ngio 0.4.0a2__py3-none-any.whl → 0.4.0a4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ngio/__init__.py +1 -2
- ngio/common/__init__.py +2 -51
- ngio/common/_dimensions.py +223 -64
- ngio/common/_pyramid.py +42 -23
- ngio/common/_roi.py +94 -418
- ngio/common/_zoom.py +32 -7
- ngio/experimental/iterators/_abstract_iterator.py +2 -2
- ngio/experimental/iterators/_feature.py +10 -15
- ngio/experimental/iterators/_image_processing.py +18 -28
- ngio/experimental/iterators/_rois_utils.py +6 -6
- ngio/experimental/iterators/_segmentation.py +38 -54
- ngio/images/_abstract_image.py +136 -94
- ngio/images/_create.py +16 -0
- ngio/images/_create_synt_container.py +10 -0
- ngio/images/_image.py +33 -9
- ngio/images/_label.py +24 -3
- ngio/images/_masked_image.py +60 -81
- ngio/images/_ome_zarr_container.py +34 -1
- ngio/io_pipes/__init__.py +49 -0
- ngio/io_pipes/_io_pipes.py +286 -0
- ngio/io_pipes/_io_pipes_masked.py +481 -0
- ngio/io_pipes/_io_pipes_roi.py +143 -0
- ngio/io_pipes/_io_pipes_utils.py +299 -0
- ngio/io_pipes/_match_shape.py +376 -0
- ngio/io_pipes/_ops_axes.py +146 -0
- ngio/io_pipes/_ops_slices.py +218 -0
- ngio/io_pipes/_ops_transforms.py +104 -0
- ngio/io_pipes/_zoom_transform.py +175 -0
- ngio/ome_zarr_meta/__init__.py +6 -2
- ngio/ome_zarr_meta/ngio_specs/__init__.py +6 -4
- ngio/ome_zarr_meta/ngio_specs/_axes.py +182 -70
- ngio/ome_zarr_meta/ngio_specs/_dataset.py +47 -121
- ngio/ome_zarr_meta/ngio_specs/_ngio_image.py +30 -22
- ngio/ome_zarr_meta/ngio_specs/_pixel_size.py +17 -1
- ngio/ome_zarr_meta/v04/_v04_spec_utils.py +33 -30
- ngio/resources/20200812-CardiomyocyteDifferentiation14-Cycle1_B03/nuclei.png +0 -0
- ngio/resources/__init__.py +1 -0
- ngio/resources/resource_model.py +1 -0
- ngio/tables/v1/_roi_table.py +11 -3
- ngio/{common/transforms → transforms}/__init__.py +1 -1
- ngio/transforms/_zoom.py +19 -0
- ngio/utils/_zarr_utils.py +5 -1
- {ngio-0.4.0a2.dist-info → ngio-0.4.0a4.dist-info}/METADATA +1 -1
- ngio-0.4.0a4.dist-info/RECORD +83 -0
- ngio/common/_array_io_pipes.py +0 -554
- ngio/common/_array_io_utils.py +0 -508
- ngio/common/transforms/_label.py +0 -12
- ngio/common/transforms/_zoom.py +0 -109
- ngio-0.4.0a2.dist-info/RECORD +0 -76
- {ngio-0.4.0a2.dist-info → ngio-0.4.0a4.dist-info}/WHEEL +0 -0
- {ngio-0.4.0a2.dist-info → ngio-0.4.0a4.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,299 @@
|
|
|
1
|
+
from collections.abc import Mapping, Sequence
|
|
2
|
+
from typing import TypeAlias
|
|
3
|
+
|
|
4
|
+
from ngio.common._dimensions import Dimensions
|
|
5
|
+
from ngio.io_pipes._ops_slices import SlicingOps, SlicingType
|
|
6
|
+
from ngio.ome_zarr_meta.ngio_specs import Axis
|
|
7
|
+
from ngio.ome_zarr_meta.ngio_specs._axes import AxesOps
|
|
8
|
+
from ngio.utils import NgioValueError
|
|
9
|
+
|
|
10
|
+
SlicingInputType: TypeAlias = slice | Sequence[int] | int | None
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def _try_to_slice(value: Sequence[int]) -> slice | tuple[int, ...]:
|
|
14
|
+
"""Try to convert a list of integers into a slice if they are contiguous.
|
|
15
|
+
|
|
16
|
+
- If the input is empty, return an empty tuple.
|
|
17
|
+
- If the input is sorted, and contains contiguous integers,
|
|
18
|
+
return a slice from the minimum to the maximum integer.
|
|
19
|
+
- Otherwise, return the input as a tuple.
|
|
20
|
+
|
|
21
|
+
This is useful for optimizing array slicing operations
|
|
22
|
+
by allowing the use of slices when possible, which can be more efficient.
|
|
23
|
+
"""
|
|
24
|
+
if not value:
|
|
25
|
+
raise NgioValueError("Ngio does not support empty sequences as slice input.")
|
|
26
|
+
|
|
27
|
+
if not all(isinstance(i, int) for i in value):
|
|
28
|
+
_value = []
|
|
29
|
+
for i in value:
|
|
30
|
+
try:
|
|
31
|
+
_value.append(int(i))
|
|
32
|
+
except Exception as e:
|
|
33
|
+
raise NgioValueError(
|
|
34
|
+
f"Invalid value {i} of type {type(i)} in sequence {value}"
|
|
35
|
+
) from e
|
|
36
|
+
value = _value
|
|
37
|
+
# If the input is not sorted, return it as a tuple
|
|
38
|
+
max_input = max(value)
|
|
39
|
+
min_input = min(value)
|
|
40
|
+
assert min_input >= 0, "Input must contain non-negative integers"
|
|
41
|
+
|
|
42
|
+
if sorted(value) == list(range(min_input, max_input + 1)):
|
|
43
|
+
return slice(min_input, max_input + 1)
|
|
44
|
+
|
|
45
|
+
return tuple(value)
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
def _remove_channel_slicing(
|
|
49
|
+
slicing_dict: dict[str, SlicingInputType],
|
|
50
|
+
dimensions: Dimensions,
|
|
51
|
+
) -> dict[str, SlicingInputType]:
|
|
52
|
+
"""This utility function removes the channel selection from the slice kwargs.
|
|
53
|
+
|
|
54
|
+
if ignore_channel_selection is True, it will remove the channel selection
|
|
55
|
+
regardless of the dimensions. If the ignore_channel_selection is False
|
|
56
|
+
it will fail.
|
|
57
|
+
"""
|
|
58
|
+
if dimensions.is_multi_channels:
|
|
59
|
+
return slicing_dict
|
|
60
|
+
|
|
61
|
+
if "c" in slicing_dict:
|
|
62
|
+
slicing_dict.pop("c", None)
|
|
63
|
+
return slicing_dict
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
def _check_slicing_virtual_axes(slice_: SlicingInputType) -> bool:
|
|
67
|
+
"""Check if the slice_ is compatible with virtual axes.
|
|
68
|
+
|
|
69
|
+
Virtual axes are axes that are not present in the actual data,
|
|
70
|
+
such as time or channel axes in some datasets.
|
|
71
|
+
So the only valid slices for virtual axes are:
|
|
72
|
+
- None: means all data along the axis
|
|
73
|
+
- 0: means the first element along the axis
|
|
74
|
+
- slice([0, None], [1, None])
|
|
75
|
+
"""
|
|
76
|
+
if slice_ is None or slice_ == 0:
|
|
77
|
+
return True
|
|
78
|
+
if isinstance(slice_, slice):
|
|
79
|
+
if slice_.start is None and slice_.stop is None:
|
|
80
|
+
return True
|
|
81
|
+
if slice_.start == 0 and slice_.stop is None:
|
|
82
|
+
return True
|
|
83
|
+
if slice_.start is None and slice_.stop == 0:
|
|
84
|
+
return True
|
|
85
|
+
if slice_.start == 0 and slice_.stop == 1:
|
|
86
|
+
return True
|
|
87
|
+
if isinstance(slice_, Sequence):
|
|
88
|
+
if len(slice_) == 1 and slice_[0] == 0:
|
|
89
|
+
return True
|
|
90
|
+
return False
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
def _clean_slicing_dict(
|
|
94
|
+
dimensions: Dimensions,
|
|
95
|
+
slicing_dict: Mapping[str, SlicingInputType],
|
|
96
|
+
remove_channel_selection: bool = False,
|
|
97
|
+
) -> dict[str, SlicingInputType]:
|
|
98
|
+
"""Clean the slicing dict.
|
|
99
|
+
|
|
100
|
+
This function will:
|
|
101
|
+
- Validate that the axes in the slicing_dict are present in the dimensions.
|
|
102
|
+
- Make sure that the slicing_dict uses the on-disk axis names.
|
|
103
|
+
- Check for duplicate axis names in the slicing_dict.
|
|
104
|
+
- Clean up channel selection if the dimensions
|
|
105
|
+
"""
|
|
106
|
+
clean_slicing_dict: dict[str, SlicingInputType] = {}
|
|
107
|
+
for axis_name, slice_ in slicing_dict.items():
|
|
108
|
+
axis = dimensions.axes_handler.get_axis(axis_name)
|
|
109
|
+
if axis is None:
|
|
110
|
+
# Virtual axes should be allowed to be selected
|
|
111
|
+
# Common use case is still allowing channel_selection
|
|
112
|
+
# When the zarr has not channel axis.
|
|
113
|
+
if not _check_slicing_virtual_axes(slice_):
|
|
114
|
+
raise NgioValueError(
|
|
115
|
+
f"Invalid axis selection:{axis_name}={slice_}. "
|
|
116
|
+
f"Not found on the on-disk axes {dimensions.axes}."
|
|
117
|
+
)
|
|
118
|
+
# Virtual axes can be safely ignored
|
|
119
|
+
continue
|
|
120
|
+
if axis.name in clean_slicing_dict:
|
|
121
|
+
raise NgioValueError(
|
|
122
|
+
f"Duplicate axis {axis.name} in slice kwargs. "
|
|
123
|
+
"Please provide unique axis names."
|
|
124
|
+
)
|
|
125
|
+
clean_slicing_dict[axis.name] = slice_
|
|
126
|
+
|
|
127
|
+
if remove_channel_selection:
|
|
128
|
+
clean_slicing_dict = _remove_channel_slicing(
|
|
129
|
+
slicing_dict=clean_slicing_dict, dimensions=dimensions
|
|
130
|
+
)
|
|
131
|
+
return clean_slicing_dict
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
def _normalize_axes_order(
|
|
135
|
+
dimensions: Dimensions,
|
|
136
|
+
axes_order: Sequence[str],
|
|
137
|
+
) -> list[str]:
|
|
138
|
+
"""Convert axes order to the on-disk axes names.
|
|
139
|
+
|
|
140
|
+
In this way there is not unambiguity in the axes order.
|
|
141
|
+
"""
|
|
142
|
+
new_axes_order = []
|
|
143
|
+
for axis_name in axes_order:
|
|
144
|
+
axis = dimensions.axes_handler.get_axis(axis_name)
|
|
145
|
+
if axis is None:
|
|
146
|
+
new_axes_order.append(axis_name)
|
|
147
|
+
else:
|
|
148
|
+
new_axes_order.append(axis.name)
|
|
149
|
+
return new_axes_order
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
def _normalize_slicing_tuple(
|
|
153
|
+
axis: Axis,
|
|
154
|
+
slicing_dict: dict[str, SlicingInputType],
|
|
155
|
+
no_axes_ops: bool,
|
|
156
|
+
axes_order: list[str],
|
|
157
|
+
) -> tuple[SlicingType, str | None]:
|
|
158
|
+
"""Normalize the slicing dict to tuple.
|
|
159
|
+
|
|
160
|
+
Since the slicing dict can contain different types of values
|
|
161
|
+
We need to normalize them to more predictable types.
|
|
162
|
+
The output types are:
|
|
163
|
+
- slice
|
|
164
|
+
- int
|
|
165
|
+
- tuple of int (for non-contiguous selection)
|
|
166
|
+
"""
|
|
167
|
+
axis_name = axis.name
|
|
168
|
+
if axis_name not in slicing_dict:
|
|
169
|
+
# If no slice is provided for the axis, use a full slice
|
|
170
|
+
return slice(None), None
|
|
171
|
+
|
|
172
|
+
value = slicing_dict[axis_name]
|
|
173
|
+
if value is None:
|
|
174
|
+
return slice(None), None
|
|
175
|
+
|
|
176
|
+
if isinstance(value, slice):
|
|
177
|
+
return value, None
|
|
178
|
+
elif isinstance(value, int):
|
|
179
|
+
# If axes ops are requested, we need to preserve the dimension
|
|
180
|
+
# When we slice because the axes ops will be applied later
|
|
181
|
+
# If no axes ops are requested, we can safely keep the integer
|
|
182
|
+
# which will remove the dimension
|
|
183
|
+
if (not no_axes_ops) or (axis_name in axes_order):
|
|
184
|
+
# Axes ops require all dimensions to be preserved
|
|
185
|
+
value = slice(value, value + 1)
|
|
186
|
+
return value, None
|
|
187
|
+
return value, axis_name
|
|
188
|
+
elif isinstance(value, Sequence):
|
|
189
|
+
# If a contiguous sequence of integers is provided,
|
|
190
|
+
# convert it to a slice for efficiency
|
|
191
|
+
# Alternatively, it will be converted to a tuple of ints
|
|
192
|
+
return _try_to_slice(value), None
|
|
193
|
+
|
|
194
|
+
raise NgioValueError(
|
|
195
|
+
f"Invalid slice definition {value} of type {type(value)}. "
|
|
196
|
+
"Allowed types are: int, slice, sequence of int or None."
|
|
197
|
+
)
|
|
198
|
+
|
|
199
|
+
|
|
200
|
+
def _build_slicing_tuple(
|
|
201
|
+
*,
|
|
202
|
+
dimensions: Dimensions,
|
|
203
|
+
slicing_dict: dict[str, SlicingInputType],
|
|
204
|
+
axes_order: list[str] | None = None,
|
|
205
|
+
no_axes_ops: bool = False,
|
|
206
|
+
remove_channel_selection: bool = False,
|
|
207
|
+
) -> tuple[tuple[SlicingType, ...] | None, list[str]]:
|
|
208
|
+
"""Assemble slices to be used to query the array."""
|
|
209
|
+
if len(slicing_dict) == 0:
|
|
210
|
+
# Skip unnecessary computation if no slicing is requested
|
|
211
|
+
return None, []
|
|
212
|
+
_axes_order = (
|
|
213
|
+
_normalize_axes_order(dimensions=dimensions, axes_order=axes_order)
|
|
214
|
+
if axes_order is not None
|
|
215
|
+
else []
|
|
216
|
+
)
|
|
217
|
+
_slicing_dict = _clean_slicing_dict(
|
|
218
|
+
dimensions=dimensions,
|
|
219
|
+
slicing_dict=slicing_dict,
|
|
220
|
+
remove_channel_selection=remove_channel_selection,
|
|
221
|
+
)
|
|
222
|
+
|
|
223
|
+
slicing_tuple = []
|
|
224
|
+
axes_to_remove = []
|
|
225
|
+
for axis in dimensions.axes_handler.axes:
|
|
226
|
+
sl, ax_to_remove = _normalize_slicing_tuple(
|
|
227
|
+
axis=axis,
|
|
228
|
+
slicing_dict=_slicing_dict,
|
|
229
|
+
no_axes_ops=no_axes_ops,
|
|
230
|
+
axes_order=_axes_order,
|
|
231
|
+
)
|
|
232
|
+
slicing_tuple.append(sl)
|
|
233
|
+
if ax_to_remove is not None:
|
|
234
|
+
axes_to_remove.append(ax_to_remove)
|
|
235
|
+
slicing_tuple = tuple(slicing_tuple)
|
|
236
|
+
# Slicing tuple can have only one element of type tuple
|
|
237
|
+
# If multiple tuple are present it will lead to errors
|
|
238
|
+
# when querying the array
|
|
239
|
+
if sum(isinstance(s, tuple) for s in slicing_tuple) > 1:
|
|
240
|
+
raise NgioValueError(
|
|
241
|
+
f"Invalid slicing tuple {slicing_tuple}. Ngio does not support "
|
|
242
|
+
"multiple non-contiguous selections (tuples) in the slicing tuple. "
|
|
243
|
+
"Please use slices or single integer selections instead."
|
|
244
|
+
)
|
|
245
|
+
return slicing_tuple, axes_to_remove
|
|
246
|
+
|
|
247
|
+
|
|
248
|
+
def _build_axes_ops(
|
|
249
|
+
*,
|
|
250
|
+
axes_order: Sequence[str] | None,
|
|
251
|
+
dimensions: Dimensions,
|
|
252
|
+
) -> tuple[list[str] | None, AxesOps]:
|
|
253
|
+
if axes_order is None:
|
|
254
|
+
return None, AxesOps(
|
|
255
|
+
on_disk_axes=dimensions.axes_handler.axes_names,
|
|
256
|
+
in_memory_axes=dimensions.axes_handler.axes_names,
|
|
257
|
+
)
|
|
258
|
+
|
|
259
|
+
axes_order = _normalize_axes_order(dimensions=dimensions, axes_order=axes_order)
|
|
260
|
+
axes_ops = dimensions.axes_handler.get_axes_ops(axes_order)
|
|
261
|
+
return axes_order, axes_ops
|
|
262
|
+
|
|
263
|
+
|
|
264
|
+
def setup_io_pipe(
|
|
265
|
+
*,
|
|
266
|
+
dimensions: Dimensions,
|
|
267
|
+
slicing_dict: dict[str, SlicingInputType] | None = None,
|
|
268
|
+
axes_order: Sequence[str] | None = None,
|
|
269
|
+
remove_channel_selection: bool = False,
|
|
270
|
+
) -> tuple[SlicingOps, AxesOps]:
|
|
271
|
+
"""Setup the slicing tuple and axes ops for an IO pipe."""
|
|
272
|
+
slicing_dict = slicing_dict or {}
|
|
273
|
+
axes_order, axes_ops = _build_axes_ops(
|
|
274
|
+
axes_order=axes_order,
|
|
275
|
+
dimensions=dimensions,
|
|
276
|
+
)
|
|
277
|
+
|
|
278
|
+
slicing_tuple, axes_to_remove = _build_slicing_tuple(
|
|
279
|
+
dimensions=dimensions,
|
|
280
|
+
slicing_dict=slicing_dict,
|
|
281
|
+
axes_order=axes_order,
|
|
282
|
+
no_axes_ops=axes_ops.is_no_op,
|
|
283
|
+
remove_channel_selection=remove_channel_selection,
|
|
284
|
+
)
|
|
285
|
+
|
|
286
|
+
if axes_to_remove:
|
|
287
|
+
in_memory_axes = tuple(
|
|
288
|
+
ax for ax in axes_ops.in_memory_axes if ax not in axes_to_remove
|
|
289
|
+
)
|
|
290
|
+
axes_ops = AxesOps(
|
|
291
|
+
on_disk_axes=axes_ops.on_disk_axes,
|
|
292
|
+
in_memory_axes=in_memory_axes,
|
|
293
|
+
)
|
|
294
|
+
slicing_ops = SlicingOps(
|
|
295
|
+
on_disk_axes=dimensions.axes_handler.axes_names,
|
|
296
|
+
slicing_tuple=slicing_tuple,
|
|
297
|
+
on_disk_shape=dimensions.shape,
|
|
298
|
+
)
|
|
299
|
+
return slicing_ops, axes_ops
|
|
@@ -0,0 +1,376 @@
|
|
|
1
|
+
from collections.abc import Sequence
|
|
2
|
+
from enum import Enum
|
|
3
|
+
|
|
4
|
+
import dask.array as da
|
|
5
|
+
import numpy as np
|
|
6
|
+
|
|
7
|
+
from ngio.utils import NgioValueError, ngio_logger
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class Action(str, Enum):
|
|
11
|
+
NONE = "none"
|
|
12
|
+
PAD = "pad"
|
|
13
|
+
TRIM = "trim"
|
|
14
|
+
RESCALING = "rescaling"
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def _compute_pad_widths(
|
|
18
|
+
array_shape: tuple[int, ...],
|
|
19
|
+
actions: list[Action],
|
|
20
|
+
target_shape: tuple[int, ...],
|
|
21
|
+
) -> tuple[tuple[int, int], ...]:
|
|
22
|
+
pad_def = []
|
|
23
|
+
for act, s, ts in zip(actions, array_shape, target_shape, strict=True):
|
|
24
|
+
if act == Action.PAD:
|
|
25
|
+
total_pad = ts - s
|
|
26
|
+
before = total_pad // 2
|
|
27
|
+
after = total_pad - before
|
|
28
|
+
pad_def.append((before, after))
|
|
29
|
+
else:
|
|
30
|
+
pad_def.append((0, 0))
|
|
31
|
+
ngio_logger.warning(
|
|
32
|
+
f"Images have a different shape ({array_shape} vs {target_shape}). "
|
|
33
|
+
f"Resolving by padding: {pad_def}",
|
|
34
|
+
stacklevel=2,
|
|
35
|
+
)
|
|
36
|
+
return tuple(pad_def)
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
def _numpy_pad(
|
|
40
|
+
array: np.ndarray,
|
|
41
|
+
actions: list[Action],
|
|
42
|
+
target_shape: tuple[int, ...],
|
|
43
|
+
pad_mode: str = "constant",
|
|
44
|
+
constant_values: int | float = 0,
|
|
45
|
+
) -> np.ndarray:
|
|
46
|
+
if all(act != Action.PAD for act in actions):
|
|
47
|
+
return array
|
|
48
|
+
pad_widths = _compute_pad_widths(array.shape, actions, target_shape)
|
|
49
|
+
return np.pad(array, pad_widths, mode=pad_mode, constant_values=constant_values) # type: ignore
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def _dask_pad(
|
|
53
|
+
array: da.Array,
|
|
54
|
+
actions: list[Action],
|
|
55
|
+
target_shape: tuple[int, ...],
|
|
56
|
+
pad_mode: str = "constant",
|
|
57
|
+
constant_values: int | float = 0,
|
|
58
|
+
) -> da.Array:
|
|
59
|
+
if all(act != Action.PAD for act in actions):
|
|
60
|
+
return array
|
|
61
|
+
shape = tuple(int(s) for s in array.shape)
|
|
62
|
+
pad_widths = _compute_pad_widths(shape, actions, target_shape)
|
|
63
|
+
return da.pad(array, pad_widths, mode=pad_mode, constant_values=constant_values)
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
def _compute_trim_slices(
|
|
67
|
+
array_shape: tuple[int, ...],
|
|
68
|
+
actions: list[Action],
|
|
69
|
+
target_shape: tuple[int, ...],
|
|
70
|
+
) -> tuple[slice, ...]:
|
|
71
|
+
slices = []
|
|
72
|
+
for act, s, ts in zip(actions, array_shape, target_shape, strict=True):
|
|
73
|
+
if act == Action.TRIM:
|
|
74
|
+
slices.append(slice(0, ts))
|
|
75
|
+
else:
|
|
76
|
+
slices.append(slice(0, s))
|
|
77
|
+
|
|
78
|
+
ngio_logger.warning(
|
|
79
|
+
f"Images have a different shape ({array_shape} vs {target_shape}). "
|
|
80
|
+
f"Resolving by trimming: {slices}",
|
|
81
|
+
stacklevel=2,
|
|
82
|
+
)
|
|
83
|
+
return tuple(slices)
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
def _numpy_trim(
|
|
87
|
+
array: np.ndarray, actions: list[Action], target_shape: tuple[int, ...]
|
|
88
|
+
) -> np.ndarray:
|
|
89
|
+
if all(act != Action.TRIM for act in actions):
|
|
90
|
+
return array
|
|
91
|
+
slices = _compute_trim_slices(array.shape, actions, target_shape)
|
|
92
|
+
return array[tuple(slices)]
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
def _dask_trim(
|
|
96
|
+
array: da.Array, actions: list[Action], target_shape: tuple[int, ...]
|
|
97
|
+
) -> da.Array:
|
|
98
|
+
if all(act != Action.TRIM for act in actions):
|
|
99
|
+
return array
|
|
100
|
+
shape = tuple(int(s) for s in array.shape)
|
|
101
|
+
slices = _compute_trim_slices(shape, actions, target_shape)
|
|
102
|
+
return array[tuple(slices)]
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
def _compute_rescaling_shape(
|
|
106
|
+
array_shape: tuple[int, ...],
|
|
107
|
+
actions: list[Action],
|
|
108
|
+
target_shape: tuple[int, ...],
|
|
109
|
+
) -> tuple[int, ...]:
|
|
110
|
+
rescaling_shape = []
|
|
111
|
+
factor = []
|
|
112
|
+
for act, s, ts in zip(actions, array_shape, target_shape, strict=True):
|
|
113
|
+
if act == Action.RESCALING:
|
|
114
|
+
rescaling_shape.append(ts)
|
|
115
|
+
factor.append(ts / s)
|
|
116
|
+
else:
|
|
117
|
+
rescaling_shape.append(s)
|
|
118
|
+
factor.append(1.0)
|
|
119
|
+
|
|
120
|
+
ngio_logger.warning(
|
|
121
|
+
f"Images have a different shape ({array_shape} vs {target_shape}). "
|
|
122
|
+
f"Resolving by scaling with factors {factor}.",
|
|
123
|
+
stacklevel=2,
|
|
124
|
+
)
|
|
125
|
+
return tuple(rescaling_shape)
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
def _numpy_rescaling(
|
|
129
|
+
array: np.ndarray, actions: list[Action], target_shape: tuple[int, ...]
|
|
130
|
+
) -> np.ndarray:
|
|
131
|
+
if all(act != Action.RESCALING for act in actions):
|
|
132
|
+
return array
|
|
133
|
+
from ngio.common._zoom import numpy_zoom
|
|
134
|
+
|
|
135
|
+
rescaling_shape = _compute_rescaling_shape(array.shape, actions, target_shape)
|
|
136
|
+
return numpy_zoom(source_array=array, target_shape=rescaling_shape, order="nearest")
|
|
137
|
+
|
|
138
|
+
|
|
139
|
+
def _dask_rescaling(
|
|
140
|
+
array: da.Array, actions: list[Action], target_shape: tuple[int, ...]
|
|
141
|
+
) -> da.Array:
|
|
142
|
+
if all(act != Action.RESCALING for act in actions):
|
|
143
|
+
return array
|
|
144
|
+
from ngio.common._zoom import dask_zoom
|
|
145
|
+
|
|
146
|
+
shape = tuple(int(s) for s in array.shape)
|
|
147
|
+
rescaling_shape = _compute_rescaling_shape(shape, actions, target_shape)
|
|
148
|
+
return dask_zoom(source_array=array, target_shape=rescaling_shape, order="nearest")
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
def _check_axes(array_shape, reference_shape, array_axes, reference_axes):
|
|
152
|
+
if len(array_shape) != len(array_axes):
|
|
153
|
+
raise NgioValueError(
|
|
154
|
+
f"Array shape {array_shape} and reference axes {array_axes} "
|
|
155
|
+
"must have the same number of dimensions."
|
|
156
|
+
)
|
|
157
|
+
if len(reference_shape) != len(reference_axes):
|
|
158
|
+
raise NgioValueError(
|
|
159
|
+
f"Reference shape {reference_shape} and reference axes {reference_axes} "
|
|
160
|
+
"must have the same number of dimensions."
|
|
161
|
+
)
|
|
162
|
+
|
|
163
|
+
# Check if the array axes are a subset of the target axes
|
|
164
|
+
diff = set(array_axes) - set(reference_axes)
|
|
165
|
+
if diff:
|
|
166
|
+
raise NgioValueError(
|
|
167
|
+
f"Array axes {array_axes} are not a subset "
|
|
168
|
+
f"of reference axes {reference_axes}"
|
|
169
|
+
)
|
|
170
|
+
|
|
171
|
+
# Array must be smaller or equal in number of dimensions
|
|
172
|
+
if len(array_axes) > len(reference_axes):
|
|
173
|
+
raise NgioValueError(
|
|
174
|
+
f"Array has more dimensions ({len(array_axes)}) "
|
|
175
|
+
f"than reference ({len(reference_axes)}). "
|
|
176
|
+
"Cannot match shapes if the array has more dimensions."
|
|
177
|
+
)
|
|
178
|
+
|
|
179
|
+
|
|
180
|
+
def _compute_reshape_and_actions(
|
|
181
|
+
array_shape: tuple[int, ...],
|
|
182
|
+
reference_shape: tuple[int, ...],
|
|
183
|
+
array_axes: list[str],
|
|
184
|
+
reference_axes: list[str],
|
|
185
|
+
tolerance: int = 1,
|
|
186
|
+
allow_rescaling: bool = True,
|
|
187
|
+
) -> tuple[tuple[int, ...], list[Action]]:
|
|
188
|
+
# Reshape array to match reference shape
|
|
189
|
+
# And determine actions to be taken
|
|
190
|
+
# to match the shapes
|
|
191
|
+
reshape_tuple = []
|
|
192
|
+
actions = []
|
|
193
|
+
errors = []
|
|
194
|
+
left_pointer = 0
|
|
195
|
+
for ref_ax, ref_shape in zip(reference_axes, reference_shape, strict=True):
|
|
196
|
+
if ref_ax not in array_axes:
|
|
197
|
+
reshape_tuple.append(1)
|
|
198
|
+
actions.append(Action.NONE)
|
|
199
|
+
elif ref_ax == array_axes[left_pointer]:
|
|
200
|
+
s2 = array_shape[left_pointer]
|
|
201
|
+
reshape_tuple.append(s2)
|
|
202
|
+
left_pointer += 1
|
|
203
|
+
|
|
204
|
+
if s2 == ref_shape or s2 == 1:
|
|
205
|
+
actions.append(Action.NONE)
|
|
206
|
+
elif s2 < ref_shape:
|
|
207
|
+
if (ref_shape - s2) <= tolerance:
|
|
208
|
+
actions.append(Action.PAD)
|
|
209
|
+
elif allow_rescaling:
|
|
210
|
+
actions.append(Action.RESCALING)
|
|
211
|
+
else:
|
|
212
|
+
errors.append(
|
|
213
|
+
f"Cannot pad axis={ref_ax}:{s2}->{ref_shape} "
|
|
214
|
+
"because shape difference is outside tolerance "
|
|
215
|
+
f"{tolerance}."
|
|
216
|
+
)
|
|
217
|
+
elif s2 > ref_shape:
|
|
218
|
+
if (s2 - ref_shape) <= tolerance:
|
|
219
|
+
actions.append(Action.TRIM)
|
|
220
|
+
elif allow_rescaling:
|
|
221
|
+
actions.append(Action.RESCALING)
|
|
222
|
+
else:
|
|
223
|
+
errors.append(
|
|
224
|
+
f"Cannot trim axis={ref_ax}:{s2}->{ref_shape} "
|
|
225
|
+
"because shape difference is outside tolerance "
|
|
226
|
+
f"{tolerance}."
|
|
227
|
+
)
|
|
228
|
+
else:
|
|
229
|
+
raise RuntimeError("Unreachable code reached.")
|
|
230
|
+
else:
|
|
231
|
+
raise NgioValueError(
|
|
232
|
+
f"Axes order mismatch {array_axes} -> {reference_axes}. "
|
|
233
|
+
"Cannot match shapes if the order is different."
|
|
234
|
+
)
|
|
235
|
+
if errors:
|
|
236
|
+
raise NgioValueError(
|
|
237
|
+
"Array shape cannot be matched to reference shape:\n\n".join(errors)
|
|
238
|
+
)
|
|
239
|
+
return tuple(reshape_tuple), actions
|
|
240
|
+
|
|
241
|
+
|
|
242
|
+
def numpy_match_shape(
|
|
243
|
+
array: np.ndarray,
|
|
244
|
+
reference_shape: tuple[int, ...],
|
|
245
|
+
array_axes: Sequence[str],
|
|
246
|
+
reference_axes: Sequence[str],
|
|
247
|
+
tolerance: int = 1,
|
|
248
|
+
pad_mode: str = "constant",
|
|
249
|
+
pad_values: int | float = 0,
|
|
250
|
+
allow_rescaling: bool = True,
|
|
251
|
+
):
|
|
252
|
+
"""Match the shape of a numpy array to a reference shape.
|
|
253
|
+
|
|
254
|
+
This function will reshape, pad, trim and broadcast the input array
|
|
255
|
+
to match the reference shape. If the shapes cannot be matched within
|
|
256
|
+
the specified tolerance, an error is raised.
|
|
257
|
+
|
|
258
|
+
The reference axes must be a superset of the array axes, and the order
|
|
259
|
+
of the axes must be the same.
|
|
260
|
+
|
|
261
|
+
Args:
|
|
262
|
+
array (np.ndarray): The input array to be reshaped.
|
|
263
|
+
reference_shape (tuple[int, ...]): The target shape to match.
|
|
264
|
+
array_axes (Sequence[str]): The axes names of the input array.
|
|
265
|
+
reference_axes (Sequence[str]): The axes names of the reference shape.
|
|
266
|
+
tolerance (int): The maximum number of pixels by which dimensions
|
|
267
|
+
can differ when matching shapes.
|
|
268
|
+
allow_broadcast (bool): If True, allow broadcasting new dimensions to
|
|
269
|
+
match the reference shape. If False, single-dimension axes will
|
|
270
|
+
be left as is.
|
|
271
|
+
pad_mode (str): The mode to use for padding. See numpy.pad for options.
|
|
272
|
+
pad_values (int | float): The constant value to use for padding if
|
|
273
|
+
pad_mode is 'constant'.
|
|
274
|
+
allow_rescaling (bool): If True, when the array differs more than the
|
|
275
|
+
tolerance, it will be rescalingd to the reference shape. If False,
|
|
276
|
+
an error will be raised.
|
|
277
|
+
"""
|
|
278
|
+
_check_axes(
|
|
279
|
+
array_shape=array.shape,
|
|
280
|
+
reference_shape=reference_shape,
|
|
281
|
+
array_axes=array_axes,
|
|
282
|
+
reference_axes=reference_axes,
|
|
283
|
+
)
|
|
284
|
+
if array.shape == reference_shape:
|
|
285
|
+
# Shapes already match
|
|
286
|
+
return array
|
|
287
|
+
|
|
288
|
+
array_axes = list(array_axes)
|
|
289
|
+
reference_axes = list(reference_axes)
|
|
290
|
+
|
|
291
|
+
reshape_tuple, actions = _compute_reshape_and_actions(
|
|
292
|
+
array_shape=array.shape,
|
|
293
|
+
reference_shape=reference_shape,
|
|
294
|
+
array_axes=array_axes,
|
|
295
|
+
reference_axes=reference_axes,
|
|
296
|
+
tolerance=tolerance,
|
|
297
|
+
allow_rescaling=allow_rescaling,
|
|
298
|
+
)
|
|
299
|
+
array = array.reshape(reshape_tuple)
|
|
300
|
+
array = _numpy_rescaling(array=array, actions=actions, target_shape=reference_shape)
|
|
301
|
+
array = _numpy_pad(
|
|
302
|
+
array=array,
|
|
303
|
+
actions=actions,
|
|
304
|
+
target_shape=reference_shape,
|
|
305
|
+
pad_mode=pad_mode,
|
|
306
|
+
constant_values=pad_values,
|
|
307
|
+
)
|
|
308
|
+
array = _numpy_trim(array=array, actions=actions, target_shape=reference_shape)
|
|
309
|
+
return array
|
|
310
|
+
|
|
311
|
+
|
|
312
|
+
def dask_match_shape(
|
|
313
|
+
array: da.Array,
|
|
314
|
+
reference_shape: tuple[int, ...],
|
|
315
|
+
array_axes: Sequence[str],
|
|
316
|
+
reference_axes: Sequence[str],
|
|
317
|
+
tolerance: int = 1,
|
|
318
|
+
pad_mode: str = "constant",
|
|
319
|
+
pad_values: int | float = 0,
|
|
320
|
+
allow_rescaling: bool = True,
|
|
321
|
+
) -> da.Array:
|
|
322
|
+
"""Match the shape of a dask array to a reference shape.
|
|
323
|
+
|
|
324
|
+
This function will reshape, pad, trim and broadcast the input array
|
|
325
|
+
to match the reference shape. If the shapes cannot be matched within
|
|
326
|
+
the specified tolerance, an error is raised.
|
|
327
|
+
|
|
328
|
+
The reference axes must be a superset of the array axes, and the order
|
|
329
|
+
of the axes must be the same.
|
|
330
|
+
|
|
331
|
+
Args:
|
|
332
|
+
array (da.Array): The input array to be reshaped.
|
|
333
|
+
reference_shape (tuple[int, ...]): The target shape to match.
|
|
334
|
+
array_axes (Sequence[str]): The axes names of the input array.
|
|
335
|
+
reference_axes (Sequence[str]): The axes names of the reference shape.
|
|
336
|
+
tolerance (int): The maximum number of pixels by which dimensions
|
|
337
|
+
can differ when matching shapes.
|
|
338
|
+
pad_mode (str): The mode to use for padding. See numpy.pad for options.
|
|
339
|
+
pad_values (int | float): The constant value to use for padding if
|
|
340
|
+
pad_mode is 'constant'.
|
|
341
|
+
allow_rescaling (bool): If True, when the array differs more than the
|
|
342
|
+
tolerance, it will be rescalingd to the reference shape. If False,
|
|
343
|
+
an error will be raised.
|
|
344
|
+
"""
|
|
345
|
+
array_shape = tuple(int(s) for s in array.shape)
|
|
346
|
+
_check_axes(
|
|
347
|
+
array_shape=array_shape,
|
|
348
|
+
reference_shape=reference_shape,
|
|
349
|
+
array_axes=array_axes,
|
|
350
|
+
reference_axes=reference_axes,
|
|
351
|
+
)
|
|
352
|
+
if array_shape == reference_shape:
|
|
353
|
+
# Shapes already match
|
|
354
|
+
return array
|
|
355
|
+
array_axes = list(array_axes)
|
|
356
|
+
reference_axes = list(reference_axes)
|
|
357
|
+
|
|
358
|
+
reshape_tuple, actions = _compute_reshape_and_actions(
|
|
359
|
+
array_shape=tuple(int(s) for s in array.shape),
|
|
360
|
+
reference_shape=reference_shape,
|
|
361
|
+
array_axes=array_axes,
|
|
362
|
+
reference_axes=reference_axes,
|
|
363
|
+
tolerance=tolerance,
|
|
364
|
+
allow_rescaling=allow_rescaling,
|
|
365
|
+
)
|
|
366
|
+
array = da.reshape(array, reshape_tuple)
|
|
367
|
+
array = _dask_rescaling(array=array, actions=actions, target_shape=reference_shape)
|
|
368
|
+
array = _dask_pad(
|
|
369
|
+
array=array,
|
|
370
|
+
actions=actions,
|
|
371
|
+
target_shape=reference_shape,
|
|
372
|
+
pad_mode=pad_mode,
|
|
373
|
+
constant_values=pad_values,
|
|
374
|
+
)
|
|
375
|
+
array = _dask_trim(array=array, actions=actions, target_shape=reference_shape)
|
|
376
|
+
return array
|