tets/prisms ! non-gradient inner shapes, same for type 1 and 2
|
|
223
|
+
if (true) // if (type1)
|
|
224
|
+
{
|
|
225
|
+
DubinerBasis::EvalMult
|
|
226
|
+
(p-2, lam[fav[0]], lam[fav[1]],
|
|
227
|
+
lam[fav[0]],
|
|
228
|
+
SBLambda
|
|
229
|
+
([&](int nr, Tx val)
|
|
230
|
+
{
|
|
231
|
+
shape[ii++] = wuDv_minus_wvDu (lam[fav[1]], lam[fav[2]], val);
|
|
232
|
+
}));
|
|
233
|
+
|
|
234
|
+
LegendrePolynomial::EvalMult
|
|
235
|
+
(p-2, lam[fav[2]]-lam[fav[1]], lam[fav[2]],
|
|
236
|
+
SBLambda
|
|
237
|
+
([&] (int j, Tx val)
|
|
238
|
+
{
|
|
239
|
+
shape[ii++] = wuDv_minus_wvDu (lam[fav[1]], lam[fav[0]], val);
|
|
240
|
+
}));
|
|
241
|
+
}
|
|
242
|
+
else
|
|
243
|
+
{
|
|
244
|
+
Tx xi = lam[fav[2]]-lam[fav[1]];
|
|
245
|
+
Tx eta = lam[fav[0]];
|
|
246
|
+
|
|
247
|
+
ArrayMem<Tx,20> adpol1(order),adpol2(order);
|
|
248
|
+
TrigShapesInnerLegendre::CalcSplitted(p+1, xi, eta, adpol1,adpol2);
|
|
249
|
+
|
|
250
|
+
// other combination
|
|
251
|
+
for (int j = 0; j < p-1; j++)
|
|
252
|
+
for (int k = 0; k < p-1-j; k++, ii++)
|
|
253
|
+
shape[ii] = uDv_minus_vDu (adpol2[k], adpol1[j]);
|
|
254
|
+
|
|
255
|
+
// rec_pol * Nedelec0
|
|
256
|
+
for (int j = 0; j < p-1; j++, ii++)
|
|
257
|
+
shape[ii] = wuDv_minus_wvDu (lam[fav[1]], lam[fav[2]], adpol2[j]);
|
|
258
|
+
}
|
|
259
|
+
}
|
|
260
|
+
}
|
|
261
|
+
|
|
262
|
+
|
|
263
|
+
//------------------------------------------------------------------------
|
|
264
|
+
// HCurlHighOrderQuad
|
|
265
|
+
//------------------------------------------------------------------------
|
|
266
|
+
|
|
267
|
+
|
|
268
|
+
template<> template<typename Tx, typename TFA>
|
|
269
|
+
void HCurlHighOrderFE_Shape<ET_QUAD> :: T_CalcShape (TIP<2,Tx> ip, TFA & shape) const
|
|
270
|
+
{
|
|
271
|
+
Tx x = ip.x, y = ip.y;
|
|
272
|
+
Tx hx[2] = { x, y };
|
|
273
|
+
Tx lami[4] = {(1-x)*(1-y),x*(1-y),x*y,(1-x)*y};
|
|
274
|
+
Tx sigma[4] = {(1-x)+(1-y),x+(1-y),x+y,(1-x)+y};
|
|
275
|
+
|
|
276
|
+
int ii = 4;
|
|
277
|
+
ArrayMem<Tx, 10> pol_xi(order+2), pol_eta(order+2);
|
|
278
|
+
|
|
279
|
+
for (int i = 0; i < 4; i++)
|
|
280
|
+
{
|
|
281
|
+
// int p = order_edge[i];
|
|
282
|
+
IVec<2> e = GetEdgeSort (i, vnums);
|
|
283
|
+
|
|
284
|
+
Tx xi = sigma[e[1]]-sigma[e[0]];
|
|
285
|
+
Tx lam_e = lami[e[0]]+lami[e[1]];
|
|
286
|
+
Tx bub = 0.25 * lam_e * (1 - xi*xi);
|
|
287
|
+
|
|
288
|
+
// Nedelec0-shapes
|
|
289
|
+
shape[i] = uDv (0.5 * lam_e, xi);
|
|
290
|
+
|
|
291
|
+
// High Order edges ... Gradient fields
|
|
292
|
+
if(usegrad_edge[i])
|
|
293
|
+
{
|
|
294
|
+
/*
|
|
295
|
+
LegendrePolynomial::
|
|
296
|
+
EvalMult (order_edge[i]-1,
|
|
297
|
+
xi, bub, pol_xi);
|
|
298
|
+
|
|
299
|
+
for (int j = 0; j < p; j++)
|
|
300
|
+
shape[ii++] = Du<2> (pol_xi[j]);
|
|
301
|
+
*/
|
|
302
|
+
// LegendrePolynomial::
|
|
303
|
+
EdgeOrthoPol::
|
|
304
|
+
EvalMult (order_edge[i]-1,
|
|
305
|
+
xi, bub, SBLambda ([&](int i, Tx val)
|
|
306
|
+
{
|
|
307
|
+
shape[ii++] = Du (val);
|
|
308
|
+
}));
|
|
309
|
+
|
|
310
|
+
}
|
|
311
|
+
}
|
|
312
|
+
|
|
313
|
+
|
|
314
|
+
|
|
315
|
+
|
|
316
|
+
IVec<2> p = order_face[0]; // (order_cell[0],order_cell[1]);
|
|
317
|
+
|
|
318
|
+
|
|
319
|
+
if (usegrad_face[0] && p[0] >= 1 && p[1] >= 1)
|
|
320
|
+
{
|
|
321
|
+
Vec<2,Tx> xi = ET_trait<ET_QUAD>::XiFace(0, hx, vnums);
|
|
322
|
+
Tx bub = 1.0/16 * (1-xi(0)*xi(0))*(1-xi(1)*xi(1));
|
|
323
|
+
|
|
324
|
+
QuadOrthoPol::EvalMult1Assign(p[0]-1, xi(0), bub,
|
|
325
|
+
SBLambda ([&](int i, Tx val) LAMBDA_INLINE
|
|
326
|
+
{
|
|
327
|
+
QuadOrthoPol::EvalMult (p[1]-1, xi(1), val,
|
|
328
|
+
SBLambda([&](int i2, Tx v2)
|
|
329
|
+
{
|
|
330
|
+
shape[ii++] = Du (v2);
|
|
331
|
+
}));
|
|
332
|
+
}));
|
|
333
|
+
}
|
|
334
|
+
|
|
335
|
+
|
|
336
|
+
|
|
337
|
+
|
|
338
|
+
|
|
339
|
+
int fmax = 0;
|
|
340
|
+
for (int j = 1; j < 4; j++)
|
|
341
|
+
if (vnums[j] > vnums[fmax])
|
|
342
|
+
fmax = j;
|
|
343
|
+
|
|
344
|
+
int f1 = (fmax+3)%4;
|
|
345
|
+
int f2 = (fmax+1)%4;
|
|
346
|
+
if(vnums[f2] > vnums[f1]) swap(f1,f2); // fmax > f2 > f1;
|
|
347
|
+
|
|
348
|
+
Tx xi = sigma[fmax]-sigma[f1]; // in [-1,1]
|
|
349
|
+
Tx eta = sigma[fmax]-sigma[f2]; // in [-1,1]
|
|
350
|
+
|
|
351
|
+
T_ORTHOPOL::Calc(p[0]+1, xi,pol_xi);
|
|
352
|
+
T_ORTHOPOL::Calc(p[1]+1,eta,pol_eta);
|
|
353
|
+
|
|
354
|
+
/*
|
|
355
|
+
//Gradient fields
|
|
356
|
+
if(usegrad_face[0])
|
|
357
|
+
for (int k = 0; k < p[0]; k++)
|
|
358
|
+
for (int j= 0; j < p[1]; j++)
|
|
359
|
+
shape[ii++] = Du<2> (pol_xi[k]*pol_eta[j]);
|
|
360
|
+
*/
|
|
361
|
+
|
|
362
|
+
//Rotation of Gradient fields
|
|
363
|
+
for (int k = 0; k < p[0]; k++)
|
|
364
|
+
for (int j= 0; j < p[1]; j++)
|
|
365
|
+
shape[ii++] = uDv_minus_vDu (pol_eta[j], pol_xi[k]);
|
|
366
|
+
|
|
367
|
+
//Missing ones
|
|
368
|
+
for(int j = 0; j< p[0]; j++)
|
|
369
|
+
shape[ii++] = uDv (0.5*pol_xi[j], eta);
|
|
370
|
+
|
|
371
|
+
for(int j = 0; j < p[1]; j++)
|
|
372
|
+
shape[ii++] = uDv (0.5*pol_eta[j], xi);
|
|
373
|
+
}
|
|
374
|
+
|
|
375
|
+
|
|
376
|
+
|
|
377
|
+
//------------------------------------------------------------------------
|
|
378
|
+
// Tetrahedron
|
|
379
|
+
//------------------------------------------------------------------------
|
|
380
|
+
|
|
381
|
+
|
|
382
|
+
template<> template<typename Tx, typename TFA>
|
|
383
|
+
void HCurlHighOrderFE_Shape<ET_TET> :: T_CalcShape (TIP<3,Tx> ip, TFA & shape) const
|
|
384
|
+
{
|
|
385
|
+
Tx x = ip.x, y = ip.y, z = ip.z;
|
|
386
|
+
Tx lam[4] = { x, y, z, 1-x-y-z };
|
|
387
|
+
|
|
388
|
+
ArrayMem<Tx,20> adpol1(order+2),adpol2(order+2),adpol3(order+2);
|
|
389
|
+
int ii = 6;
|
|
390
|
+
|
|
391
|
+
for (int i = 0; i < N_EDGE; i++)
|
|
392
|
+
{
|
|
393
|
+
int p = order_edge[i];
|
|
394
|
+
IVec<2> e = GetEdgeSort (i, vnums);
|
|
395
|
+
|
|
396
|
+
//Nedelec low order edge shape function
|
|
397
|
+
shape[i] = uDv_minus_vDu (lam[e[0]], lam[e[1]]);
|
|
398
|
+
|
|
399
|
+
//HO-Edge shape functions (Gradient Fields)
|
|
400
|
+
if (p > 0 && usegrad_edge[i])
|
|
401
|
+
{
|
|
402
|
+
// LegendrePolynomial::
|
|
403
|
+
EdgeOrthoPol::
|
|
404
|
+
EvalScaledMult (p-1,
|
|
405
|
+
lam[e[1]]-lam[e[0]], lam[e[0]]+lam[e[1]],
|
|
406
|
+
lam[e[0]]*lam[e[1]],
|
|
407
|
+
SBLambda ([&](int i, Tx val)
|
|
408
|
+
{
|
|
409
|
+
shape[ii++] = Du (val);
|
|
410
|
+
}));
|
|
411
|
+
}
|
|
412
|
+
}
|
|
413
|
+
|
|
414
|
+
// face shape functions
|
|
415
|
+
for(int i = 0; i < N_FACE; i++)
|
|
416
|
+
if (order_face[i][0] >= 2)
|
|
417
|
+
{
|
|
418
|
+
IVec<4> fav = GetFaceSort (i, vnums);
|
|
419
|
+
|
|
420
|
+
int vop = 6 - fav[0] - fav[1] - fav[2];
|
|
421
|
+
int p = order_face[i][0];
|
|
422
|
+
int pg = p - (type1 ? 1 : 0);
|
|
423
|
+
|
|
424
|
+
Tx xi = lam[fav[2]]-lam[fav[1]];
|
|
425
|
+
Tx eta = lam[fav[0]]; // lo
|
|
426
|
+
Tx zeta = lam[vop]; // lz
|
|
427
|
+
|
|
428
|
+
TetShapesFaceLegendre::CalcSplitted (p+1, xi, eta, zeta, adpol1, adpol2);
|
|
429
|
+
|
|
430
|
+
// gradients
|
|
431
|
+
if (usegrad_face[i] && pg >= 2)
|
|
432
|
+
|
|
433
|
+
// DubinerBasis
|
|
434
|
+
TrigOrthoPolGrad::EvalScaledMult
|
|
435
|
+
(pg-2, lam[fav[0]], lam[fav[1]],
|
|
436
|
+
1-lam[vop],
|
|
437
|
+
lam[fav[0]]*lam[fav[1]]*lam[fav[2]],
|
|
438
|
+
SBLambda
|
|
439
|
+
([&](int nr, Tx val)
|
|
440
|
+
{
|
|
441
|
+
shape[ii++] = Du (val);
|
|
442
|
+
}));
|
|
443
|
+
|
|
444
|
+
|
|
445
|
+
// non-gradient face shapes
|
|
446
|
+
// if (type1) {
|
|
447
|
+
if (true) {
|
|
448
|
+
|
|
449
|
+
DubinerBasis::EvalMult
|
|
450
|
+
(p-2, lam[fav[0]], lam[fav[1]],
|
|
451
|
+
lam[fav[0]],
|
|
452
|
+
SBLambda
|
|
453
|
+
([&](int nr, Tx val)
|
|
454
|
+
{
|
|
455
|
+
shape[ii++] = wuDv_minus_wvDu(lam[fav[1]], lam[fav[2]], val);
|
|
456
|
+
}));
|
|
457
|
+
|
|
458
|
+
LegendrePolynomial::EvalMult
|
|
459
|
+
(p-2, lam[fav[2]]-lam[fav[1]], lam[fav[2]],
|
|
460
|
+
SBLambda
|
|
461
|
+
([&] (int j, Tx val)
|
|
462
|
+
{
|
|
463
|
+
shape[ii++] = wuDv_minus_wvDu(lam[fav[1]], lam[fav[0]], val);
|
|
464
|
+
}));
|
|
465
|
+
}
|
|
466
|
+
else {
|
|
467
|
+
|
|
468
|
+
// other combination
|
|
469
|
+
for (int j = 0; j <= p-2; j++)
|
|
470
|
+
for (int k = 0; k <= p-2-j; k++, ii++)
|
|
471
|
+
shape[ii] = uDv_minus_vDu (adpol2[k], adpol1[j]);
|
|
472
|
+
|
|
473
|
+
// type 3
|
|
474
|
+
for (int j = 0; j <= p-2; j++, ii++)
|
|
475
|
+
shape[ii] = wuDv_minus_wvDu (lam[fav[1]], lam[fav[2]], adpol2[j]);
|
|
476
|
+
}
|
|
477
|
+
}
|
|
478
|
+
|
|
479
|
+
|
|
480
|
+
int p = order_cell[0];
|
|
481
|
+
int pg = p - (type1 ? 1 : 0);
|
|
482
|
+
|
|
483
|
+
// gradient inner shapes
|
|
484
|
+
|
|
485
|
+
if (usegrad_cell && pg >= 3)
|
|
486
|
+
|
|
487
|
+
DubinerBasis3DOrthoBub::EvalMult
|
|
488
|
+
(pg-3, lam[0], lam[1], lam[2], lam[0]*lam[1]*lam[2]*lam[3],
|
|
489
|
+
SBLambda
|
|
490
|
+
([&](int nr, Tx val)
|
|
491
|
+
{
|
|
492
|
+
shape[ii++] = Du(val);
|
|
493
|
+
}));
|
|
494
|
+
|
|
495
|
+
// non-gradient inner shapes, same for type 1 and type 2 Nedelec:
|
|
496
|
+
|
|
497
|
+
if (p >= 3) {
|
|
498
|
+
|
|
499
|
+
Tx lam21 = lam[2]*lam[1], lam30 = lam[3]*lam[0];
|
|
500
|
+
|
|
501
|
+
DubinerBasis3D::Eval
|
|
502
|
+
(p-3, lam[0], lam[1], lam[2],
|
|
503
|
+
SBLambda
|
|
504
|
+
([&](int nr, Tx val)
|
|
505
|
+
{
|
|
506
|
+
shape[ii++] = wuDv_minus_wvDu(lam[3], lam[0], lam21*val);
|
|
507
|
+
shape[ii++] = wuDv_minus_wvDu(lam[2], lam[1], lam30*val);
|
|
508
|
+
}));
|
|
509
|
+
|
|
510
|
+
|
|
511
|
+
DubinerBasis::EvalMult
|
|
512
|
+
(p-3, lam[0], lam[1], lam[0]*lam[1],
|
|
513
|
+
SBLambda
|
|
514
|
+
([&](int nr, Tx val)
|
|
515
|
+
{
|
|
516
|
+
shape[ii++] = wuDv_minus_wvDu(lam[3], lam[2], val);
|
|
517
|
+
}));
|
|
518
|
+
}
|
|
519
|
+
}
|
|
520
|
+
|
|
521
|
+
|
|
522
|
+
|
|
523
|
+
//------------------------------------------------------------------------
|
|
524
|
+
// Prism
|
|
525
|
+
//------------------------------------------------------------------------
|
|
526
|
+
|
|
527
|
+
template<> template<typename Tx, typename TFA>
|
|
528
|
+
void HCurlHighOrderFE_Shape<ET_PRISM> :: T_CalcShape (TIP<3,Tx> ip, TFA & shape) const
|
|
529
|
+
{
|
|
530
|
+
typedef TrigShapesInnerLegendre T_TRIGFACESHAPES;
|
|
531
|
+
|
|
532
|
+
// Tx x = hx[0], y = hx[1], z = hx[2];
|
|
533
|
+
Tx x = ip.x, y = ip.y, z = ip.z;
|
|
534
|
+
|
|
535
|
+
Tx lam[6] = { x, y, 1-x-y, x, y, 1-x-y };
|
|
536
|
+
Tx muz[6] = { 1-z, 1-z, 1-z, z, z, z };
|
|
537
|
+
|
|
538
|
+
Tx sigma[6];
|
|
539
|
+
for (int i = 0; i < 6; i++) sigma[i] = lam[i] + muz[i];
|
|
540
|
+
|
|
541
|
+
ArrayMem<Tx,20> adpolxy1(order+3),adpolxy2(order+3);
|
|
542
|
+
ArrayMem<Tx,20> adpolz(order+3);
|
|
543
|
+
|
|
544
|
+
int ii = 9;
|
|
545
|
+
|
|
546
|
+
// horizontal edge shapes
|
|
547
|
+
for (int i = 0; i < 6; i++)
|
|
548
|
+
{
|
|
549
|
+
int p = order_edge[i];
|
|
550
|
+
IVec<2> e = GetEdgeSort (i, vnums);
|
|
551
|
+
|
|
552
|
+
//Nedelec0
|
|
553
|
+
shape[i] = wuDv_minus_wvDu (lam[e[0]], lam[e[1]], muz[e[1]]);
|
|
554
|
+
|
|
555
|
+
//high order \nabla (P_edge(x,y) * muz)
|
|
556
|
+
if (p > 0 && usegrad_edge[i])
|
|
557
|
+
{
|
|
558
|
+
/*
|
|
559
|
+
T_ORTHOPOL::CalcTrigExt(p+1, lam[e[1]]-lam[e[0]],
|
|
560
|
+
1-lam[e[0]]-lam[e[1]],adpolxy1);
|
|
561
|
+
for(int j = 0; j <= p-1; j++)
|
|
562
|
+
shape[ii++] = Du<3> (adpolxy1[j] * muz[e[1]]);
|
|
563
|
+
*/
|
|
564
|
+
Tx xi = lam[e[1]]-lam[e[0]];
|
|
565
|
+
Tx eta = lam[e[0]]+lam[e[1]];
|
|
566
|
+
Tx bub = lam[e[0]]*lam[e[1]]*muz[e[1]];
|
|
567
|
+
|
|
568
|
+
// LegendrePolynomial::
|
|
569
|
+
EdgeOrthoPol::
|
|
570
|
+
EvalScaledMult (p-1, xi, eta, bub, adpolxy1);
|
|
571
|
+
for(int j = 0; j <= p-1; j++)
|
|
572
|
+
shape[ii++] = Du (adpolxy1[j]);
|
|
573
|
+
}
|
|
574
|
+
}
|
|
575
|
+
|
|
576
|
+
//Vertical Edge Shapes
|
|
577
|
+
for (int i = 6; i < 9; i++)
|
|
578
|
+
{
|
|
579
|
+
int p = order_edge[i];
|
|
580
|
+
IVec<2> e = GetEdgeSort (i, vnums);
|
|
581
|
+
|
|
582
|
+
shape[i] = wuDv_minus_wvDu (muz[e[0]], muz[e[1]], lam[e[1]]);
|
|
583
|
+
|
|
584
|
+
//high order edges: \nabla (T_ORTHOPOL^{p+1}(2z-1) * lam(x,y))
|
|
585
|
+
if(p > 0 && usegrad_edge[i])
|
|
586
|
+
{
|
|
587
|
+
// T_ORTHOPOL::Calc (p+1, muz[e[1]]-muz[e[0]], adpolz);
|
|
588
|
+
// for (int j = 0; j < p; j++)
|
|
589
|
+
// shape[ii++] = Du<3> (adpolz[j] * lam[e[1]]);
|
|
590
|
+
|
|
591
|
+
// LegendrePolynomial::
|
|
592
|
+
EdgeOrthoPol::
|
|
593
|
+
EvalMult (p-1,
|
|
594
|
+
muz[e[1]]-muz[e[0]],
|
|
595
|
+
muz[e[0]]*muz[e[1]]*lam[e[1]], adpolz);
|
|
596
|
+
|
|
597
|
+
for (int j = 0; j < p; j++)
|
|
598
|
+
shape[ii++] = Du (adpolz[j]);
|
|
599
|
+
}
|
|
600
|
+
}
|
|
601
|
+
|
|
602
|
+
|
|
603
|
+
const FACE * faces = ElementTopology::GetFaces (ET_PRISM);
|
|
604
|
+
|
|
605
|
+
// trig face shapes
|
|
606
|
+
for (int i = 0; i < 2; i++)
|
|
607
|
+
{
|
|
608
|
+
int p = order_face[i][0];
|
|
609
|
+
if (p < 2) continue;
|
|
610
|
+
|
|
611
|
+
IVec<4> fav = GetFaceSort (i, vnums);
|
|
612
|
+
|
|
613
|
+
{
|
|
614
|
+
// gradients
|
|
615
|
+
if (usegrad_face[i])
|
|
616
|
+
{
|
|
617
|
+
TrigOrthoPolGrad::EvalMult (p-2, lam[fav[0]], lam[fav[1]],
|
|
618
|
+
lam[fav[0]]*lam[fav[1]]*lam[fav[2]]*muz[fav[2]],
|
|
619
|
+
SBLambda ([&](int nr, Tx val)
|
|
620
|
+
{
|
|
621
|
+
shape[ii++] = Du (val);
|
|
622
|
+
}));
|
|
623
|
+
}
|
|
624
|
+
}
|
|
625
|
+
|
|
626
|
+
// if (type1) {
|
|
627
|
+
if (true) {
|
|
628
|
+
|
|
629
|
+
DubinerBasis::EvalMult
|
|
630
|
+
(p-2, lam[fav[0]], lam[fav[1]],
|
|
631
|
+
lam[fav[0]]*muz[fav[2]],
|
|
632
|
+
SBLambda
|
|
633
|
+
([&](int nr, Tx val)
|
|
634
|
+
{
|
|
635
|
+
shape[ii++] = wuDv_minus_wvDu(lam[fav[1]], lam[fav[2]], val);
|
|
636
|
+
}));
|
|
637
|
+
|
|
638
|
+
LegendrePolynomial::EvalMult
|
|
639
|
+
(p-2, lam[fav[2]]-lam[fav[1]], lam[fav[2]]*muz[fav[2]],
|
|
640
|
+
SBLambda
|
|
641
|
+
([&] (int j, Tx val)
|
|
642
|
+
{
|
|
643
|
+
shape[ii++] = wuDv_minus_wvDu(lam[fav[1]], lam[fav[0]], val);
|
|
644
|
+
}));
|
|
645
|
+
}
|
|
646
|
+
|
|
647
|
+
else
|
|
648
|
+
|
|
649
|
+
{
|
|
650
|
+
|
|
651
|
+
Tx xi = lam[fav[2]]-lam[fav[1]];
|
|
652
|
+
Tx eta = lam[fav[0]]; // 1-lam[f2]-lam[f1];
|
|
653
|
+
|
|
654
|
+
T_TRIGFACESHAPES::CalcSplitted(p+1,xi,eta,adpolxy1,adpolxy2);
|
|
655
|
+
/*
|
|
656
|
+
if(usegrad_face[i])
|
|
657
|
+
// gradient-fields => \nabla( adpolxy1*adpolxy2*muz )
|
|
658
|
+
for (int j = 0; j <= p-2; j++)
|
|
659
|
+
for (int k = 0; k <= p-2-j; k++)
|
|
660
|
+
shape[ii++] = Du<3> (adpolxy1[j]*adpolxy2[k] * muz[fav[2]]);
|
|
661
|
+
*/
|
|
662
|
+
|
|
663
|
+
|
|
664
|
+
// rotations of grad-fields => grad(uj)*vk*w - uj*grad(vk)*w
|
|
665
|
+
for (int j = 0; j <= p-2; j++)
|
|
666
|
+
for (int k = 0; k <= p-2-j; k++)
|
|
667
|
+
shape[ii++] = wuDv_minus_wvDu (adpolxy2[k], adpolxy1[j], muz[fav[2]]);
|
|
668
|
+
|
|
669
|
+
// Ned0*adpolxy2[j]*muz
|
|
670
|
+
for (int j = 0; j <= p-2; j++,ii++)
|
|
671
|
+
shape[ii] = wuDv_minus_wvDu (lam[fav[1]], lam[fav[2]], adpolxy2[j]*muz[fav[2]]);
|
|
672
|
+
}
|
|
673
|
+
}
|
|
674
|
+
|
|
675
|
+
|
|
676
|
+
// quad faces
|
|
677
|
+
for (int i = 2; i < 5; i++)
|
|
678
|
+
{
|
|
679
|
+
IVec<2> p = order_face[i];
|
|
680
|
+
IVec<4> f = GetFaceSort (i, vnums);
|
|
681
|
+
|
|
682
|
+
{
|
|
683
|
+
Tx xi = sigma[f[0]] - sigma[f[1]];
|
|
684
|
+
Tx eta = sigma[f[0]] - sigma[f[3]];
|
|
685
|
+
|
|
686
|
+
Tx scalexi(1.0), scaleeta(1.0);
|
|
687
|
+
if (f[0] / 3 == f[1] / 3)
|
|
688
|
+
scalexi = lam[f[0]]+lam[f[1]]; // xi is horizontal
|
|
689
|
+
else
|
|
690
|
+
scaleeta = lam[f[0]]+lam[f[3]];
|
|
691
|
+
|
|
692
|
+
Tx bub = (1.0/16)*(scaleeta*scaleeta-eta*eta)*(scalexi*scalexi-xi*xi);
|
|
693
|
+
QuadOrthoPol::EvalScaled (p[0]-1, xi, scalexi, adpolxy1);
|
|
694
|
+
QuadOrthoPol::EvalScaledMult (p[1]-1, eta, scaleeta, bub, adpolz);
|
|
695
|
+
|
|
696
|
+
|
|
697
|
+
if(usegrad_face[i])
|
|
698
|
+
{
|
|
699
|
+
// Gradientfields nabla(polxy*polz)
|
|
700
|
+
for (int k = 0; k <= p[0]-1; k++)
|
|
701
|
+
for (int j = 0; j <= p[1]-1; j++)
|
|
702
|
+
shape[ii++] = Du (adpolxy1[k] * adpolz[j]);
|
|
703
|
+
}
|
|
704
|
+
}
|
|
705
|
+
|
|
706
|
+
|
|
707
|
+
int fmax = 0;
|
|
708
|
+
for (int j = 1; j < 4; j++)
|
|
709
|
+
if (vnums[faces[i][j]] > vnums[faces[i][fmax]]) fmax = j;
|
|
710
|
+
|
|
711
|
+
int fz = 3-fmax;
|
|
712
|
+
int ftrig = fmax^1;
|
|
713
|
+
Tx xi = lam[faces[i][fmax]]-lam[faces[i][ftrig]];
|
|
714
|
+
Tx eta = 1-lam[faces[i][fmax]]-lam[faces[i][ftrig]];
|
|
715
|
+
Tx zeta = muz[faces[i][fmax]]-muz[faces[i][fz]];
|
|
716
|
+
|
|
717
|
+
int pp = int(max2(p[0],p[1]))+1;
|
|
718
|
+
T_ORTHOPOL::CalcTrigExt(pp,xi,eta,adpolxy1);
|
|
719
|
+
T_ORTHOPOL::Calc(pp,zeta,adpolz);
|
|
720
|
+
|
|
721
|
+
|
|
722
|
+
/*
|
|
723
|
+
if(usegrad_face[i])
|
|
724
|
+
{
|
|
725
|
+
// Gradientfields nabla(polxy*polz)
|
|
726
|
+
if (vnums[faces[i][ftrig]] > vnums[faces[i][fz]])
|
|
727
|
+
for (int k = 0; k <= p[0]-1; k++)
|
|
728
|
+
for (int j = 0; j <= p[1]-1; j++)
|
|
729
|
+
shape[ii++] = Du<3> (adpolxy1[k] * adpolz[j]);
|
|
730
|
+
else
|
|
731
|
+
for (int j = 0; j <= p[0]-1; j++)
|
|
732
|
+
for (int k = 0; k <= p[1]-1; k++)
|
|
733
|
+
shape[ii++] = Du<3> (adpolxy1[k] * adpolz[j]);
|
|
734
|
+
}
|
|
735
|
+
*/
|
|
736
|
+
|
|
737
|
+
// Rotations of GradFields => nabla(polxy)*polz - polxy*nabla(polz)
|
|
738
|
+
if (vnums[faces[i][ftrig]] > vnums[faces[i][fz]])
|
|
739
|
+
for (int k = 0; k <= p[0]-1; k++)
|
|
740
|
+
for (int j = 0; j <= p[1]-1; j++)
|
|
741
|
+
shape[ii++] = uDv_minus_vDu (adpolz[j], adpolxy1[k]);
|
|
742
|
+
else
|
|
743
|
+
for (int j = 0; j <= p[0]-1; j++)
|
|
744
|
+
for (int k = 0; k <= p[1]-1; k++)
|
|
745
|
+
shape[ii++] = uDv_minus_vDu (adpolxy1[k], adpolz[j]);
|
|
746
|
+
|
|
747
|
+
// Type 3
|
|
748
|
+
// (ned0_trig)*polz, (ned0_quad)* polxy
|
|
749
|
+
|
|
750
|
+
if(vnums[faces[i][ftrig]] > vnums[faces[i][fz]]) // p = (p_trig,p_z)
|
|
751
|
+
{
|
|
752
|
+
for(int j=0;j<=p[0]-1;j++)
|
|
753
|
+
shape[ii++] = wuDv_minus_wvDu (muz[faces[i][fz]], muz[faces[i][fmax]], adpolxy1[j]);
|
|
754
|
+
for(int j=0;j<=p[1]-1;j++)
|
|
755
|
+
shape[ii++] = wuDv_minus_wvDu (lam[faces[i][ftrig]], lam[faces[i][fmax]], adpolz[j]);
|
|
756
|
+
}
|
|
757
|
+
else
|
|
758
|
+
{
|
|
759
|
+
for(int j=0;j<=p[0]-1;j++)
|
|
760
|
+
shape[ii++] = wuDv_minus_wvDu (lam[faces[i][ftrig]], lam[faces[i][fmax]], adpolz[j]);
|
|
761
|
+
for(int j=0;j<=p[1]-1;j++)
|
|
762
|
+
shape[ii++] = wuDv_minus_wvDu (muz[faces[i][fz]], muz[faces[i][fmax]], adpolxy1[j]);
|
|
763
|
+
}
|
|
764
|
+
}
|
|
765
|
+
|
|
766
|
+
if(order_cell[0] > 1 && order_cell[2] > 0)
|
|
767
|
+
{
|
|
768
|
+
IVec<3> p = order_cell[0];
|
|
769
|
+
if (usegrad_cell && p[0] > 1 && p[2] > 0)
|
|
770
|
+
{
|
|
771
|
+
// gradientfields
|
|
772
|
+
int nf = (p[0]-0)*(p[0]-1)/2;
|
|
773
|
+
ArrayMem<Tx,20> pol_trig(nf);
|
|
774
|
+
|
|
775
|
+
DubinerBasis::EvalMult (p[0]-2, x, y, x*y*(1-x-y),pol_trig);
|
|
776
|
+
LegendrePolynomial::EvalMult (p[2]-1, 2*z-1, z*(1-z), adpolz);
|
|
777
|
+
|
|
778
|
+
for (int i = 0; i < nf; i++)
|
|
779
|
+
for (int k = 0; k <= p[2]-1; k++)
|
|
780
|
+
shape[ii++] = Du (pol_trig[i] * adpolz[k]);
|
|
781
|
+
}
|
|
782
|
+
|
|
783
|
+
|
|
784
|
+
T_TRIGFACESHAPES::CalcSplitted(order_cell[0]+1,x-y,1-x-y,adpolxy1,adpolxy2);
|
|
785
|
+
T_ORTHOPOL::Calc(order_cell[2]+1,2*z-1,adpolz);
|
|
786
|
+
|
|
787
|
+
/*
|
|
788
|
+
// gradientfields
|
|
789
|
+
if(usegrad_cell)
|
|
790
|
+
for(int i=0;i<=order_cell[0]-2;i++)
|
|
791
|
+
for(int j=0;j<=order_cell[0]-2-i;j++)
|
|
792
|
+
for(int k=0;k<=order_cell[2]-1;k++)
|
|
793
|
+
shape[ii++] = Du<3> (adpolxy1[i]*adpolxy2[j]*adpolz[k]);
|
|
794
|
+
*/
|
|
795
|
+
|
|
796
|
+
// Rotations of gradientfields
|
|
797
|
+
for(int i=0;i<=order_cell[0]-2;i++)
|
|
798
|
+
for(int j=0;j<=order_cell[0]-2-i;j++)
|
|
799
|
+
for(int k=0;k<=order_cell[2]-1;k++)
|
|
800
|
+
{
|
|
801
|
+
shape[ii++] = wuDv_minus_wvDu (adpolxy1[i],adpolxy2[j],adpolz[k]);
|
|
802
|
+
shape[ii++] = uDv_minus_vDu (adpolxy1[i],adpolxy2[j]*adpolz[k]);
|
|
803
|
+
}
|
|
804
|
+
|
|
805
|
+
// Type 3
|
|
806
|
+
// ned0(trig) * polxy2[j]*polz
|
|
807
|
+
// z.DValue(0) * polxy1[i] * polxy2[j]
|
|
808
|
+
// double ned_trig[2] = {y.Value(),-x.Value()};
|
|
809
|
+
for(int j=0;j<=order_cell[0]-2;j++)
|
|
810
|
+
for (int k=0;k<=order_cell[2]-1;k++)
|
|
811
|
+
shape[ii++] = wuDv_minus_wvDu (x,y, adpolxy2[j]*adpolz[k]);
|
|
812
|
+
|
|
813
|
+
for(int i = 0; i <= order_cell[0]-2; i++)
|
|
814
|
+
for(int j = 0; j <= order_cell[0]-2-i; j++)
|
|
815
|
+
shape[ii++] = wuDv_minus_wvDu (z,1-z, adpolxy1[i]*adpolxy2[j]);
|
|
816
|
+
}
|
|
817
|
+
}
|
|
818
|
+
|
|
819
|
+
|
|
820
|
+
|
|
821
|
+
//------------------------------------------------------------------------
|
|
822
|
+
// HCurlHighOrderHex
|
|
823
|
+
//------------------------------------------------------------------------
|
|
824
|
+
|
|
825
|
+
|
|
826
|
+
template<> template<typename Tx, typename TFA>
|
|
827
|
+
void HCurlHighOrderFE_Shape<ET_HEX> :: T_CalcShape (TIP<3,Tx> ip, TFA & shape) const
|
|
828
|
+
{
|
|
829
|
+
// Tx x = hx[0], y = hx[1], z = hx[2];
|
|
830
|
+
Tx x = ip.x, y = ip.y, z = ip.z;
|
|
831
|
+
|
|
832
|
+
Tx lami[8]={(1-x)*(1-y)*(1-z),x*(1-y)*(1-z),x*y*(1-z),(1-x)*y*(1-z),
|
|
833
|
+
(1-x)*(1-y)*z,x*(1-y)*z,x*y*z,(1-x)*y*z};
|
|
834
|
+
Tx sigma[8]={(1-x)+(1-y)+(1-z),x+(1-y)+(1-z),x+y+(1-z),(1-x)+y+(1-z),
|
|
835
|
+
(1-x)+(1-y)+z,x+(1-y)+z,x+y+z,(1-x)+y+z};
|
|
836
|
+
|
|
837
|
+
int ii = 12;
|
|
838
|
+
ArrayMem<Tx, 20> pol_xi(order+2),pol_eta(order+2),pol_zeta(order+2);
|
|
839
|
+
|
|
840
|
+
// edges
|
|
841
|
+
for (int i = 0; i < 12; i++)
|
|
842
|
+
{
|
|
843
|
+
int p = order_edge[i];
|
|
844
|
+
IVec<2> e = GetEdgeSort (i, vnums);
|
|
845
|
+
|
|
846
|
+
Tx xi = sigma[e[1]]-sigma[e[0]];
|
|
847
|
+
Tx lam_e = lami[e[0]]+lami[e[1]];
|
|
848
|
+
Tx bub = 0.25 * lam_e * (1 - xi*xi);
|
|
849
|
+
|
|
850
|
+
// Nedelec0-shapes
|
|
851
|
+
shape[i] = uDv (0.5 * lam_e, xi);
|
|
852
|
+
|
|
853
|
+
// High Order edges ... Gradient fields
|
|
854
|
+
if(p > 0 && usegrad_edge[i])
|
|
855
|
+
{
|
|
856
|
+
//LegendrePolynomial::
|
|
857
|
+
EdgeOrthoPol::
|
|
858
|
+
EvalMult (p-1,
|
|
859
|
+
xi, bub, pol_xi);
|
|
860
|
+
|
|
861
|
+
for (int j = 0; j < p; j++)
|
|
862
|
+
shape[ii++] = Du (pol_xi[j]);
|
|
863
|
+
}
|
|
864
|
+
}
|
|
865
|
+
|
|
866
|
+
//Faces
|
|
867
|
+
const FACE * faces = ElementTopology::GetFaces (ET_HEX);
|
|
868
|
+
for (int i = 0; i<6; i++)
|
|
869
|
+
{
|
|
870
|
+
IVec<2> p = order_face[i];
|
|
871
|
+
|
|
872
|
+
Tx lam_f(0);
|
|
873
|
+
for (int j = 0; j < 4; j++)
|
|
874
|
+
lam_f += lami[faces[i][j]];
|
|
875
|
+
|
|
876
|
+
{
|
|
877
|
+
IVec<4> f = GetFaceSort (i, vnums);
|
|
878
|
+
Tx xi = sigma[f[0]] - sigma[f[1]];
|
|
879
|
+
Tx eta = sigma[f[0]] - sigma[f[3]];
|
|
880
|
+
|
|
881
|
+
Tx bub = lam_f*(1.0/16)*(1.0-eta*eta)*(1.0-xi*xi);
|
|
882
|
+
QuadOrthoPol::Eval (p[0]-1, xi, pol_xi);
|
|
883
|
+
QuadOrthoPol::EvalMult (p[1]-1, eta, bub, pol_eta);
|
|
884
|
+
|
|
885
|
+
if(usegrad_face[i])
|
|
886
|
+
{
|
|
887
|
+
// Gradientfields nabla(polxy*polz)
|
|
888
|
+
for (int k = 0; k <= p[0]-1; k++)
|
|
889
|
+
for (int j = 0; j <= p[1]-1; j++)
|
|
890
|
+
shape[ii++] = Du (pol_xi[k] * pol_eta[j]);
|
|
891
|
+
}
|
|
892
|
+
}
|
|
893
|
+
|
|
894
|
+
|
|
895
|
+
|
|
896
|
+
int qmax = 0;
|
|
897
|
+
for (int j = 1; j < 4; j++)
|
|
898
|
+
if (vnums[faces[i][j]] > vnums[faces[i][qmax]])
|
|
899
|
+
qmax = j;
|
|
900
|
+
|
|
901
|
+
int q1 = (qmax+3)%4;
|
|
902
|
+
int q2 = (qmax+1)%4;
|
|
903
|
+
|
|
904
|
+
if(vnums[faces[i][q2]] > vnums[faces[i][q1]])
|
|
905
|
+
swap(q1,q2); // fmax > f1 > f2
|
|
906
|
+
|
|
907
|
+
int fmax = faces[i][qmax];
|
|
908
|
+
int f1 = faces[i][q1];
|
|
909
|
+
int f2 = faces[i][q2];
|
|
910
|
+
|
|
911
|
+
Tx xi = sigma[fmax]-sigma[f1];
|
|
912
|
+
Tx eta = sigma[fmax]-sigma[f2];
|
|
913
|
+
|
|
914
|
+
T_ORTHOPOL::Calc(p[0]+1, xi,pol_xi);
|
|
915
|
+
T_ORTHOPOL::Calc(p[1]+1,eta,pol_eta);
|
|
916
|
+
|
|
917
|
+
/*
|
|
918
|
+
//Gradient fields
|
|
919
|
+
if(usegrad_face[i])
|
|
920
|
+
for (int k = 0; k < p[0]; k++)
|
|
921
|
+
for (int j= 0; j < p[1]; j++)
|
|
922
|
+
shape[ii++] = Du<3> (lam_f * pol_xi[k] * pol_eta[j]);
|
|
923
|
+
*/
|
|
924
|
+
|
|
925
|
+
//Rotation of Gradient fields
|
|
926
|
+
for (int k = 0; k < p[0]; k++)
|
|
927
|
+
for (int j= 0; j < p[1]; j++)
|
|
928
|
+
shape[ii++] = uDv_minus_vDu (pol_eta[j], lam_f * pol_xi[k]);
|
|
929
|
+
|
|
930
|
+
// Missing ones
|
|
931
|
+
for(int j = 0; j < p[0];j++)
|
|
932
|
+
shape[ii++] = wuDv_minus_wvDu (Tx(0.5), eta, pol_xi[j]*lam_f);
|
|
933
|
+
|
|
934
|
+
for(int j = 0; j < p[1];j++)
|
|
935
|
+
shape[ii++] = wuDv_minus_wvDu (Tx(0.5), xi, pol_eta[j]*lam_f);
|
|
936
|
+
}
|
|
937
|
+
|
|
938
|
+
|
|
939
|
+
|
|
940
|
+
{
|
|
941
|
+
IVec<3> p = order_cell[0];
|
|
942
|
+
if(usegrad_cell)
|
|
943
|
+
if (p[0] >= 1 && p[1] >= 1 && p[2] >= 1)
|
|
944
|
+
{
|
|
945
|
+
QuadOrthoPol::EvalMult (p[0]-1, 2*x-1, x*(1-x), pol_xi);
|
|
946
|
+
QuadOrthoPol::EvalMult (p[1]-1, 2*y-1, y*(1-y), pol_eta);
|
|
947
|
+
QuadOrthoPol::EvalMult (p[2]-1, 2*z-1, z*(1-z), pol_zeta);
|
|
948
|
+
|
|
949
|
+
for (int i = 0; i < p[0]; i++)
|
|
950
|
+
for (int j = 0; j < p[1]; j++)
|
|
951
|
+
{
|
|
952
|
+
Tx pxy = pol_xi[i] * pol_eta[j];
|
|
953
|
+
for (int k = 0; k < p[2]; k++)
|
|
954
|
+
shape[ii++] = Du (pxy * pol_zeta[k]);
|
|
955
|
+
}
|
|
956
|
+
}
|
|
957
|
+
}
|
|
958
|
+
|
|
959
|
+
|
|
960
|
+
// Element-based shapes
|
|
961
|
+
T_ORTHOPOL::Calc(order_cell[0]+1,2*x-1,pol_xi);
|
|
962
|
+
T_ORTHOPOL::Calc(order_cell[1]+1,2*y-1,pol_eta);
|
|
963
|
+
T_ORTHOPOL::Calc(order_cell[2]+1,2*z-1,pol_zeta);
|
|
964
|
+
|
|
965
|
+
/*
|
|
966
|
+
//Gradient fields
|
|
967
|
+
if(usegrad_cell)
|
|
968
|
+
for (int i=0; i<order_cell[0]; i++)
|
|
969
|
+
for(int j=0; j<order_cell[1]; j++)
|
|
970
|
+
for(int k=0; k<order_cell[2]; k++)
|
|
971
|
+
shape[ii++] = Du<3> (pol_xi[i] * pol_eta[j] * pol_zeta[k]);
|
|
972
|
+
*/
|
|
973
|
+
|
|
974
|
+
//Rotations of gradient fields
|
|
975
|
+
for (int i=0; i<order_cell[0]; i++)
|
|
976
|
+
for(int j=0; j<order_cell[1]; j++)
|
|
977
|
+
for(int k=0; k<order_cell[2]; k++)
|
|
978
|
+
{
|
|
979
|
+
shape[ii++] = uDv_minus_vDu (pol_xi[i] * pol_eta[j], pol_zeta[k]);
|
|
980
|
+
shape[ii++] = uDv_minus_vDu (pol_xi[i], pol_eta[j] * pol_zeta[k]);
|
|
981
|
+
}
|
|
982
|
+
|
|
983
|
+
for(int i = 0; i < order_cell[0]; i++)
|
|
984
|
+
for(int j = 0; j < order_cell[1]; j++)
|
|
985
|
+
shape[ii++] = wuDv_minus_wvDu (z,1-z,pol_xi[i] * pol_eta[j]);
|
|
986
|
+
|
|
987
|
+
for(int i = 0; i < order_cell[0]; i++)
|
|
988
|
+
for(int k = 0; k < order_cell[2]; k++)
|
|
989
|
+
shape[ii++] = wuDv_minus_wvDu (y,1-y,pol_xi[i] * pol_zeta[k]);
|
|
990
|
+
|
|
991
|
+
for(int j = 0; j < order_cell[1]; j++)
|
|
992
|
+
for(int k = 0; k < order_cell[2]; k++)
|
|
993
|
+
shape[ii++] = wuDv_minus_wvDu (x,1-x,pol_eta[j] * pol_zeta[k]);
|
|
994
|
+
}
|
|
995
|
+
|
|
996
|
+
|
|
997
|
+
|
|
998
|
+
template<> template <typename MIP, typename TFA>
|
|
999
|
+
inline void HCurlHighOrderFE_Shape<ET_HEX> ::
|
|
1000
|
+
CalcDualShape2 (const MIP & mip, TFA & shape) const
|
|
1001
|
+
{
|
|
1002
|
+
typedef typename std::remove_const<typename std::remove_reference<decltype(mip.IP()(0))>::type>::type T;
|
|
1003
|
+
auto & ip = mip.IP();
|
|
1004
|
+
T x = ip(0), y = ip(1), z = ip(2);
|
|
1005
|
+
// T lam[4] = { x, y, z, 1-x-y-z };
|
|
1006
|
+
// Vec<3> pnts[4] = { { 1, 0, 0 }, { 0, 1, 0 } , { 0, 0, 1 }, { 0, 0, 0 } };
|
|
1007
|
+
// T lam[8]={(1-x)*(1-y)*(1-z),x*(1-y)*(1-z),x*y*(1-z),(1-x)*y*(1-z),
|
|
1008
|
+
// (1-x)*(1-y)*z,x*(1-y)*z,x*y*z,(1-x)*y*z};
|
|
1009
|
+
T sigma[8]={(1-x)+(1-y)+(1-z),x+(1-y)+(1-z),x+y+(1-z),(1-x)+y+(1-z),
|
|
1010
|
+
(1-x)+(1-y)+z,x+(1-y)+z,x+y+z,(1-x)+y+z};
|
|
1011
|
+
Vec<3> pnts[8] =
|
|
1012
|
+
{
|
|
1013
|
+
{ 0, 0, 0 },
|
|
1014
|
+
{ 1, 0, 0 },
|
|
1015
|
+
{ 1, 1, 0 },
|
|
1016
|
+
{ 0, 1, 0 },
|
|
1017
|
+
{ 0, 0, 1 },
|
|
1018
|
+
{ 1, 0, 1 },
|
|
1019
|
+
{ 1, 1, 1 },
|
|
1020
|
+
{ 0, 1, 1 }
|
|
1021
|
+
};
|
|
1022
|
+
|
|
1023
|
+
|
|
1024
|
+
int facetnr = ip.FacetNr();
|
|
1025
|
+
int ii = 12;
|
|
1026
|
+
|
|
1027
|
+
if (ip.VB() == BBND)
|
|
1028
|
+
{ // edge shapes
|
|
1029
|
+
for (int i = 0; i < 12; i++)
|
|
1030
|
+
{
|
|
1031
|
+
int p = order_edge[i];
|
|
1032
|
+
if (i == facetnr)
|
|
1033
|
+
{
|
|
1034
|
+
IVec<2> e = GetEdgeSort (i, vnums);
|
|
1035
|
+
T xi = sigma[e[1]]-sigma[e[0]];
|
|
1036
|
+
Vec<3> tauref = pnts[e[1]] - pnts[e[0]];
|
|
1037
|
+
Vec<3,T> tau = mip.GetJacobian()*tauref;
|
|
1038
|
+
tau /= mip.GetMeasure();
|
|
1039
|
+
LegendrePolynomial::Eval
|
|
1040
|
+
(p, xi,
|
|
1041
|
+
SBLambda([&] (size_t nr, T val)
|
|
1042
|
+
{
|
|
1043
|
+
Vec<3,T> vshape = val * tau;
|
|
1044
|
+
if (nr==0)
|
|
1045
|
+
shape[i] = vshape;
|
|
1046
|
+
else
|
|
1047
|
+
shape[ii+nr-1] = vshape;
|
|
1048
|
+
}));
|
|
1049
|
+
}
|
|
1050
|
+
ii += p;
|
|
1051
|
+
}
|
|
1052
|
+
}
|
|
1053
|
+
else
|
|
1054
|
+
{
|
|
1055
|
+
throw Exception ("H(curl)-hex: dual shapes supported only on edges");
|
|
1056
|
+
for (int i = 0; i < 12; i++)
|
|
1057
|
+
ii += order_edge[i];
|
|
1058
|
+
}
|
|
1059
|
+
|
|
1060
|
+
/*
|
|
1061
|
+
// just copied from tet, needs adaption ...
|
|
1062
|
+
if (ip.VB() == BND)
|
|
1063
|
+
{
|
|
1064
|
+
//AutoDiff<3,T> xa(ip(0), 0), ya(ip(1),1), za(ip(2),2);
|
|
1065
|
+
//AutoDiff<3,T> lami[4] = { xa, ya, za, (T)(1.0) };
|
|
1066
|
+
|
|
1067
|
+
for (int f = 0; f < 4; f++)
|
|
1068
|
+
{
|
|
1069
|
+
int p = order_face[f][0];
|
|
1070
|
+
if (f == facetnr)
|
|
1071
|
+
{
|
|
1072
|
+
IVec<4> fav = GetFaceSort (facetnr, vnums);
|
|
1073
|
+
//AutoDiff<3,T> adxi = lami[fav[0]]-lami[fav[2]];
|
|
1074
|
+
//AutoDiff<3,T> adeta = lami[fav[1]]-lami[fav[2]];
|
|
1075
|
+
Vec<3> adxi = pnts[fav[0]] - pnts[fav[2]];
|
|
1076
|
+
Vec<3> adeta = pnts[fav[1]] - pnts[fav[2]];
|
|
1077
|
+
T xi = lam[fav[0]];
|
|
1078
|
+
T eta = lam[fav[1]];
|
|
1079
|
+
|
|
1080
|
+
Matrix<> F(3,2);
|
|
1081
|
+
F.Cols(0,1) = adxi;//Vec<3,T>(adxi.DValue(0),adxi.DValue(1),adxi.DValue(2));
|
|
1082
|
+
F.Cols(1,2) = adeta;//Vec<3,T>(adeta.DValue(0),adeta.DValue(1),adeta.DValue(2));
|
|
1083
|
+
|
|
1084
|
+
Matrix<> Ftmp(2,2);
|
|
1085
|
+
Ftmp = Trans(F)*F;
|
|
1086
|
+
auto det = sqrt(Ftmp(0,0)*Ftmp(1,1)-Ftmp(1,0)*Ftmp(0,1));
|
|
1087
|
+
|
|
1088
|
+
DubinerBasis::Eval(order-2, xi, eta,
|
|
1089
|
+
SBLambda([&] (size_t nr, auto val)
|
|
1090
|
+
{
|
|
1091
|
+
shape[ii++] = 1/(det*mip.GetMeasure())*mip.GetJacobian()*(F*Vec<2,T> (val, 0));
|
|
1092
|
+
shape[ii++] = 1/(det*mip.GetMeasure())*mip.GetJacobian()*(F*Vec<2,T> (val*xi, val*eta));
|
|
1093
|
+
}));
|
|
1094
|
+
LegendrePolynomial::Eval(order-2,xi,
|
|
1095
|
+
SBLambda([&] (size_t nr, auto val)
|
|
1096
|
+
{
|
|
1097
|
+
shape[ii++] = 1/(det*mip.GetMeasure())*mip.GetJacobian()*(F*Vec<2,T>(0, val));
|
|
1098
|
+
}));
|
|
1099
|
+
}
|
|
1100
|
+
else
|
|
1101
|
+
ii += (p+1)*(p-1);
|
|
1102
|
+
}
|
|
1103
|
+
}
|
|
1104
|
+
else
|
|
1105
|
+
{
|
|
1106
|
+
for (int i = 0; i < 4; i++)
|
|
1107
|
+
{
|
|
1108
|
+
int p = order_face[i][0];
|
|
1109
|
+
ii += (p+1)*(p-1);
|
|
1110
|
+
}
|
|
1111
|
+
}
|
|
1112
|
+
if (ip.VB() == VOL)
|
|
1113
|
+
{
|
|
1114
|
+
// auto xphys = mip.GetPoint()(0);
|
|
1115
|
+
// auto yphys = mip.GetPoint()(1);
|
|
1116
|
+
// auto zphys = mip.GetPoint()(2);
|
|
1117
|
+
|
|
1118
|
+
LegendrePolynomial leg;
|
|
1119
|
+
JacobiPolynomialAlpha jac1(1);
|
|
1120
|
+
leg.EvalScaled1Assign
|
|
1121
|
+
(order-3, lam[2]-lam[3], lam[2]+lam[3],
|
|
1122
|
+
SBLambda ([&](size_t k, T polz) LAMBDA_INLINE
|
|
1123
|
+
{
|
|
1124
|
+
// JacobiPolynomialAlpha jac(2*k+1);
|
|
1125
|
+
JacobiPolynomialAlpha jac2(2*k+2);
|
|
1126
|
+
|
|
1127
|
+
jac1.EvalScaledMult1Assign
|
|
1128
|
+
(order-3-k, lam[1]-lam[2]-lam[3], 1-lam[0], polz,
|
|
1129
|
+
SBLambda ([&] (size_t j, T polsy) LAMBDA_INLINE
|
|
1130
|
+
{
|
|
1131
|
+
// JacobiPolynomialAlpha jac(2*(j+k)+2);
|
|
1132
|
+
jac2.EvalMult(order-3 - k - j, 2 * lam[0] - 1, polsy,
|
|
1133
|
+
SBLambda([&](size_t j, T val) LAMBDA_INLINE
|
|
1134
|
+
{
|
|
1135
|
+
shape[ii++] = 1/mip.GetMeasure()*mip.GetJacobian()*Vec<3,T>(val*x, val*y, val*z);
|
|
1136
|
+
shape[ii++] = 1/mip.GetMeasure()*mip.GetJacobian()*Vec<3,T>(val, 0, 0);
|
|
1137
|
+
shape[ii++] = 1/mip.GetMeasure()*mip.GetJacobian()*Vec<3,T>(0, val, 0);
|
|
1138
|
+
}));
|
|
1139
|
+
jac2.IncAlpha2();
|
|
1140
|
+
}));
|
|
1141
|
+
jac1.IncAlpha2();
|
|
1142
|
+
}));
|
|
1143
|
+
|
|
1144
|
+
|
|
1145
|
+
DubinerBasis::Eval(order-3, x, y,
|
|
1146
|
+
SBLambda([&] (size_t nr, auto val)
|
|
1147
|
+
{
|
|
1148
|
+
shape[ii++] = 1/mip.GetMeasure()*mip.GetJacobian()*Vec<3,T> (0, 0, val);
|
|
1149
|
+
}));
|
|
1150
|
+
}
|
|
1151
|
+
*/
|
|
1152
|
+
}
|
|
1153
|
+
|
|
1154
|
+
|
|
1155
|
+
|
|
1156
|
+
|
|
1157
|
+
|
|
1158
|
+
|
|
1159
|
+
|
|
1160
|
+
|
|
1161
|
+
|
|
1162
|
+
|
|
1163
|
+
//------------------------------------------------------------------------
|
|
1164
|
+
// Pyramid
|
|
1165
|
+
//------------------------------------------------------------------------
|
|
1166
|
+
|
|
1167
|
+
|
|
1168
|
+
template<> template<typename Tx, typename TFA>
|
|
1169
|
+
void HCurlHighOrderFE_Shape<ET_PYRAMID> :: T_CalcShape (TIP<3,Tx> ip, TFA & shape) const
|
|
1170
|
+
{
|
|
1171
|
+
typedef TrigShapesInnerLegendre T_TRIGFACESHAPES;
|
|
1172
|
+
|
|
1173
|
+
// Tx x = hx[0], y = hx[1], z = hx[2];
|
|
1174
|
+
Tx x = ip.x, y = ip.y, z = ip.z;
|
|
1175
|
+
|
|
1176
|
+
//if(z.Value()==1.) z.Value() -=1.e-8;
|
|
1177
|
+
z.Value() = z.Value()*(1-1e-12);
|
|
1178
|
+
|
|
1179
|
+
Tx xt = x/(1-z);
|
|
1180
|
+
Tx yt = y/(1-z);
|
|
1181
|
+
Tx sigma[5] = {(1-xt)+(1-yt)+(1-z),xt+(1-yt)+(1-z), xt + yt + (1-z),
|
|
1182
|
+
(1-xt)+yt+(1-z),z};
|
|
1183
|
+
|
|
1184
|
+
Tx lami[5] = {(1-xt)*(1-yt)*(1-z),xt*(1-yt)*(1-z), xt * yt * (1-z),
|
|
1185
|
+
(1-xt)*yt*(1-z),z};
|
|
1186
|
+
|
|
1187
|
+
Tx lambda[5] = {(1-xt)*(1-yt),xt*(1-yt), xt * yt,
|
|
1188
|
+
(1-xt)*yt,z};
|
|
1189
|
+
|
|
1190
|
+
|
|
1191
|
+
ArrayMem<Tx, 20> pol_xi(order+2), pol_eta(order+2), pol_zeta(order+2);
|
|
1192
|
+
|
|
1193
|
+
int ii =8;
|
|
1194
|
+
|
|
1195
|
+
// horizontal edges incl. Nedelec 0
|
|
1196
|
+
for (int i = 0; i < 4; i++)
|
|
1197
|
+
{
|
|
1198
|
+
int p = order_edge[i];
|
|
1199
|
+
IVec<2> e = GetEdgeSort (i, vnums);
|
|
1200
|
+
|
|
1201
|
+
Tx xi = sigma[e[1]] - sigma[e[0]];
|
|
1202
|
+
Tx lam_t = lambda[e[1]] + lambda[e[0]];
|
|
1203
|
+
|
|
1204
|
+
shape[i] = uDv (0.5 * (1-z)*(1-z)*lam_t, xi);
|
|
1205
|
+
|
|
1206
|
+
if(p > 0 && usegrad_edge[i])
|
|
1207
|
+
{
|
|
1208
|
+
Tx bub = 0.25*(1-xi*xi)*(1-z)*(1-z)*lam_t;
|
|
1209
|
+
// LegendrePolynomial::
|
|
1210
|
+
EdgeOrthoPol::
|
|
1211
|
+
EvalScaledMult (p-1,
|
|
1212
|
+
xi*(1-z), 1-z, bub,
|
|
1213
|
+
SBLambda ([&](int i, Tx val)
|
|
1214
|
+
{
|
|
1215
|
+
shape[ii++] = Du(val);
|
|
1216
|
+
}));
|
|
1217
|
+
}
|
|
1218
|
+
}
|
|
1219
|
+
|
|
1220
|
+
// vertical edges incl. Nedelec 0
|
|
1221
|
+
for(int i = 4; i < 8; i++)
|
|
1222
|
+
{
|
|
1223
|
+
int p = order_edge[i];
|
|
1224
|
+
IVec<2> e = GetEdgeSort (i, vnums);
|
|
1225
|
+
|
|
1226
|
+
shape[i] = uDv_minus_vDu (lami[e[0]], lami[e[1]]);
|
|
1227
|
+
|
|
1228
|
+
if (p > 0 && usegrad_edge[i])
|
|
1229
|
+
{
|
|
1230
|
+
Tx xi = lami[e[1]]-lami[e[0]];
|
|
1231
|
+
Tx lam_e = lami[e[0]]+lami[e[1]];
|
|
1232
|
+
Tx bub = 0.25 * (lam_e*lam_e-xi*xi);
|
|
1233
|
+
|
|
1234
|
+
// LegendrePolynomial::
|
|
1235
|
+
EdgeOrthoPol::
|
|
1236
|
+
EvalScaledMult (p-1,
|
|
1237
|
+
xi, lam_e, bub,
|
|
1238
|
+
SBLambda ([&](int i, Tx val)
|
|
1239
|
+
{
|
|
1240
|
+
shape[ii++] = Du(val);
|
|
1241
|
+
}));
|
|
1242
|
+
}
|
|
1243
|
+
}
|
|
1244
|
+
|
|
1245
|
+
const FACE * faces = ElementTopology::GetFaces (ET_PYRAMID);
|
|
1246
|
+
|
|
1247
|
+
// trig face dofs
|
|
1248
|
+
for (int i = 0; i < 4; i++)
|
|
1249
|
+
if (order_face[i][0] >= 2)
|
|
1250
|
+
{
|
|
1251
|
+
int p = order_face[i][0];
|
|
1252
|
+
Tx lam_face = lambda[faces[i][0]] + lambda[faces[i][1]];
|
|
1253
|
+
Tx bary[3] =
|
|
1254
|
+
{(sigma[faces[i][0]]-(1-z)-lam_face)*(1-z),
|
|
1255
|
+
(sigma[faces[i][1]]-(1-z)-lam_face)*(1-z), z};
|
|
1256
|
+
|
|
1257
|
+
int fav[3] = {0, 1, 2};
|
|
1258
|
+
if(vnums[faces[i][fav[0]]] > vnums[faces[i][fav[1]]]) swap(fav[0],fav[1]);
|
|
1259
|
+
if(vnums[faces[i][fav[1]]] > vnums[faces[i][fav[2]]]) swap(fav[1],fav[2]);
|
|
1260
|
+
if(vnums[faces[i][fav[0]]] > vnums[faces[i][fav[1]]]) swap(fav[0],fav[1]);
|
|
1261
|
+
|
|
1262
|
+
if(usegrad_face[i])
|
|
1263
|
+
{
|
|
1264
|
+
Tx bub = lam_face * bary[fav[0]]*bary[fav[1]]*bary[fav[2]];
|
|
1265
|
+
TrigOrthoPolGrad::
|
|
1266
|
+
EvalMult (p-2, bary[fav[0]], bary[fav[1]], bub,
|
|
1267
|
+
SBLambda ([&](int nr, Tx val)
|
|
1268
|
+
{
|
|
1269
|
+
shape[ii++] = Du (val);
|
|
1270
|
+
}));
|
|
1271
|
+
}
|
|
1272
|
+
|
|
1273
|
+
/*
|
|
1274
|
+
// phi = pol_xi * pol_eta * lam_face;
|
|
1275
|
+
// Type 1: Gradient Functions
|
|
1276
|
+
if(usegrad_face[i])
|
|
1277
|
+
for(int j=0;j<= p-2; j++)
|
|
1278
|
+
for(int k=0;k<=p-2-j; k++)
|
|
1279
|
+
shape[ii++] = Du<3> (pol_xi[j] * pol_eta[k]);
|
|
1280
|
+
*/
|
|
1281
|
+
|
|
1282
|
+
// if (type1) {
|
|
1283
|
+
if (true) {
|
|
1284
|
+
|
|
1285
|
+
DubinerBasis::EvalMult
|
|
1286
|
+
(p-2, bary[fav[0]], bary[fav[1]],
|
|
1287
|
+
bary[fav[0]]*lam_face,
|
|
1288
|
+
SBLambda
|
|
1289
|
+
([&](int nr, Tx val)
|
|
1290
|
+
{
|
|
1291
|
+
shape[ii++] = wuDv_minus_wvDu(bary[fav[1]], bary[fav[2]], val);
|
|
1292
|
+
}));
|
|
1293
|
+
|
|
1294
|
+
LegendrePolynomial::EvalMult
|
|
1295
|
+
(p-2, bary[fav[2]]-bary[fav[1]], bary[fav[2]]*lam_face,
|
|
1296
|
+
SBLambda
|
|
1297
|
+
([&] (int j, Tx val)
|
|
1298
|
+
{
|
|
1299
|
+
shape[ii++] = wuDv_minus_wvDu(bary[fav[1]], bary[fav[0]], val);
|
|
1300
|
+
}));
|
|
1301
|
+
}
|
|
1302
|
+
|
|
1303
|
+
else {
|
|
1304
|
+
T_TRIGFACESHAPES::CalcSplitted(p+1, bary[fav[2]]-bary[fav[1]],
|
|
1305
|
+
bary[fav[0]],pol_xi,pol_eta);
|
|
1306
|
+
|
|
1307
|
+
for(int j=0;j<=p-2;j++) pol_eta[j] *= lam_face;
|
|
1308
|
+
|
|
1309
|
+
// Type 2:
|
|
1310
|
+
for(int j=0;j<= p-2; j++)
|
|
1311
|
+
for(int k=0;k<=p-2-j; k++)
|
|
1312
|
+
shape[ii++] = uDv_minus_vDu (pol_eta[k], pol_xi[j]);
|
|
1313
|
+
|
|
1314
|
+
// Type 3: Nedelec-based ones (Ned_0*v_j)
|
|
1315
|
+
for(int j=0;j<=p-2;j++)
|
|
1316
|
+
shape[ii++] = wuDv_minus_wvDu (bary[fav[1]], bary[fav[2]], pol_eta[j]);
|
|
1317
|
+
}
|
|
1318
|
+
}
|
|
1319
|
+
|
|
1320
|
+
|
|
1321
|
+
// quad face
|
|
1322
|
+
if (order_face[4][0] >= 1)
|
|
1323
|
+
{
|
|
1324
|
+
int px = order_face[4][0];
|
|
1325
|
+
int py = order_face[4][0]; // SZ-Attentione
|
|
1326
|
+
int p = max2(px, py);
|
|
1327
|
+
|
|
1328
|
+
Tx fac(1.0);
|
|
1329
|
+
for (int k = 1; k <= p+1; k++) fac *= (1-z);
|
|
1330
|
+
|
|
1331
|
+
IVec<4> f = GetFaceSort (4, vnums);
|
|
1332
|
+
Tx xi = sigma[f[0]] - sigma[f[1]];
|
|
1333
|
+
Tx eta = sigma[f[0]] - sigma[f[3]];
|
|
1334
|
+
|
|
1335
|
+
if (usegrad_face[4])
|
|
1336
|
+
{
|
|
1337
|
+
// Type 1: Gradient-fields
|
|
1338
|
+
|
|
1339
|
+
QuadOrthoPol::
|
|
1340
|
+
EvalMult (px-1, xi, fac*0.25*(1-xi*xi), pol_xi);
|
|
1341
|
+
QuadOrthoPol::
|
|
1342
|
+
EvalMult (py-1, eta, 0.25*(1-eta*eta), pol_eta);
|
|
1343
|
+
|
|
1344
|
+
for (int k = 0; k <= px-1; k++)
|
|
1345
|
+
for (int j = 0; j <= py-1; j++, ii++)
|
|
1346
|
+
shape[ii] = Du (pol_xi[k] * pol_eta[j]);
|
|
1347
|
+
}
|
|
1348
|
+
|
|
1349
|
+
int fmax = 0;
|
|
1350
|
+
for (int l=1; l<4; l++)
|
|
1351
|
+
if (vnums[l] > vnums[fmax]) fmax = l;
|
|
1352
|
+
|
|
1353
|
+
int f1 = (fmax+3)%4;
|
|
1354
|
+
int f2 = (fmax+1)%4;
|
|
1355
|
+
if(vnums[f1]>vnums[f2]) swap(f1,f2); // fmax > f2 > f1
|
|
1356
|
+
|
|
1357
|
+
xi = sigma[fmax] - sigma[f2];
|
|
1358
|
+
eta = sigma[fmax] - sigma[f1];
|
|
1359
|
+
|
|
1360
|
+
T_ORTHOPOL::Calc (px+1, xi, pol_xi);
|
|
1361
|
+
T_ORTHOPOL::Calc (py+1, eta, pol_eta);
|
|
1362
|
+
|
|
1363
|
+
for(int k = 0; k < py; k++) pol_eta[k] *= fac;
|
|
1364
|
+
|
|
1365
|
+
// Type 2:
|
|
1366
|
+
for (int k = 0; k < px; k++)
|
|
1367
|
+
for (int j = 0; j < py; j++)
|
|
1368
|
+
shape[ii++] = uDv_minus_vDu (pol_eta[j], pol_xi[k]);
|
|
1369
|
+
|
|
1370
|
+
// Type 3:
|
|
1371
|
+
for (int k = 0; k < px; k++)
|
|
1372
|
+
shape[ii++] = uDv (0.5*pol_xi[k]*fac, eta);
|
|
1373
|
+
|
|
1374
|
+
for (int k = 0; k < py; k++)
|
|
1375
|
+
shape[ii++] = uDv (0.5*pol_eta[k] /* *fac */, xi);
|
|
1376
|
+
}
|
|
1377
|
+
|
|
1378
|
+
if (order_cell[0] >= 2)
|
|
1379
|
+
{
|
|
1380
|
+
int pp = order_cell[0];
|
|
1381
|
+
// According H^1 terms:
|
|
1382
|
+
// u_i = L_i+2(2xt-1)
|
|
1383
|
+
// v_j = L_j+2(2yt-1)
|
|
1384
|
+
// w_k = z * (1-z)^(k+2) with 0 <= i,j <= k, 0<= k <= p-2
|
|
1385
|
+
|
|
1386
|
+
LegendrePolynomial::EvalMult (pp-1, 2*xt-1, xt*(1-xt), pol_xi);
|
|
1387
|
+
LegendrePolynomial::EvalMult (pp-1, 2*yt-1, yt*(1-yt), pol_eta);
|
|
1388
|
+
// T_ORTHOPOL::Calc (pp+3, 2*xt-1, pol_xi);
|
|
1389
|
+
// T_ORTHOPOL::Calc (pp+3, 2*yt-1, pol_eta);
|
|
1390
|
+
|
|
1391
|
+
pol_zeta[0] = z*(1-z)*(1-z);
|
|
1392
|
+
for (int k=1;k<=pp-2;k++)
|
|
1393
|
+
pol_zeta[k] = (1-z)*pol_zeta[k-1];
|
|
1394
|
+
|
|
1395
|
+
if(usegrad_cell)
|
|
1396
|
+
{
|
|
1397
|
+
for(int k=0;k<= pp-2;k++)
|
|
1398
|
+
{
|
|
1399
|
+
for(int i=0;i<=k;i++)
|
|
1400
|
+
for(int j=0;j<=k;j++)
|
|
1401
|
+
shape[ii++] = Du (pol_xi[i]*pol_eta[j]*pol_zeta[k]);
|
|
1402
|
+
}
|
|
1403
|
+
}
|
|
1404
|
+
|
|
1405
|
+
// Type 2a: l.i. combinations of grad-terms
|
|
1406
|
+
// shape = u_i \nabla(v_j) w_k
|
|
1407
|
+
// shape = u_i v_j \nabla(w_k)
|
|
1408
|
+
for(int k=0;k<= pp-2;k++)
|
|
1409
|
+
for(int i=0;i<=k;i++)
|
|
1410
|
+
for(int j=0;j<=k;j++,ii++)
|
|
1411
|
+
shape[ii] = uDv (pol_xi[i]*pol_zeta[k], pol_eta[j]);
|
|
1412
|
+
|
|
1413
|
+
// Type 2b: shape = v_j w_k \nabla (xt)
|
|
1414
|
+
// shape = u_i w_k \nabla (yt)
|
|
1415
|
+
for(int k = 0;k<= pp-2;k++)
|
|
1416
|
+
for(int j=0;j<=k;j++)
|
|
1417
|
+
shape[ii++] = uDv (pol_eta[j]*pol_zeta[k], xt);
|
|
1418
|
+
|
|
1419
|
+
for(int k = 0;k<= pp-2;k++)
|
|
1420
|
+
for (int i=0;i<=k;i++)
|
|
1421
|
+
shape[ii++] = uDv (pol_xi[i]*pol_zeta[k], yt);
|
|
1422
|
+
|
|
1423
|
+
// 3rd component spans xi^i eta^j zeta^(k-1), i,j <= k
|
|
1424
|
+
// pol_zeta starts linear in zeta
|
|
1425
|
+
// pol_xi and pol_eta quadratic in xi resp. eta
|
|
1426
|
+
pol_zeta[0] = (1-z);
|
|
1427
|
+
for (int k=1;k<=pp;k++)
|
|
1428
|
+
pol_zeta[k] = (1-z)*pol_zeta[k-1];
|
|
1429
|
+
|
|
1430
|
+
for(int k=0;k<= pp-1;k++)
|
|
1431
|
+
for(int i=0;i<=k;i++)
|
|
1432
|
+
for(int j=0;j<=k;j++,ii++)
|
|
1433
|
+
shape[ii] = uDv (pol_eta[j] * pol_xi[i] * pol_zeta[k], z);
|
|
1434
|
+
}
|
|
1435
|
+
}
|
|
1436
|
+
|
|
1437
|
+
|
|
1438
|
+
|
|
1439
|
+
|
|
1440
|
+
// dual shapes
|
|
1441
|
+
|
|
1442
|
+
template<> template <typename MIP, typename TFA>
|
|
1443
|
+
inline void HCurlHighOrderFE_Shape<ET_TRIG> ::
|
|
1444
|
+
CalcDualShape2 (const MIP & mip, TFA & shape) const
|
|
1445
|
+
{
|
|
1446
|
+
// shape = 0;
|
|
1447
|
+
auto & ip = mip.IP();
|
|
1448
|
+
typedef typename std::remove_const<typename std::remove_reference<decltype(mip.IP()(0))>::type>::type T;
|
|
1449
|
+
T x = ip(0), y = ip(1);
|
|
1450
|
+
T lam[3] = { x, y, 1-x-y };
|
|
1451
|
+
Vec<2,T> pnts[3] = { { 1, 0 }, { 0, 1 } , { 0, 0 } };
|
|
1452
|
+
int facetnr = ip.FacetNr();
|
|
1453
|
+
|
|
1454
|
+
if (ip.VB() == BND)
|
|
1455
|
+
{ // facet shapes
|
|
1456
|
+
int ii = 3;
|
|
1457
|
+
for (int i = 0; i < 3; i++)
|
|
1458
|
+
{
|
|
1459
|
+
int p = order_edge[i];
|
|
1460
|
+
if (i == facetnr)
|
|
1461
|
+
{
|
|
1462
|
+
IVec<2> e = GetEdgeSort (i, vnums);
|
|
1463
|
+
T xi = lam[e[1]]-lam[e[0]];
|
|
1464
|
+
Vec<2,T> tauref = pnts[e[1]] - pnts[e[0]];
|
|
1465
|
+
auto tau = mip.GetJacobian()*tauref;
|
|
1466
|
+
tau /= mip.GetMeasure();
|
|
1467
|
+
|
|
1468
|
+
LegendrePolynomial::Eval
|
|
1469
|
+
(p, xi,
|
|
1470
|
+
SBLambda([&] (size_t nr, T val)
|
|
1471
|
+
{
|
|
1472
|
+
auto vshape = val * tau;
|
|
1473
|
+
if (nr==0)
|
|
1474
|
+
shape[i] = vshape;
|
|
1475
|
+
else
|
|
1476
|
+
shape[ii+nr-1] = vshape;
|
|
1477
|
+
}));
|
|
1478
|
+
}
|
|
1479
|
+
ii += p;
|
|
1480
|
+
}
|
|
1481
|
+
}
|
|
1482
|
+
if (ip.VB() == VOL)
|
|
1483
|
+
{ // inner shapes
|
|
1484
|
+
int ii = 3;
|
|
1485
|
+
for (int i = 0; i < 3; i++)
|
|
1486
|
+
ii += order_edge[i];
|
|
1487
|
+
|
|
1488
|
+
|
|
1489
|
+
auto trafo = 1/mip.GetMeasure()*mip.GetJacobian();
|
|
1490
|
+
DubinerBasis::Eval(order-2, x, y,
|
|
1491
|
+
SBLambda([&] (size_t nr, auto val)
|
|
1492
|
+
{
|
|
1493
|
+
shape[ii++] = trafo * Vec<2,T> (val, 0);
|
|
1494
|
+
if (type1)
|
|
1495
|
+
shape[ii++] = trafo * Vec<2,T> (0, val);
|
|
1496
|
+
else
|
|
1497
|
+
shape[ii++] = trafo * Vec<2,T> (val*x, val*y);
|
|
1498
|
+
}));
|
|
1499
|
+
if (!type1)
|
|
1500
|
+
LegendrePolynomial::Eval(order-2,x,
|
|
1501
|
+
SBLambda([&] (size_t nr, auto val)
|
|
1502
|
+
{
|
|
1503
|
+
shape[ii++] = trafo * Vec<2,T>(0,val);
|
|
1504
|
+
}));
|
|
1505
|
+
}
|
|
1506
|
+
}
|
|
1507
|
+
|
|
1508
|
+
template<> template <typename MIP, typename TFA>
|
|
1509
|
+
inline void HCurlHighOrderFE_Shape<ET_QUAD> ::
|
|
1510
|
+
CalcDualShape2 (const MIP & mip, TFA & shape) const
|
|
1511
|
+
{
|
|
1512
|
+
auto & ip = mip.IP();
|
|
1513
|
+
typedef typename std::remove_const<typename std::remove_reference<decltype(mip.IP()(0))>::type>::type T;
|
|
1514
|
+
T x = ip(0), y = ip(1);
|
|
1515
|
+
Vec<2,T> pnts[4] = { { 0, 0 },
|
|
1516
|
+
{ 1, 0 },
|
|
1517
|
+
{ 1, 1 },
|
|
1518
|
+
{ 0, 1 } };
|
|
1519
|
+
T sigma[4] = {(1-x)+(1-y),x+(1-y),x+y,(1-x)+y};
|
|
1520
|
+
int facetnr = ip.FacetNr();
|
|
1521
|
+
|
|
1522
|
+
if (ip.VB() == BND)
|
|
1523
|
+
{ // facet shapes
|
|
1524
|
+
int ii = 4;
|
|
1525
|
+
for (int i = 0; i < 4; i++)
|
|
1526
|
+
{
|
|
1527
|
+
int p = order_edge[i];
|
|
1528
|
+
if (i == facetnr)
|
|
1529
|
+
{
|
|
1530
|
+
IVec<2> e = GetEdgeSort (i, vnums);
|
|
1531
|
+
T xi = sigma[e[1]]-sigma[e[0]];
|
|
1532
|
+
Vec<2,T> tauref = pnts[e[1]] - pnts[e[0]];
|
|
1533
|
+
auto tau = mip.GetJacobian()*tauref;
|
|
1534
|
+
tau /= mip.GetMeasure();
|
|
1535
|
+
|
|
1536
|
+
LegendrePolynomial::Eval
|
|
1537
|
+
(p, xi,
|
|
1538
|
+
SBLambda([&] (size_t nr, T val)
|
|
1539
|
+
{
|
|
1540
|
+
auto vshape = val * tau;
|
|
1541
|
+
if (nr==0)
|
|
1542
|
+
shape[i] = vshape;
|
|
1543
|
+
else
|
|
1544
|
+
shape[ii+nr-1] = vshape;
|
|
1545
|
+
}));
|
|
1546
|
+
}
|
|
1547
|
+
ii += p;
|
|
1548
|
+
}
|
|
1549
|
+
}
|
|
1550
|
+
if (ip.VB() == VOL)
|
|
1551
|
+
{ // inner shapes
|
|
1552
|
+
int ii = 4;
|
|
1553
|
+
for (int i = 0; i < 4; i++)
|
|
1554
|
+
ii += order_edge[i];
|
|
1555
|
+
|
|
1556
|
+
//do not sort face!
|
|
1557
|
+
//IVec<4> f = GetFaceSort (0, vnums);
|
|
1558
|
+
//T xi = sigma[f[0]]-sigma[f[1]];
|
|
1559
|
+
//T eta = sigma[f[0]]-sigma[f[3]];
|
|
1560
|
+
T xi = sigma[0]-sigma[1];
|
|
1561
|
+
T eta = sigma[0]-sigma[3];
|
|
1562
|
+
ArrayMem<T, 20> polx(order+2), poly(order+2);
|
|
1563
|
+
LegendrePolynomial (order, xi, polx);
|
|
1564
|
+
LegendrePolynomial (order, eta, poly);
|
|
1565
|
+
|
|
1566
|
+
int p = order_face[0][0];
|
|
1567
|
+
|
|
1568
|
+
for (int i = 0; i < p+1; i++)
|
|
1569
|
+
for (int j = 0; j < p; j++)
|
|
1570
|
+
{
|
|
1571
|
+
shape[ii++] = 1/mip.GetMeasure()*mip.GetJacobian()*Vec<2,T>(polx[i] * poly[j],0);
|
|
1572
|
+
shape[ii++] = 1/mip.GetMeasure()*mip.GetJacobian()*Vec<2,T>(0,polx[j] * poly[i]);
|
|
1573
|
+
}
|
|
1574
|
+
}
|
|
1575
|
+
}
|
|
1576
|
+
|
|
1577
|
+
|
|
1578
|
+
|
|
1579
|
+
template<> template <typename MIP, typename TFA>
|
|
1580
|
+
inline void HCurlHighOrderFE_Shape<ET_TET> ::
|
|
1581
|
+
CalcDualShape2 (const MIP & mip, TFA & shape) const
|
|
1582
|
+
{
|
|
1583
|
+
// shape = 0;
|
|
1584
|
+
typedef typename std::remove_const<typename std::remove_reference<decltype(mip.IP()(0))>::type>::type T;
|
|
1585
|
+
auto & ip = mip.IP();
|
|
1586
|
+
T x = ip(0), y = ip(1), z = ip(2);
|
|
1587
|
+
T lam[4] = { x, y, z, 1-x-y-z };
|
|
1588
|
+
Vec<3> pnts[4] = { { 1, 0, 0 }, { 0, 1, 0 } , { 0, 0, 1 }, { 0, 0, 0 } };
|
|
1589
|
+
int facetnr = ip.FacetNr();
|
|
1590
|
+
int ii = 6;
|
|
1591
|
+
|
|
1592
|
+
if (ip.VB() == BBND)
|
|
1593
|
+
{ // edge shapes
|
|
1594
|
+
for (int i = 0; i < 6; i++)
|
|
1595
|
+
{
|
|
1596
|
+
int p = order_edge[i] * usegrad_edge[i];
|
|
1597
|
+
if (i == facetnr)
|
|
1598
|
+
{
|
|
1599
|
+
IVec<2> e = GetEdgeSort (i, vnums);
|
|
1600
|
+
T xi = lam[e[1]]-lam[e[0]];
|
|
1601
|
+
Vec<3> tauref = pnts[e[1]] - pnts[e[0]];
|
|
1602
|
+
Vec<3,T> tau = mip.GetJacobian()*tauref;
|
|
1603
|
+
tau /= mip.GetMeasure();
|
|
1604
|
+
LegendrePolynomial::Eval
|
|
1605
|
+
(p, xi,
|
|
1606
|
+
SBLambda([&] (size_t nr, T val)
|
|
1607
|
+
{
|
|
1608
|
+
Vec<3,T> vshape = val * tau;
|
|
1609
|
+
if (nr==0)
|
|
1610
|
+
shape[i] = vshape;
|
|
1611
|
+
else
|
|
1612
|
+
shape[ii+nr-1] = vshape;
|
|
1613
|
+
}));
|
|
1614
|
+
}
|
|
1615
|
+
ii += p;
|
|
1616
|
+
}
|
|
1617
|
+
}
|
|
1618
|
+
else
|
|
1619
|
+
{
|
|
1620
|
+
for (int i = 0; i < 6; i++)
|
|
1621
|
+
ii += order_edge[i] * usegrad_edge[i];
|
|
1622
|
+
}
|
|
1623
|
+
if (ip.VB() == BND)
|
|
1624
|
+
{
|
|
1625
|
+
//AutoDiff<3,T> xa(ip(0), 0), ya(ip(1),1), za(ip(2),2);
|
|
1626
|
+
//AutoDiff<3,T> lami[4] = { xa, ya, za, (T)(1.0) };
|
|
1627
|
+
|
|
1628
|
+
for (int f = 0; f < 4; f++)
|
|
1629
|
+
{
|
|
1630
|
+
int p = order_face[f][0];
|
|
1631
|
+
if (f == facetnr)
|
|
1632
|
+
{
|
|
1633
|
+
IVec<4> fav = GetFaceSort (facetnr, vnums);
|
|
1634
|
+
//AutoDiff<3,T> adxi = lami[fav[0]]-lami[fav[2]];
|
|
1635
|
+
//AutoDiff<3,T> adeta = lami[fav[1]]-lami[fav[2]];
|
|
1636
|
+
Vec<3> adxi = pnts[fav[0]] - pnts[fav[2]];
|
|
1637
|
+
Vec<3> adeta = pnts[fav[1]] - pnts[fav[2]];
|
|
1638
|
+
T xi = lam[fav[0]];
|
|
1639
|
+
T eta = lam[fav[1]];
|
|
1640
|
+
|
|
1641
|
+
Matrix<> F(3,2);
|
|
1642
|
+
F.Col(0) = adxi;//Vec<3,T>(adxi.DValue(0),adxi.DValue(1),adxi.DValue(2));
|
|
1643
|
+
F.Col(1) = adeta;//Vec<3,T>(adeta.DValue(0),adeta.DValue(1),adeta.DValue(2));
|
|
1644
|
+
|
|
1645
|
+
Matrix<> Ftmp(2,2);
|
|
1646
|
+
Ftmp = Trans(F)*F;
|
|
1647
|
+
auto det = sqrt(Ftmp(0,0)*Ftmp(1,1)-Ftmp(1,0)*Ftmp(0,1));
|
|
1648
|
+
|
|
1649
|
+
DubinerBasis::Eval(order-2, xi, eta,
|
|
1650
|
+
SBLambda([&] (size_t nr, auto val)
|
|
1651
|
+
{
|
|
1652
|
+
shape[ii++] = 1/(det*mip.GetMeasure())*mip.GetJacobian()*(F*Vec<2,T> (val, 0));
|
|
1653
|
+
if (type1)
|
|
1654
|
+
shape[ii++] = 1/(det*mip.GetMeasure())*mip.GetJacobian()*(F*Vec<2,T>(0, val));
|
|
1655
|
+
else
|
|
1656
|
+
shape[ii++] = 1/(det*mip.GetMeasure())*mip.GetJacobian()*(F*Vec<2,T> (val*xi, val*eta));
|
|
1657
|
+
}));
|
|
1658
|
+
if (!type1)
|
|
1659
|
+
LegendrePolynomial::Eval(order-2,xi,
|
|
1660
|
+
SBLambda([&] (size_t nr, auto val)
|
|
1661
|
+
{
|
|
1662
|
+
shape[ii++] = 1/(det*mip.GetMeasure())*mip.GetJacobian()*(F*Vec<2,T>(0, val));
|
|
1663
|
+
}));
|
|
1664
|
+
}
|
|
1665
|
+
else
|
|
1666
|
+
ii += (p+!type1)*(p-1);
|
|
1667
|
+
|
|
1668
|
+
}
|
|
1669
|
+
}
|
|
1670
|
+
else
|
|
1671
|
+
{
|
|
1672
|
+
for (int i = 0; i < 4; i++)
|
|
1673
|
+
{
|
|
1674
|
+
int p = order_face[i][0];
|
|
1675
|
+
ii += (p+!type1)*(p-1);
|
|
1676
|
+
}
|
|
1677
|
+
}
|
|
1678
|
+
if (ip.VB() == VOL)
|
|
1679
|
+
{
|
|
1680
|
+
// auto xphys = mip.GetPoint()(0);
|
|
1681
|
+
// auto yphys = mip.GetPoint()(1);
|
|
1682
|
+
// auto zphys = mip.GetPoint()(2);
|
|
1683
|
+
|
|
1684
|
+
auto trafo = 1/mip.GetMeasure()*mip.GetJacobian();
|
|
1685
|
+
|
|
1686
|
+
DubinerBasis3D::Eval (order-3, lam[0], lam[1], lam[2],
|
|
1687
|
+
SBLambda([&](size_t j, T val) LAMBDA_INLINE
|
|
1688
|
+
{
|
|
1689
|
+
if (type1)
|
|
1690
|
+
shape[ii++] = trafo*Vec<3,T> (0, 0, val);
|
|
1691
|
+
else
|
|
1692
|
+
shape[ii++] = trafo*Vec<3,T>(val*x, val*y, val*z);
|
|
1693
|
+
shape[ii++] = trafo*Vec<3,T>(val, 0, 0);
|
|
1694
|
+
shape[ii++] = trafo*Vec<3,T>(0, val, 0);
|
|
1695
|
+
}));
|
|
1696
|
+
|
|
1697
|
+
if (!type1)
|
|
1698
|
+
DubinerBasis::Eval(order-3, x, y,
|
|
1699
|
+
SBLambda([&] (size_t nr, auto val)
|
|
1700
|
+
{
|
|
1701
|
+
shape[ii++] = trafo*Vec<3,T> (0, 0, val);
|
|
1702
|
+
}));
|
|
1703
|
+
}
|
|
1704
|
+
}
|
|
1705
|
+
|
|
1706
|
+
template<> template <typename MIP, typename TFA>
|
|
1707
|
+
inline void HCurlHighOrderFE_Shape<ET_PRISM> ::
|
|
1708
|
+
CalcDualShape2 (const MIP & mip, TFA & shape) const
|
|
1709
|
+
{
|
|
1710
|
+
// shape = 0;
|
|
1711
|
+
typedef typename std::remove_const<typename std::remove_reference<decltype(mip.IP()(0))>::type>::type T;
|
|
1712
|
+
auto & ip = mip.IP();
|
|
1713
|
+
T x = ip(0), y = ip(1), z = ip(2);
|
|
1714
|
+
T lam[6] = { x, y, 1-x-y, x, y, 1-x-y };
|
|
1715
|
+
T muz[6] = { 1-z, 1-z, 1-z, z, z, z };
|
|
1716
|
+
|
|
1717
|
+
T sigma[6];
|
|
1718
|
+
for (int i = 0; i < 6; i++) sigma[i] = lam[i] + muz[i];
|
|
1719
|
+
|
|
1720
|
+
Vec<3> pnts[6] = { { 1, 0, 0 }, { 0, 1, 0 } , { 0, 0, 0 },
|
|
1721
|
+
{ 1, 0, 1 }, { 0, 1, 1 }, { 0, 0, 1 }};
|
|
1722
|
+
int facetnr = ip.FacetNr();
|
|
1723
|
+
int ii = 9;
|
|
1724
|
+
|
|
1725
|
+
if (ip.VB() == BBND)
|
|
1726
|
+
{
|
|
1727
|
+
for (int i = 0; i < 9; i++)
|
|
1728
|
+
{
|
|
1729
|
+
if(order_edge[i] > 1) throw Exception("Dual shapes for prisms for order > 1 not implemented!");
|
|
1730
|
+
int p = order_edge[i] * usegrad_edge[i];
|
|
1731
|
+
if (i == facetnr)
|
|
1732
|
+
{
|
|
1733
|
+
IVec<2> e = GetEdgeSort (i, vnums);
|
|
1734
|
+
T xi = sigma[e[1]] - sigma[e[0]];
|
|
1735
|
+
Vec<3> tauref = pnts[e[1]] - pnts[e[0]];
|
|
1736
|
+
Vec<3,T> tau = mip.GetJacobian()*tauref;
|
|
1737
|
+
tau /= mip.GetMeasure();
|
|
1738
|
+
LegendrePolynomial::Eval
|
|
1739
|
+
(p, xi,
|
|
1740
|
+
SBLambda([&] (size_t nr, T val)
|
|
1741
|
+
{
|
|
1742
|
+
Vec<3,T> vshape = val * tau;
|
|
1743
|
+
if (nr==0)
|
|
1744
|
+
shape[i] = vshape;
|
|
1745
|
+
else
|
|
1746
|
+
shape[ii+nr-1] = vshape;
|
|
1747
|
+
}));
|
|
1748
|
+
}
|
|
1749
|
+
ii += p;
|
|
1750
|
+
}
|
|
1751
|
+
}
|
|
1752
|
+
else
|
|
1753
|
+
{
|
|
1754
|
+
for (int i = 0; i < 9; i++)
|
|
1755
|
+
ii += order_edge[i] * usegrad_edge[i];
|
|
1756
|
+
}
|
|
1757
|
+
if (ip.VB() == BND)
|
|
1758
|
+
{
|
|
1759
|
+
// TODO
|
|
1760
|
+
}
|
|
1761
|
+
else
|
|
1762
|
+
{
|
|
1763
|
+
for (int i = 0; i < 4; i++)
|
|
1764
|
+
{
|
|
1765
|
+
int p = order_face[i][0];
|
|
1766
|
+
ii += (p+1)*(p-1);
|
|
1767
|
+
}
|
|
1768
|
+
}
|
|
1769
|
+
if (ip.VB() == VOL)
|
|
1770
|
+
{
|
|
1771
|
+
// TODO
|
|
1772
|
+
}
|
|
1773
|
+
}
|
|
1774
|
+
|
|
1775
|
+
template <ELEMENT_TYPE ET,
|
|
1776
|
+
template <ELEMENT_TYPE ET2> class TSHAPES,
|
|
1777
|
+
typename BASE>
|
|
1778
|
+
void HCurlHighOrderFE<ET,TSHAPES,BASE> ::
|
|
1779
|
+
CalcDualShape (const BaseMappedIntegrationPoint & bmip, BareSliceMatrix<> shape) const
|
|
1780
|
+
{
|
|
1781
|
+
shape.AddSize(ndof, bmip.DimSpace()) = 0.0;
|
|
1782
|
+
Switch<4-DIM>
|
|
1783
|
+
(bmip.DimSpace()-DIM,[this,&bmip,shape](auto CODIM)
|
|
1784
|
+
{
|
|
1785
|
+
auto & mip = static_cast<const MappedIntegrationPoint<DIM,DIM+CODIM.value>&> (bmip);
|
|
1786
|
+
static_cast<const HCurlHighOrderFE_Shape<ET>*> (this)
|
|
1787
|
+
-> CalcDualShape2 (mip, SBLambda([shape] (size_t i, auto val)
|
|
1788
|
+
{
|
|
1789
|
+
shape.Row(i) = val;
|
|
1790
|
+
}));
|
|
1791
|
+
});
|
|
1792
|
+
}
|
|
1793
|
+
|
|
1794
|
+
|
|
1795
|
+
template <ELEMENT_TYPE ET,
|
|
1796
|
+
template <ELEMENT_TYPE ET2> class TSHAPES,
|
|
1797
|
+
typename BASE>
|
|
1798
|
+
void HCurlHighOrderFE<ET,TSHAPES,BASE> ::
|
|
1799
|
+
CalcDualShape (const SIMD_BaseMappedIntegrationRule & bmir, BareSliceMatrix<SIMD<double>> shapes) const
|
|
1800
|
+
{
|
|
1801
|
+
|
|
1802
|
+
Switch<4-DIM>
|
|
1803
|
+
(bmir.DimSpace()-DIM,[this,&bmir,shapes](auto CODIM)
|
|
1804
|
+
{
|
|
1805
|
+
constexpr int DIMSPACE = DIM+CODIM.value;
|
|
1806
|
+
auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIMSPACE>&> (bmir);
|
|
1807
|
+
shapes.AddSize(ndof*DIMSPACE, mir.Size()) = 0.0;
|
|
1808
|
+
for (size_t i = 0; i < mir.Size(); i++)
|
|
1809
|
+
static_cast<const HCurlHighOrderFE_Shape<ET>*> (this)
|
|
1810
|
+
-> CalcDualShape2 (mir[i], SBLambda([shapes,i,DIMSPACE] (size_t j, auto val)
|
|
1811
|
+
{
|
|
1812
|
+
for (size_t k = 0; k < DIMSPACE; k++)
|
|
1813
|
+
shapes(j*DIMSPACE+k, i) = val(k);
|
|
1814
|
+
}));
|
|
1815
|
+
});
|
|
1816
|
+
}
|
|
1817
|
+
|
|
1818
|
+
template <ELEMENT_TYPE ET,
|
|
1819
|
+
template <ELEMENT_TYPE ET2> class TSHAPES,
|
|
1820
|
+
typename BASE>
|
|
1821
|
+
void HCurlHighOrderFE<ET,TSHAPES,BASE> ::
|
|
1822
|
+
EvaluateDual (const SIMD_BaseMappedIntegrationRule & bmir, BareSliceVector<> coefs, BareSliceMatrix<SIMD<double>> values) const
|
|
1823
|
+
{
|
|
1824
|
+
Switch<4-DIM>
|
|
1825
|
+
(bmir.DimSpace()-DIM,[this,&bmir,coefs,values](auto CODIM)
|
|
1826
|
+
{
|
|
1827
|
+
constexpr int DIMSPACE = DIM+CODIM.value;
|
|
1828
|
+
auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIMSPACE>&> (bmir);
|
|
1829
|
+
for (size_t i = 0; i < mir.Size(); i++)
|
|
1830
|
+
{
|
|
1831
|
+
Vec<DIMSPACE,SIMD<double>> sum (SIMD<double>(0.0));
|
|
1832
|
+
static_cast<const HCurlHighOrderFE_Shape<ET>*> (this)
|
|
1833
|
+
-> CalcDualShape2 (mir[i], SBLambda([&sum, coefs] (size_t j, auto val)
|
|
1834
|
+
{
|
|
1835
|
+
sum += coefs(j) * val;
|
|
1836
|
+
}));
|
|
1837
|
+
for (size_t k = 0; k < DIMSPACE; k++)
|
|
1838
|
+
values(k, i) = sum(k);
|
|
1839
|
+
}
|
|
1840
|
+
});
|
|
1841
|
+
}
|
|
1842
|
+
|
|
1843
|
+
template <ELEMENT_TYPE ET,
|
|
1844
|
+
template <ELEMENT_TYPE ET2> class TSHAPES,
|
|
1845
|
+
typename BASE>
|
|
1846
|
+
void HCurlHighOrderFE<ET,TSHAPES,BASE> ::
|
|
1847
|
+
AddDualTrans (const SIMD_BaseMappedIntegrationRule & bmir, BareSliceMatrix<SIMD<double>> values,
|
|
1848
|
+
BareSliceVector<double> coefs) const
|
|
1849
|
+
{
|
|
1850
|
+
Switch<4-DIM>
|
|
1851
|
+
(bmir.DimSpace()-DIM,[this,&bmir,coefs,values](auto CODIM)
|
|
1852
|
+
{
|
|
1853
|
+
constexpr int DIMSPACE = DIM+CODIM.value;
|
|
1854
|
+
auto & mir = static_cast<const SIMD_MappedIntegrationRule<DIM,DIMSPACE>&> (bmir);
|
|
1855
|
+
for (size_t i = 0; i < mir.Size(); i++)
|
|
1856
|
+
{
|
|
1857
|
+
Vec<DIMSPACE,SIMD<double>> value = values.Col(i);
|
|
1858
|
+
// for (size_t k = 0; k < DIMSPACE; k++)
|
|
1859
|
+
// value(k) = values(k, i);
|
|
1860
|
+
|
|
1861
|
+
static_cast<const HCurlHighOrderFE_Shape<ET>*> (this)
|
|
1862
|
+
-> CalcDualShape2 (mir[i], SBLambda([value, coefs] (size_t j, auto val)
|
|
1863
|
+
{
|
|
1864
|
+
coefs(j) += HSum(InnerProduct(value,val));
|
|
1865
|
+
}));
|
|
1866
|
+
}
|
|
1867
|
+
});
|
|
1868
|
+
}
|
|
1869
|
+
}
|
|
1870
|
+
|
|
1871
|
+
#endif
|