ngio 0.5.0__py3-none-any.whl → 0.5.0a2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ngio/__init__.py +2 -5
- ngio/common/__init__.py +6 -11
- ngio/common/_masking_roi.py +54 -34
- ngio/common/_pyramid.py +85 -309
- ngio/common/_roi.py +330 -258
- ngio/experimental/iterators/_feature.py +3 -3
- ngio/experimental/iterators/_rois_utils.py +11 -10
- ngio/hcs/_plate.py +60 -132
- ngio/images/_abstract_image.py +35 -539
- ngio/images/_create.py +287 -0
- ngio/images/_create_synt_container.py +42 -39
- ngio/images/_image.py +250 -516
- ngio/images/_label.py +172 -249
- ngio/images/_masked_image.py +2 -2
- ngio/images/_ome_zarr_container.py +241 -644
- ngio/io_pipes/_io_pipes.py +9 -9
- ngio/io_pipes/_io_pipes_masked.py +7 -7
- ngio/io_pipes/_io_pipes_roi.py +6 -6
- ngio/io_pipes/_io_pipes_types.py +3 -3
- ngio/io_pipes/_match_shape.py +8 -6
- ngio/io_pipes/_ops_slices_utils.py +5 -8
- ngio/ome_zarr_meta/__init__.py +18 -29
- ngio/ome_zarr_meta/_meta_handlers.py +708 -392
- ngio/ome_zarr_meta/ngio_specs/__init__.py +0 -4
- ngio/ome_zarr_meta/ngio_specs/_axes.py +51 -152
- ngio/ome_zarr_meta/ngio_specs/_dataset.py +22 -13
- ngio/ome_zarr_meta/ngio_specs/_ngio_hcs.py +91 -129
- ngio/ome_zarr_meta/ngio_specs/_ngio_image.py +68 -57
- ngio/ome_zarr_meta/v04/__init__.py +1 -5
- ngio/ome_zarr_meta/v04/{_v04_spec.py → _v04_spec_utils.py} +85 -54
- ngio/ome_zarr_meta/v05/__init__.py +1 -5
- ngio/ome_zarr_meta/v05/{_v05_spec.py → _v05_spec_utils.py} +87 -64
- ngio/resources/__init__.py +1 -1
- ngio/resources/resource_model.py +1 -1
- ngio/tables/_tables_container.py +11 -62
- ngio/tables/backends/_anndata.py +8 -58
- ngio/tables/backends/_anndata_utils.py +6 -1
- ngio/tables/backends/_csv.py +19 -3
- ngio/tables/backends/_json.py +13 -10
- ngio/tables/backends/_non_zarr_backends.py +196 -0
- ngio/tables/backends/_parquet.py +31 -3
- ngio/tables/v1/_roi_table.py +24 -41
- ngio/utils/__init__.py +12 -6
- ngio/utils/_datasets.py +0 -6
- ngio/utils/_logger.py +50 -0
- ngio/utils/_zarr_utils.py +58 -167
- {ngio-0.5.0.dist-info → ngio-0.5.0a2.dist-info}/METADATA +4 -11
- ngio-0.5.0a2.dist-info/RECORD +89 -0
- {ngio-0.5.0.dist-info → ngio-0.5.0a2.dist-info}/WHEEL +1 -1
- ngio/images/_create_utils.py +0 -406
- ngio/tables/backends/_py_arrow_backends.py +0 -222
- ngio-0.5.0.dist-info/RECORD +0 -88
- {ngio-0.5.0.dist-info → ngio-0.5.0a2.dist-info}/licenses/LICENSE +0 -0
ngio/images/_create_utils.py
DELETED
|
@@ -1,406 +0,0 @@
|
|
|
1
|
-
"""Utility functions for working with OME-Zarr images."""
|
|
2
|
-
|
|
3
|
-
import warnings
|
|
4
|
-
from collections.abc import Mapping, Sequence
|
|
5
|
-
from typing import Any, Literal, TypeVar
|
|
6
|
-
|
|
7
|
-
from zarr.core.array import CompressorLike
|
|
8
|
-
|
|
9
|
-
from ngio.common._pyramid import ChunksLike, ImagePyramidBuilder, ShardsLike
|
|
10
|
-
from ngio.ome_zarr_meta import (
|
|
11
|
-
NgioImageMeta,
|
|
12
|
-
NgioLabelMeta,
|
|
13
|
-
update_ngio_meta,
|
|
14
|
-
)
|
|
15
|
-
from ngio.ome_zarr_meta.ngio_specs import (
|
|
16
|
-
AxesHandler,
|
|
17
|
-
Channel,
|
|
18
|
-
ChannelsMeta,
|
|
19
|
-
DefaultNgffVersion,
|
|
20
|
-
DefaultSpaceUnit,
|
|
21
|
-
DefaultTimeUnit,
|
|
22
|
-
NgffVersions,
|
|
23
|
-
SpaceUnits,
|
|
24
|
-
TimeUnits,
|
|
25
|
-
build_axes_handler,
|
|
26
|
-
build_canonical_axes_handler,
|
|
27
|
-
canonical_axes_order,
|
|
28
|
-
canonical_label_axes_order,
|
|
29
|
-
)
|
|
30
|
-
from ngio.ome_zarr_meta.ngio_specs._axes import AxesSetup
|
|
31
|
-
from ngio.utils import NgioValueError, StoreOrGroup, ZarrGroupHandler
|
|
32
|
-
|
|
33
|
-
_image_or_label_meta = TypeVar("_image_or_label_meta", NgioImageMeta, NgioLabelMeta)
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
def _align_to_axes(
|
|
37
|
-
*,
|
|
38
|
-
values: dict[str, float],
|
|
39
|
-
axes_handler: AxesHandler,
|
|
40
|
-
default_value: float = 1.0,
|
|
41
|
-
) -> tuple[float, ...]:
|
|
42
|
-
"""Align given values to axes names."""
|
|
43
|
-
aligned_values = [default_value] * len(axes_handler.axes_names)
|
|
44
|
-
for ax, value in values.items():
|
|
45
|
-
index = axes_handler.get_index(ax)
|
|
46
|
-
if index is not None:
|
|
47
|
-
aligned_values[index] = value
|
|
48
|
-
return tuple(aligned_values)
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
def _check_deprecated_scaling_factors(
|
|
52
|
-
*,
|
|
53
|
-
yx_scaling_factor: float | tuple[float, float] | None = None,
|
|
54
|
-
z_scaling_factor: float | None = None,
|
|
55
|
-
scaling_factors: Sequence[float] | Literal["auto"] = "auto",
|
|
56
|
-
shape: tuple[int, ...],
|
|
57
|
-
) -> Sequence[float] | Literal["auto"]:
|
|
58
|
-
if yx_scaling_factor is not None or z_scaling_factor is not None:
|
|
59
|
-
warnings.warn(
|
|
60
|
-
"The 'yx_scaling_factor' and 'z_scaling_factor' arguments are deprecated "
|
|
61
|
-
"and will be removed in ngio=0.6. Please use the 'scaling_factors' "
|
|
62
|
-
"argument instead.",
|
|
63
|
-
DeprecationWarning,
|
|
64
|
-
stacklevel=2,
|
|
65
|
-
)
|
|
66
|
-
if scaling_factors != "auto":
|
|
67
|
-
raise NgioValueError(
|
|
68
|
-
"Cannot use both 'scaling_factors' and deprecated "
|
|
69
|
-
"'yx_scaling_factor'/'z_scaling_factor' arguments."
|
|
70
|
-
)
|
|
71
|
-
if isinstance(yx_scaling_factor, tuple):
|
|
72
|
-
if len(yx_scaling_factor) != 2:
|
|
73
|
-
raise NgioValueError(
|
|
74
|
-
"yx_scaling_factor tuple must have length 2 for y and x scaling."
|
|
75
|
-
)
|
|
76
|
-
y_scale = yx_scaling_factor[0]
|
|
77
|
-
x_scale = yx_scaling_factor[1]
|
|
78
|
-
else:
|
|
79
|
-
y_scale = yx_scaling_factor if yx_scaling_factor is not None else 2.0
|
|
80
|
-
x_scale = yx_scaling_factor if yx_scaling_factor is not None else 2.0
|
|
81
|
-
z_scale = z_scaling_factor if z_scaling_factor is not None else 1.0
|
|
82
|
-
scaling_factors = (z_scale, x_scale, y_scale)
|
|
83
|
-
if len(scaling_factors) < len(shape):
|
|
84
|
-
padding = (1.0,) * (len(shape) - len(scaling_factors))
|
|
85
|
-
scaling_factors = padding + scaling_factors
|
|
86
|
-
|
|
87
|
-
return scaling_factors
|
|
88
|
-
return scaling_factors
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
def _compute_scaling_factors(
|
|
92
|
-
*,
|
|
93
|
-
scaling_factors: Sequence[float] | Literal["auto"],
|
|
94
|
-
shape: tuple[int, ...],
|
|
95
|
-
axes_handler: AxesHandler,
|
|
96
|
-
xy_scaling_factor: float | tuple[float, float] | None = None,
|
|
97
|
-
z_scaling_factor: float | None = None,
|
|
98
|
-
) -> tuple[float, ...]:
|
|
99
|
-
"""Compute scaling factors for given axes names."""
|
|
100
|
-
# TODO remove with ngio 0.6
|
|
101
|
-
scaling_factors = _check_deprecated_scaling_factors(
|
|
102
|
-
yx_scaling_factor=xy_scaling_factor,
|
|
103
|
-
z_scaling_factor=z_scaling_factor,
|
|
104
|
-
scaling_factors=scaling_factors,
|
|
105
|
-
shape=shape,
|
|
106
|
-
)
|
|
107
|
-
if scaling_factors == "auto":
|
|
108
|
-
return _align_to_axes(
|
|
109
|
-
values={
|
|
110
|
-
"x": 2.0,
|
|
111
|
-
"y": 2.0,
|
|
112
|
-
"z": 1.0,
|
|
113
|
-
},
|
|
114
|
-
axes_handler=axes_handler,
|
|
115
|
-
)
|
|
116
|
-
if len(scaling_factors) != len(shape):
|
|
117
|
-
raise NgioValueError(
|
|
118
|
-
"Length of scaling_factors does not match the number of dimensions."
|
|
119
|
-
)
|
|
120
|
-
return tuple(scaling_factors)
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
def compute_base_scale(
|
|
124
|
-
*,
|
|
125
|
-
pixelsize: float | tuple[float, float],
|
|
126
|
-
z_spacing: float,
|
|
127
|
-
time_spacing: float,
|
|
128
|
-
axes_handler: AxesHandler,
|
|
129
|
-
) -> tuple[float, ...]:
|
|
130
|
-
"""Compute base scale for given axes names."""
|
|
131
|
-
if isinstance(pixelsize, tuple):
|
|
132
|
-
if len(pixelsize) != 2:
|
|
133
|
-
raise NgioValueError(
|
|
134
|
-
"pixelsize tuple must have length 2 for y and x pixel sizes."
|
|
135
|
-
)
|
|
136
|
-
x_size = pixelsize[1]
|
|
137
|
-
y_size = pixelsize[0]
|
|
138
|
-
else:
|
|
139
|
-
x_size = pixelsize
|
|
140
|
-
y_size = pixelsize
|
|
141
|
-
return _align_to_axes(
|
|
142
|
-
values={
|
|
143
|
-
"x": x_size,
|
|
144
|
-
"y": y_size,
|
|
145
|
-
"z": z_spacing,
|
|
146
|
-
"t": time_spacing,
|
|
147
|
-
},
|
|
148
|
-
axes_handler=axes_handler,
|
|
149
|
-
)
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
def _create_image_like_group(
|
|
153
|
-
*,
|
|
154
|
-
store: StoreOrGroup,
|
|
155
|
-
pyramid_builder: ImagePyramidBuilder,
|
|
156
|
-
meta: _image_or_label_meta,
|
|
157
|
-
overwrite: bool = False,
|
|
158
|
-
) -> ZarrGroupHandler:
|
|
159
|
-
"""Advanced create empty image container function placeholder."""
|
|
160
|
-
mode = "w" if overwrite else "w-"
|
|
161
|
-
group_handler = ZarrGroupHandler(
|
|
162
|
-
store=store, mode=mode, cache=False, zarr_format=meta.zarr_format
|
|
163
|
-
)
|
|
164
|
-
update_ngio_meta(group_handler, meta)
|
|
165
|
-
# Reopen in r+ mode
|
|
166
|
-
group_handler = group_handler.reopen_handler()
|
|
167
|
-
# Write the pyramid
|
|
168
|
-
pyramid_builder.to_zarr(group=group_handler.group)
|
|
169
|
-
return group_handler
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
def _add_channels_meta(
|
|
173
|
-
*,
|
|
174
|
-
meta: _image_or_label_meta,
|
|
175
|
-
channels_meta: Sequence[str | Channel] | None = None,
|
|
176
|
-
) -> _image_or_label_meta:
|
|
177
|
-
"""Create ChannelsMeta from given channels_meta input."""
|
|
178
|
-
if isinstance(meta, NgioLabelMeta):
|
|
179
|
-
if channels_meta is not None:
|
|
180
|
-
raise NgioValueError(
|
|
181
|
-
"Cannot add channels_meta to NgioLabelMeta. "
|
|
182
|
-
"Labels do not have channels."
|
|
183
|
-
)
|
|
184
|
-
else:
|
|
185
|
-
return meta
|
|
186
|
-
if channels_meta is None:
|
|
187
|
-
return meta
|
|
188
|
-
list_of_channels = []
|
|
189
|
-
for c in channels_meta:
|
|
190
|
-
if isinstance(c, str):
|
|
191
|
-
channel = Channel.default_init(label=c)
|
|
192
|
-
elif isinstance(c, Channel):
|
|
193
|
-
channel = c
|
|
194
|
-
else:
|
|
195
|
-
raise NgioValueError(
|
|
196
|
-
"channels_meta must be a list of strings or Channel objects."
|
|
197
|
-
)
|
|
198
|
-
list_of_channels.append(channel)
|
|
199
|
-
|
|
200
|
-
channels_meta_ = ChannelsMeta(channels=list_of_channels)
|
|
201
|
-
meta.set_channels_meta(channels_meta=channels_meta_)
|
|
202
|
-
return meta
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
def _build_axes_handler(
|
|
206
|
-
*,
|
|
207
|
-
shape: tuple[int, ...],
|
|
208
|
-
meta_type: type[_image_or_label_meta],
|
|
209
|
-
axes_names: Sequence[str] | None = None,
|
|
210
|
-
axes_setup: AxesSetup | None = None,
|
|
211
|
-
) -> AxesHandler:
|
|
212
|
-
"""Build axes handler for given shape and axes names."""
|
|
213
|
-
if meta_type is NgioImageMeta:
|
|
214
|
-
canonical_axes_order_ = canonical_axes_order()
|
|
215
|
-
else:
|
|
216
|
-
canonical_axes_order_ = canonical_label_axes_order()
|
|
217
|
-
if axes_names is None:
|
|
218
|
-
axes_names = canonical_axes_order_[-len(shape) :]
|
|
219
|
-
|
|
220
|
-
if axes_setup is None:
|
|
221
|
-
return build_canonical_axes_handler(
|
|
222
|
-
axes_names=axes_names,
|
|
223
|
-
canonical_channel_order=canonical_axes_order_,
|
|
224
|
-
)
|
|
225
|
-
return build_axes_handler(
|
|
226
|
-
axes_names=axes_names,
|
|
227
|
-
axes_setup=axes_setup,
|
|
228
|
-
)
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
def init_image_like(
|
|
232
|
-
*,
|
|
233
|
-
# Where to create the image
|
|
234
|
-
store: StoreOrGroup,
|
|
235
|
-
# Ngff image parameters
|
|
236
|
-
meta_type: type[_image_or_label_meta],
|
|
237
|
-
shape: Sequence[int],
|
|
238
|
-
pixelsize: float | tuple[float, float],
|
|
239
|
-
z_spacing: float = 1.0,
|
|
240
|
-
time_spacing: float = 1.0,
|
|
241
|
-
scaling_factors: Sequence[float] | Literal["auto"] = "auto",
|
|
242
|
-
levels: int | list[str] = 5,
|
|
243
|
-
translation: Sequence[float] | None = None,
|
|
244
|
-
space_unit: SpaceUnits | str | None = DefaultSpaceUnit,
|
|
245
|
-
time_unit: TimeUnits | str | None = DefaultTimeUnit,
|
|
246
|
-
axes_names: Sequence[str] | None = None,
|
|
247
|
-
name: str | None = None,
|
|
248
|
-
channels_meta: Sequence[str | Channel] | None = None,
|
|
249
|
-
ngff_version: NgffVersions = DefaultNgffVersion,
|
|
250
|
-
# Zarr Array parameters
|
|
251
|
-
chunks: ChunksLike = "auto",
|
|
252
|
-
shards: ShardsLike | None = None,
|
|
253
|
-
dtype: str = "uint16",
|
|
254
|
-
dimension_separator: Literal[".", "/"] = "/",
|
|
255
|
-
compressors: CompressorLike = "auto",
|
|
256
|
-
extra_array_kwargs: Mapping[str, Any] | None = None,
|
|
257
|
-
# internal axes configuration for advanced use cases
|
|
258
|
-
axes_setup: AxesSetup | None = None,
|
|
259
|
-
# Whether to overwrite existing image
|
|
260
|
-
overwrite: bool = False,
|
|
261
|
-
# Deprecated arguments
|
|
262
|
-
yx_scaling_factor: float | tuple[float, float] | None = None,
|
|
263
|
-
z_scaling_factor: float | None = None,
|
|
264
|
-
) -> tuple[ZarrGroupHandler, AxesSetup]:
|
|
265
|
-
"""Create an empty OME-Zarr image with the given shape and metadata."""
|
|
266
|
-
shape = tuple(shape)
|
|
267
|
-
axes_handler = _build_axes_handler(
|
|
268
|
-
shape=shape,
|
|
269
|
-
meta_type=meta_type,
|
|
270
|
-
axes_names=axes_names,
|
|
271
|
-
axes_setup=axes_setup,
|
|
272
|
-
)
|
|
273
|
-
if len(shape) != len(axes_handler.axes_names):
|
|
274
|
-
raise NgioValueError(
|
|
275
|
-
f"Mismatch between shape {shape} "
|
|
276
|
-
f"and number of axes {len(axes_handler.axes_names)}."
|
|
277
|
-
)
|
|
278
|
-
base_scale = compute_base_scale(
|
|
279
|
-
pixelsize=pixelsize,
|
|
280
|
-
z_spacing=z_spacing,
|
|
281
|
-
time_spacing=time_spacing,
|
|
282
|
-
axes_handler=axes_handler,
|
|
283
|
-
)
|
|
284
|
-
scaling_factors = _compute_scaling_factors(
|
|
285
|
-
scaling_factors=scaling_factors,
|
|
286
|
-
shape=shape,
|
|
287
|
-
axes_handler=axes_handler,
|
|
288
|
-
xy_scaling_factor=yx_scaling_factor,
|
|
289
|
-
z_scaling_factor=z_scaling_factor,
|
|
290
|
-
)
|
|
291
|
-
if isinstance(levels, int):
|
|
292
|
-
levels_paths = tuple(str(i) for i in range(levels))
|
|
293
|
-
else:
|
|
294
|
-
levels_paths = tuple(levels)
|
|
295
|
-
|
|
296
|
-
pyramid_builder = ImagePyramidBuilder.from_scaling_factors(
|
|
297
|
-
levels_paths=levels_paths,
|
|
298
|
-
scaling_factors=scaling_factors,
|
|
299
|
-
base_shape=shape,
|
|
300
|
-
base_scale=base_scale,
|
|
301
|
-
base_translation=translation,
|
|
302
|
-
axes=axes_handler.axes_names,
|
|
303
|
-
chunks=chunks,
|
|
304
|
-
data_type=dtype,
|
|
305
|
-
dimension_separator=dimension_separator,
|
|
306
|
-
compressors=compressors,
|
|
307
|
-
shards=shards,
|
|
308
|
-
zarr_format=2 if ngff_version == "0.4" else 3,
|
|
309
|
-
other_array_kwargs=extra_array_kwargs,
|
|
310
|
-
)
|
|
311
|
-
meta = meta_type.default_init(
|
|
312
|
-
levels=[p.path for p in pyramid_builder.levels],
|
|
313
|
-
axes_handler=axes_handler,
|
|
314
|
-
scales=[p.scale for p in pyramid_builder.levels],
|
|
315
|
-
translations=[p.translation for p in pyramid_builder.levels],
|
|
316
|
-
name=name,
|
|
317
|
-
version=ngff_version,
|
|
318
|
-
)
|
|
319
|
-
meta = _add_channels_meta(meta=meta, channels_meta=channels_meta)
|
|
320
|
-
# Keep this creation at the end to avoid partial creations on errors
|
|
321
|
-
image_handler = _create_image_like_group(
|
|
322
|
-
store=store,
|
|
323
|
-
pyramid_builder=pyramid_builder,
|
|
324
|
-
meta=meta,
|
|
325
|
-
overwrite=overwrite,
|
|
326
|
-
)
|
|
327
|
-
return image_handler, axes_handler.axes_setup
|
|
328
|
-
|
|
329
|
-
|
|
330
|
-
def init_image_like_from_shapes(
|
|
331
|
-
*,
|
|
332
|
-
# Where to create the image
|
|
333
|
-
store: StoreOrGroup,
|
|
334
|
-
# Ngff image parameters
|
|
335
|
-
meta_type: type[_image_or_label_meta],
|
|
336
|
-
shapes: Sequence[tuple[int, ...]],
|
|
337
|
-
base_scale: tuple[float, ...] | list[tuple[float, ...]],
|
|
338
|
-
levels: list[str] | None = None,
|
|
339
|
-
translation: Sequence[float] | None = None,
|
|
340
|
-
space_unit: SpaceUnits | str | None = DefaultSpaceUnit,
|
|
341
|
-
time_unit: TimeUnits | str | None = DefaultTimeUnit,
|
|
342
|
-
axes_names: Sequence[str] | None = None,
|
|
343
|
-
name: str | None = None,
|
|
344
|
-
channels_meta: Sequence[str | Channel] | None = None,
|
|
345
|
-
ngff_version: NgffVersions = DefaultNgffVersion,
|
|
346
|
-
# Zarr Array parameters
|
|
347
|
-
chunks: ChunksLike = "auto",
|
|
348
|
-
shards: ShardsLike | None = None,
|
|
349
|
-
dtype: str = "uint16",
|
|
350
|
-
dimension_separator: Literal[".", "/"] = "/",
|
|
351
|
-
compressors: CompressorLike = "auto",
|
|
352
|
-
extra_array_kwargs: Mapping[str, Any] | None = None,
|
|
353
|
-
# internal axes configuration for advanced use cases
|
|
354
|
-
axes_setup: AxesSetup | None = None,
|
|
355
|
-
# Whether to overwrite existing image
|
|
356
|
-
overwrite: bool = False,
|
|
357
|
-
) -> tuple[ZarrGroupHandler, AxesSetup]:
|
|
358
|
-
"""Create an empty OME-Zarr image with the given shape and metadata."""
|
|
359
|
-
base_shape = shapes[0]
|
|
360
|
-
axes_handler = _build_axes_handler(
|
|
361
|
-
shape=base_shape,
|
|
362
|
-
meta_type=meta_type,
|
|
363
|
-
axes_names=axes_names,
|
|
364
|
-
axes_setup=axes_setup,
|
|
365
|
-
)
|
|
366
|
-
if len(base_shape) != len(axes_handler.axes_names):
|
|
367
|
-
raise NgioValueError(
|
|
368
|
-
f"Mismatch between shape {base_shape} "
|
|
369
|
-
f"and number of axes {len(axes_handler.axes_names)}."
|
|
370
|
-
)
|
|
371
|
-
if levels is None:
|
|
372
|
-
levels_paths = tuple(str(i) for i in range(len(shapes)))
|
|
373
|
-
else:
|
|
374
|
-
levels_paths = tuple(levels)
|
|
375
|
-
|
|
376
|
-
pyramid_builder = ImagePyramidBuilder.from_shapes(
|
|
377
|
-
shapes=shapes,
|
|
378
|
-
base_scale=base_scale,
|
|
379
|
-
base_translation=translation,
|
|
380
|
-
levels_paths=levels_paths,
|
|
381
|
-
axes=axes_handler.axes_names,
|
|
382
|
-
chunks=chunks,
|
|
383
|
-
data_type=dtype,
|
|
384
|
-
dimension_separator=dimension_separator,
|
|
385
|
-
compressors=compressors,
|
|
386
|
-
shards=shards,
|
|
387
|
-
zarr_format=2 if ngff_version == "0.4" else 3,
|
|
388
|
-
other_array_kwargs=extra_array_kwargs,
|
|
389
|
-
)
|
|
390
|
-
meta = meta_type.default_init(
|
|
391
|
-
levels=[p.path for p in pyramid_builder.levels],
|
|
392
|
-
axes_handler=axes_handler,
|
|
393
|
-
scales=[p.scale for p in pyramid_builder.levels],
|
|
394
|
-
translations=[p.translation for p in pyramid_builder.levels],
|
|
395
|
-
name=name,
|
|
396
|
-
version=ngff_version,
|
|
397
|
-
)
|
|
398
|
-
meta = _add_channels_meta(meta=meta, channels_meta=channels_meta)
|
|
399
|
-
# Keep this creation at the end to avoid partial creations on errors
|
|
400
|
-
image_handler = _create_image_like_group(
|
|
401
|
-
store=store,
|
|
402
|
-
pyramid_builder=pyramid_builder,
|
|
403
|
-
meta=meta,
|
|
404
|
-
overwrite=overwrite,
|
|
405
|
-
)
|
|
406
|
-
return image_handler, axes_handler.axes_setup
|
|
@@ -1,222 +0,0 @@
|
|
|
1
|
-
from typing import Literal
|
|
2
|
-
|
|
3
|
-
import polars as pl
|
|
4
|
-
import pyarrow as pa
|
|
5
|
-
import pyarrow.csv as pa_csv
|
|
6
|
-
import pyarrow.dataset as pa_ds
|
|
7
|
-
import pyarrow.fs as pa_fs
|
|
8
|
-
import pyarrow.parquet as pa_parquet
|
|
9
|
-
from pandas import DataFrame
|
|
10
|
-
from polars import DataFrame as PolarsDataFrame
|
|
11
|
-
from polars import LazyFrame
|
|
12
|
-
from zarr.storage import FsspecStore, LocalStore, MemoryStore, ZipStore
|
|
13
|
-
|
|
14
|
-
from ngio.tables.backends._abstract_backend import AbstractTableBackend
|
|
15
|
-
from ngio.tables.backends._utils import normalize_pandas_df, normalize_polars_lf
|
|
16
|
-
from ngio.utils import NgioValueError
|
|
17
|
-
from ngio.utils._zarr_utils import _make_sync_fs
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
class PyArrowBackend(AbstractTableBackend):
|
|
21
|
-
"""A class to load and write small tables in CSV format."""
|
|
22
|
-
|
|
23
|
-
def __init__(
|
|
24
|
-
self,
|
|
25
|
-
table_name: str,
|
|
26
|
-
table_format: Literal["csv", "parquet"] = "parquet",
|
|
27
|
-
):
|
|
28
|
-
self.table_name = table_name
|
|
29
|
-
self.table_format = table_format
|
|
30
|
-
|
|
31
|
-
@staticmethod
|
|
32
|
-
def implements_anndata() -> bool:
|
|
33
|
-
"""Whether the handler implements the anndata protocol."""
|
|
34
|
-
return False
|
|
35
|
-
|
|
36
|
-
@staticmethod
|
|
37
|
-
def implements_pandas() -> bool:
|
|
38
|
-
"""Whether the handler implements the dataframe protocol."""
|
|
39
|
-
return True
|
|
40
|
-
|
|
41
|
-
@staticmethod
|
|
42
|
-
def implements_polars() -> bool:
|
|
43
|
-
"""Whether the handler implements the polars protocol."""
|
|
44
|
-
return True
|
|
45
|
-
|
|
46
|
-
@staticmethod
|
|
47
|
-
def backend_name() -> str:
|
|
48
|
-
"""Return the name of the backend."""
|
|
49
|
-
raise NotImplementedError(
|
|
50
|
-
"The backend_name method must be implemented in the subclass."
|
|
51
|
-
)
|
|
52
|
-
|
|
53
|
-
def _raise_store_type_not_supported(self):
|
|
54
|
-
"""Raise an error for unsupported store types."""
|
|
55
|
-
ext = self.table_name.split(".")[-1]
|
|
56
|
-
store = self._group_handler.store
|
|
57
|
-
raise NgioValueError(
|
|
58
|
-
f"Ngio does not support reading a {ext} table from a "
|
|
59
|
-
f"store of type {type(store)}. "
|
|
60
|
-
"Please make sure to use a compatible "
|
|
61
|
-
"store like a LocalStore, or "
|
|
62
|
-
"FsspecStore, or MemoryStore, or ZipStore."
|
|
63
|
-
)
|
|
64
|
-
|
|
65
|
-
def _load_from_local_store(self, store: LocalStore, path: str) -> pa_ds.Dataset:
|
|
66
|
-
"""Load the table from a directory store."""
|
|
67
|
-
root_path = store.root
|
|
68
|
-
table_path = f"{root_path}/{path}/{self.table_name}"
|
|
69
|
-
dataset = pa_ds.dataset(table_path, format=self.table_format)
|
|
70
|
-
return dataset
|
|
71
|
-
|
|
72
|
-
def _load_from_fsspec_store(self, store: FsspecStore, path: str) -> pa_ds.Dataset:
|
|
73
|
-
"""Load the table from an FS store."""
|
|
74
|
-
table_path = f"{store.path}/{path}/{self.table_name}"
|
|
75
|
-
fs = _make_sync_fs(store.fs)
|
|
76
|
-
dataset = pa_ds.dataset(table_path, format=self.table_format, filesystem=fs)
|
|
77
|
-
return dataset
|
|
78
|
-
|
|
79
|
-
def _load_from_in_memory_store(
|
|
80
|
-
self, store: MemoryStore, path: str
|
|
81
|
-
) -> pa_ds.Dataset:
|
|
82
|
-
"""Load the table from an in-memory store."""
|
|
83
|
-
table_path = f"{path}/{self.table_name}"
|
|
84
|
-
table = store._store_dict.get(table_path, None)
|
|
85
|
-
if table is None:
|
|
86
|
-
raise NgioValueError(
|
|
87
|
-
f"Table {self.table_name} not found in the in-memory store at "
|
|
88
|
-
f"path {path}."
|
|
89
|
-
)
|
|
90
|
-
assert isinstance(table, pa.Table)
|
|
91
|
-
dataset = pa_ds.dataset(table)
|
|
92
|
-
return dataset
|
|
93
|
-
|
|
94
|
-
def _load_from_zip_store(self, store: ZipStore, path: str) -> pa_ds.Dataset:
|
|
95
|
-
"""Load the table from a zip store."""
|
|
96
|
-
raise NotImplementedError("Zip store loading is not implemented yet.")
|
|
97
|
-
|
|
98
|
-
def _load_pyarrow_dataset(self) -> pa_ds.Dataset:
|
|
99
|
-
"""Load the table as a pyarrow Dataset."""
|
|
100
|
-
store = self._group_handler.store
|
|
101
|
-
path = self._group_handler.group.path
|
|
102
|
-
if isinstance(store, LocalStore):
|
|
103
|
-
return self._load_from_local_store(store, path)
|
|
104
|
-
elif isinstance(store, FsspecStore):
|
|
105
|
-
return self._load_from_fsspec_store(store, path)
|
|
106
|
-
elif isinstance(store, MemoryStore):
|
|
107
|
-
return self._load_from_in_memory_store(store, path)
|
|
108
|
-
elif isinstance(store, ZipStore):
|
|
109
|
-
return self._load_from_zip_store(store, path)
|
|
110
|
-
self._raise_store_type_not_supported()
|
|
111
|
-
|
|
112
|
-
def load_as_pandas_df(self) -> DataFrame:
|
|
113
|
-
"""Load the table as a pandas DataFrame."""
|
|
114
|
-
dataset = self._load_pyarrow_dataset()
|
|
115
|
-
dataframe = dataset.to_table().to_pandas()
|
|
116
|
-
dataframe = normalize_pandas_df(
|
|
117
|
-
dataframe,
|
|
118
|
-
index_key=self.index_key,
|
|
119
|
-
index_type=self.index_type,
|
|
120
|
-
reset_index=False,
|
|
121
|
-
)
|
|
122
|
-
return dataframe
|
|
123
|
-
|
|
124
|
-
def load(self) -> DataFrame:
|
|
125
|
-
"""Load the table as a pandas DataFrame."""
|
|
126
|
-
return self.load_as_pandas_df()
|
|
127
|
-
|
|
128
|
-
def load_as_polars_lf(self) -> LazyFrame:
|
|
129
|
-
"""Load the table as a polars LazyFrame."""
|
|
130
|
-
dataset = self._load_pyarrow_dataset()
|
|
131
|
-
lazy_frame = pl.scan_pyarrow_dataset(dataset)
|
|
132
|
-
if not isinstance(lazy_frame, LazyFrame):
|
|
133
|
-
raise NgioValueError(
|
|
134
|
-
"Table is not a lazy frame. Please report this issue as an ngio bug."
|
|
135
|
-
f" {type(lazy_frame)}"
|
|
136
|
-
)
|
|
137
|
-
|
|
138
|
-
lazy_frame = normalize_polars_lf(
|
|
139
|
-
lazy_frame,
|
|
140
|
-
index_key=self.index_key,
|
|
141
|
-
index_type=self.index_type,
|
|
142
|
-
)
|
|
143
|
-
return lazy_frame
|
|
144
|
-
|
|
145
|
-
def _write_to_stream(self, stream, table: pa.Table) -> None:
|
|
146
|
-
"""Write the table to a stream."""
|
|
147
|
-
if self.table_format == "parquet":
|
|
148
|
-
pa_parquet.write_table(table, stream)
|
|
149
|
-
elif self.table_format == "csv":
|
|
150
|
-
pa_csv.write_csv(table, stream)
|
|
151
|
-
else:
|
|
152
|
-
raise NgioValueError(
|
|
153
|
-
f"Unsupported table format: {self.table_format}. "
|
|
154
|
-
"Supported formats are 'parquet' and 'csv'."
|
|
155
|
-
)
|
|
156
|
-
|
|
157
|
-
def _write_to_local_store(
|
|
158
|
-
self, store: LocalStore, path: str, table: pa.Table
|
|
159
|
-
) -> None:
|
|
160
|
-
"""Write the table to a directory store."""
|
|
161
|
-
root_path = store.root
|
|
162
|
-
table_path = f"{root_path}/{path}/{self.table_name}"
|
|
163
|
-
self._write_to_stream(table_path, table)
|
|
164
|
-
|
|
165
|
-
def _write_to_fsspec_store(
|
|
166
|
-
self, store: FsspecStore, path: str, table: pa.Table
|
|
167
|
-
) -> None:
|
|
168
|
-
"""Write the table to an FS store."""
|
|
169
|
-
table_path = f"{store.path}/{path}/{self.table_name}"
|
|
170
|
-
fs = _make_sync_fs(store.fs)
|
|
171
|
-
fs = pa_fs.PyFileSystem(pa_fs.FSSpecHandler(fs))
|
|
172
|
-
with fs.open_output_stream(table_path) as out_stream:
|
|
173
|
-
self._write_to_stream(out_stream, table)
|
|
174
|
-
|
|
175
|
-
def _write_to_in_memory_store(
|
|
176
|
-
self, store: MemoryStore, path: str, table: pa.Table
|
|
177
|
-
) -> None:
|
|
178
|
-
"""Write the table to an in-memory store."""
|
|
179
|
-
table_path = f"{path}/{self.table_name}"
|
|
180
|
-
store._store_dict[table_path] = table
|
|
181
|
-
|
|
182
|
-
def _write_to_zip_store(self, store: ZipStore, path: str, table: pa.Table) -> None:
|
|
183
|
-
"""Write the table to a zip store."""
|
|
184
|
-
raise NotImplementedError("Writing to zip store is not implemented yet.")
|
|
185
|
-
|
|
186
|
-
def _write_pyarrow_dataset(self, dataset: pa.Table) -> None:
|
|
187
|
-
"""Write the table from a pyarrow Dataset."""
|
|
188
|
-
store = self._group_handler.store
|
|
189
|
-
path = self._group_handler.group.path
|
|
190
|
-
if isinstance(store, LocalStore):
|
|
191
|
-
return self._write_to_local_store(store=store, path=path, table=dataset)
|
|
192
|
-
elif isinstance(store, FsspecStore):
|
|
193
|
-
return self._write_to_fsspec_store(store=store, path=path, table=dataset)
|
|
194
|
-
elif isinstance(store, MemoryStore):
|
|
195
|
-
return self._write_to_in_memory_store(store=store, path=path, table=dataset)
|
|
196
|
-
elif isinstance(store, ZipStore):
|
|
197
|
-
return self._write_to_zip_store(store=store, path=path, table=dataset)
|
|
198
|
-
self._raise_store_type_not_supported()
|
|
199
|
-
|
|
200
|
-
def write_from_pandas(self, table: DataFrame) -> None:
|
|
201
|
-
"""Write the table from a pandas DataFrame."""
|
|
202
|
-
table = normalize_pandas_df(
|
|
203
|
-
table,
|
|
204
|
-
index_key=self.index_key,
|
|
205
|
-
index_type=self.index_type,
|
|
206
|
-
reset_index=True,
|
|
207
|
-
)
|
|
208
|
-
table = pa.Table.from_pandas(table, preserve_index=False)
|
|
209
|
-
self._write_pyarrow_dataset(table)
|
|
210
|
-
|
|
211
|
-
def write_from_polars(self, table: PolarsDataFrame | LazyFrame) -> None:
|
|
212
|
-
"""Write the table from a polars DataFrame or LazyFrame."""
|
|
213
|
-
table = normalize_polars_lf(
|
|
214
|
-
table,
|
|
215
|
-
index_key=self.index_key,
|
|
216
|
-
index_type=self.index_type,
|
|
217
|
-
)
|
|
218
|
-
|
|
219
|
-
if isinstance(table, LazyFrame):
|
|
220
|
-
table = table.collect()
|
|
221
|
-
table = table.to_arrow()
|
|
222
|
-
self._write_pyarrow_dataset(table)
|