nexaai 1.0.19rc6__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (224) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/binds/nexa_llama_cpp/libggml-base.dylib +0 -0
  5. nexaai/binds/nexa_llama_cpp/libggml-cpu.so +0 -0
  6. nexaai/binds/nexa_llama_cpp/libggml-metal.so +0 -0
  7. nexaai/binds/nexa_llama_cpp/libggml.dylib +0 -0
  8. nexaai/binds/nexa_llama_cpp/libllama.dylib +0 -0
  9. nexaai/binds/nexa_llama_cpp/libmtmd.dylib +0 -0
  10. nexaai/binds/nexa_llama_cpp/libnexa_plugin.dylib +0 -0
  11. nexaai/binds/nexa_mlx/libnexa_plugin.dylib +0 -0
  12. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +12 -0
  13. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +122 -0
  14. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/common/utils.py +25 -0
  16. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  17. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +195 -0
  18. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +151 -0
  19. nexaai/binds/nexa_mlx/py-lib/cv/main.py +81 -0
  20. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +1736 -0
  21. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  22. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +333 -0
  23. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +617 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +173 -0
  25. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  26. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +399 -0
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +1 -0
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +244 -0
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +82 -0
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +281 -0
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +306 -0
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +116 -0
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +65 -0
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +386 -0
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +105 -0
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +100 -0
  37. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +460 -0
  38. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +274 -0
  39. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  40. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +149 -0
  41. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +764 -0
  42. nexaai/binds/nexa_mlx/py-lib/llm/main.py +68 -0
  43. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  44. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +174 -0
  45. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +287 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +127 -0
  47. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  48. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +330 -0
  49. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +1 -0
  50. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +362 -0
  51. nexaai/binds/nexa_mlx/py-lib/sd/main.py +286 -0
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +306 -0
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +116 -0
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +65 -0
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +385 -0
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +105 -0
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +100 -0
  58. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +460 -0
  59. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +274 -0
  60. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +12 -0
  61. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +276 -0
  62. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +3 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +572 -0
  64. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +294 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +276 -0
  66. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +504 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +320 -0
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +68 -0
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +8 -0
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +186 -0
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +233 -0
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +503 -0
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +202 -0
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +230 -0
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +8 -0
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +366 -0
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +488 -0
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +591 -0
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +8 -0
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +213 -0
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +315 -0
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +238 -0
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +2 -0
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +1038 -0
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +139 -0
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +629 -0
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +1022 -0
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +9 -0
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +294 -0
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +191 -0
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +267 -0
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +8 -0
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +175 -0
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +192 -0
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +233 -0
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +9 -0
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +220 -0
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +393 -0
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +293 -0
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +307 -0
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +8 -0
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +509 -0
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +522 -0
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +8 -0
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +386 -0
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +138 -0
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +560 -0
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +8 -0
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +240 -0
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +153 -0
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +259 -0
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +9 -0
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +236 -0
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +303 -0
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +8 -0
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +230 -0
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +160 -0
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +243 -0
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +8 -0
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +283 -0
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +8 -0
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +416 -0
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +172 -0
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +499 -0
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +8 -0
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +243 -0
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +133 -0
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +465 -0
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +10 -0
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +230 -0
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +557 -0
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +526 -0
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +8 -0
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +282 -0
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +160 -0
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +242 -0
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +8 -0
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +21 -0
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +71 -0
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +324 -0
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +8 -0
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +229 -0
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +161 -0
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +320 -0
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +104 -0
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +490 -0
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +312 -0
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +476 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +1223 -0
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1309 -0
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +8 -0
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +209 -0
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +215 -0
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +474 -0
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +39 -0
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +344 -0
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +9 -0
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +70 -0
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +296 -0
  199. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +160 -0
  200. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +928 -0
  201. nexaai/binds/nexa_nexaml/libggml-base.dylib +0 -0
  202. nexaai/binds/nexa_nexaml/libggml-cpu.so +0 -0
  203. nexaai/binds/nexa_nexaml/libggml-metal.so +0 -0
  204. nexaai/binds/nexa_nexaml/libggml.dylib +0 -0
  205. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +276 -0
  206. nexaai/mlx_backend/vlm/interface.py +21 -4
  207. nexaai/mlx_backend/vlm/main.py +6 -2
  208. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  209. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
  210. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
  211. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
  212. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
  213. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
  214. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
  215. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
  216. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1309 -0
  217. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
  218. nexaai/utils/manifest_utils.py +222 -15
  219. nexaai/utils/model_manager.py +83 -7
  220. nexaai/utils/model_types.py +2 -0
  221. {nexaai-1.0.19rc6.dist-info → nexaai-1.0.19rc7.dist-info}/METADATA +1 -1
  222. {nexaai-1.0.19rc6.dist-info → nexaai-1.0.19rc7.dist-info}/RECORD +224 -24
  223. {nexaai-1.0.19rc6.dist-info → nexaai-1.0.19rc7.dist-info}/WHEEL +0 -0
  224. {nexaai-1.0.19rc6.dist-info → nexaai-1.0.19rc7.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,307 @@
1
+ import mlx.core as mx
2
+
3
+
4
+ def nearest_interpolate(x, size=None, scale_factor=None):
5
+ """
6
+ Nearest neighbor interpolation that exactly matches PyTorch's behavior.
7
+ """
8
+ # Get input dimensions
9
+ batch_size, channels, in_h, in_w = x.shape
10
+
11
+ # Calculate output dimensions
12
+ if size is not None:
13
+ out_h, out_w = size
14
+ elif scale_factor is not None:
15
+ if isinstance(scale_factor, (int, float)):
16
+ scale_h = scale_w = scale_factor
17
+ else:
18
+ scale_h, scale_w = scale_factor
19
+ out_h, out_w = int(in_h * scale_h), int(in_w * scale_w)
20
+ else:
21
+ raise ValueError("Either size or scale_factor must be specified")
22
+
23
+ # Create dimensions tensor
24
+ dims = mx.array([batch_size, channels, in_h, in_w, out_h, out_w], dtype=mx.int32)
25
+
26
+ # Reshape input tensor to 1D for kernel processing
27
+ x_flat = x.reshape(-1)
28
+ input_dtype = x.dtype
29
+ if input_dtype != mx.float32:
30
+ x_flat = x_flat.astype(mx.float32)
31
+
32
+ # Metal kernel source that matches PyTorch's coordinate calculation
33
+ source = """
34
+ uint x_out = thread_position_in_grid.x;
35
+ uint y_out = thread_position_in_grid.y;
36
+ uint bc_idx = thread_position_in_grid.z;
37
+
38
+ int batch_size = dims[0];
39
+ int channels = dims[1];
40
+ int in_h = dims[2];
41
+ int in_w = dims[3];
42
+ int out_h = dims[4];
43
+ int out_w = dims[5];
44
+
45
+ if (x_out >= (uint)out_w || y_out >= (uint)out_h || bc_idx >= (uint)(batch_size * channels))
46
+ return;
47
+
48
+ int c = bc_idx % channels;
49
+ int b = bc_idx / channels;
50
+
51
+ // PyTorch's coordinate calculation for nearest neighbor
52
+ // This matches: torch.nn.functional.interpolate(..., mode='nearest')
53
+ float scale_h = float(in_h) / float(out_h);
54
+ float scale_w = float(in_w) / float(out_w);
55
+
56
+ // PyTorch uses floor for nearest neighbor coordinate mapping
57
+ int y_in = int(floor(float(y_out) * scale_h));
58
+ int x_in = int(floor(float(x_out) * scale_w));
59
+
60
+ // Clamp to bounds
61
+ y_in = max(0, min(y_in, in_h - 1));
62
+ x_in = max(0, min(x_in, in_w - 1));
63
+
64
+ int input_offset = ((b * channels + c) * in_h + y_in) * in_w + x_in;
65
+ int output_offset = ((b * channels + c) * out_h + y_out) * out_w + x_out;
66
+
67
+ output[output_offset] = input[input_offset];
68
+ """
69
+
70
+ # Create and run kernel
71
+ kernel = mx.fast.metal_kernel(
72
+ name="nearest_interpolation",
73
+ input_names=["input", "dims"],
74
+ output_names=["output"],
75
+ source=source,
76
+ )
77
+
78
+ threadgroup = get_optimal_threadgroup(out_w, out_h)
79
+ outputs = kernel(
80
+ inputs=[x_flat, dims],
81
+ grid=(out_w, out_h, batch_size * channels),
82
+ threadgroup=threadgroup,
83
+ output_shapes=[(batch_size * channels * out_h * out_w,)],
84
+ output_dtypes=[mx.float32],
85
+ )
86
+
87
+ result = outputs[0].reshape(batch_size, channels, out_h, out_w)
88
+ if input_dtype != mx.float32:
89
+ result = result.astype(input_dtype)
90
+
91
+ return result
92
+
93
+
94
+ def bicubic_interpolate(x, size=None, scale_factor=None, align_corners=False):
95
+ """
96
+ Bicubic interpolation using MLX's built-in interpolate function.
97
+
98
+ Args:
99
+ x: MLX tensor of shape [B, C, H, W]
100
+ size: Tuple of (out_h, out_w) or None
101
+ scale_factor: Float or tuple of (scale_h, scale_w) or None
102
+ align_corners: Whether to align corners
103
+
104
+ Returns:
105
+ Interpolated MLX tensor
106
+ """
107
+ # Get input dimensions
108
+ batch_size, channels, in_h, in_w = x.shape
109
+
110
+ # Calculate output dimensions
111
+ if size is not None:
112
+ out_h, out_w = size
113
+ scale_h, scale_w = out_h / in_h, out_w / in_w
114
+ elif scale_factor is not None:
115
+ if isinstance(scale_factor, (int, float)):
116
+ scale_h = scale_w = scale_factor
117
+ else:
118
+ scale_h, scale_w = scale_factor
119
+ out_h, out_w = int(in_h * scale_h), int(in_w * scale_w)
120
+ else:
121
+ raise ValueError("Either size or scale_factor must be specified")
122
+
123
+ # Create scale and align_corners parameters tensor
124
+ params = mx.array(
125
+ [scale_h, scale_w, 1.0 if align_corners else 0.0], dtype=mx.float32
126
+ )
127
+
128
+ # Create dimensions tensor
129
+ dims = mx.array([batch_size, channels, in_h, in_w, out_h, out_w], dtype=mx.int32)
130
+
131
+ # Reshape input tensor to 1D for kernel processing
132
+ x_flat = x.reshape(-1)
133
+
134
+ # Convert to float32 for processing if needed
135
+ input_dtype = x.dtype
136
+ if input_dtype != mx.float32:
137
+ x_flat = x_flat.astype(mx.float32)
138
+
139
+ # Metal kernel source code
140
+ source = """
141
+ // Get thread position
142
+ uint x_out = thread_position_in_grid.x;
143
+ uint y_out = thread_position_in_grid.y;
144
+ uint bc_idx = thread_position_in_grid.z;
145
+
146
+ // Extract dimensions from dims
147
+ int batch_size = dims[0];
148
+ int channels = dims[1];
149
+ int in_h = dims[2];
150
+ int in_w = dims[3];
151
+ int out_h = dims[4];
152
+ int out_w = dims[5];
153
+
154
+ // Extract scales and flags
155
+ float scale_h = params[0];
156
+ float scale_w = params[1];
157
+ bool align_corners = params[2] > 0.5;
158
+
159
+ // Check bounds
160
+ if (x_out >= (uint)out_w || y_out >= (uint)out_h || bc_idx >= (uint)(batch_size * channels))
161
+ return;
162
+
163
+ // Calculate batch and channel indices
164
+ int c = bc_idx % channels;
165
+ int b = bc_idx / channels;
166
+
167
+ // Calculate input coordinates based on output position
168
+ float x_in, y_in;
169
+
170
+ if (align_corners && out_w > 1 && out_h > 1) {
171
+ x_in = float(x_out) * (in_w - 1) / (out_w - 1);
172
+ y_in = float(y_out) * (in_h - 1) / (out_h - 1);
173
+ } else {
174
+ // Fix the alignment calculation to ensure consistent mapping across thread boundaries
175
+ x_in = ((float(x_out) + 0.5f) / float(out_w)) * float(in_w) - 0.5f;
176
+ y_in = ((float(y_out) + 0.5f) / float(out_h)) * float(in_h) - 0.5f;
177
+ }
178
+
179
+ // Get integer and fractional parts
180
+ int x0 = int(floor(x_in));
181
+ int y0 = int(floor(y_in));
182
+ float x_frac = x_in - x0;
183
+ float y_frac = y_in - y0;
184
+
185
+ // Improved cubic kernel function for better continuity
186
+ auto cubic_kernel = [](float x) -> float {
187
+ float absx = fabs(x);
188
+ float absx2 = absx * absx;
189
+ float absx3 = absx2 * absx;
190
+
191
+ // Use a=-0.5 for smoother interpolation
192
+ const float a = -0.5f;
193
+
194
+ if (absx <= 1.0f) {
195
+ return (a+2.0f)*absx3 - (a+3.0f)*absx2 + 1.0f;
196
+ } else if (absx < 2.0f) {
197
+ return a*absx3 - 5.0f*a*absx2 + 8.0f*a*absx - 4.0f*a;
198
+ }
199
+ return 0.0f;
200
+ };
201
+
202
+ // Perform bicubic interpolation with improved boundary handling
203
+ float result = 0.0f;
204
+ float weight_sum = 0.0f; // Track weight sum for normalization
205
+
206
+ for (int i = -1; i <= 2; i++) {
207
+ int y_pos = y0 + i;
208
+ // Clamp y coordinate to valid range
209
+ y_pos = max(0, min(y_pos, in_h - 1));
210
+ float wy = cubic_kernel(y_frac - i);
211
+
212
+ for (int j = -1; j <= 2; j++) {
213
+ int x_pos = x0 + j;
214
+ // Clamp x coordinate to valid range
215
+ x_pos = max(0, min(x_pos, in_w - 1));
216
+ float wx = cubic_kernel(x_frac - j);
217
+ float weight = wy * wx;
218
+
219
+ // Calculate input tensor offset
220
+ int input_offset = ((b * channels + c) * in_h + y_pos) * in_w + x_pos;
221
+
222
+ // Add weighted contribution
223
+ result += input[input_offset] * weight;
224
+ weight_sum += weight;
225
+ }
226
+ }
227
+
228
+ // Normalize by weight sum to ensure consistent intensity
229
+ if (weight_sum > 0.0f) {
230
+ result /= weight_sum;
231
+ }
232
+
233
+ // Calculate output tensor offset
234
+ int output_offset = ((b * channels + c) * out_h + y_out) * out_w + x_out;
235
+
236
+ // Assign the result to output
237
+ output[output_offset] = (float)result;
238
+ """
239
+
240
+ # Create the kernel
241
+ kernel = mx.fast.metal_kernel(
242
+ name="bicubic_interpolation",
243
+ input_names=["input", "dims", "params"],
244
+ output_names=["output"],
245
+ source=source,
246
+ )
247
+
248
+ # Run the kernel
249
+ threadgroup = get_optimal_threadgroup(out_w, out_h)
250
+ outputs = kernel(
251
+ inputs=[x_flat, dims, params],
252
+ grid=(out_w, out_h, batch_size * channels),
253
+ threadgroup=threadgroup,
254
+ output_shapes=[(batch_size * channels * out_h * out_w,)],
255
+ output_dtypes=[mx.float32], # Always use float32 for kernel output
256
+ )
257
+
258
+ # Reshape output back to 4D tensor and convert back to original dtype
259
+ result = outputs[0].reshape(batch_size, channels, out_h, out_w)
260
+ if input_dtype != mx.float32:
261
+ result = result.astype(input_dtype)
262
+
263
+ return result
264
+
265
+
266
+ def get_optimal_threadgroup(out_w, out_h):
267
+ # Calculate optimal threadgroup dimensions based on output dimensions
268
+
269
+ # Maximum threadgroup size for most Metal GPUs
270
+ # This could be made more dynamic with Metal API queries if needed
271
+ MAX_THREADS_PER_GROUP = 1024
272
+ MAX_THREADS_PER_DIM = 1024
273
+
274
+ # Start with a reasonable default size for 2D workloads
275
+ default_threadgroup = (32, 32, 1)
276
+
277
+ try:
278
+ # Don't create threadgroups larger than the work dimensions
279
+ max_width = min(MAX_THREADS_PER_DIM, out_w)
280
+ max_height = min(MAX_THREADS_PER_DIM, out_h)
281
+
282
+ # Find largest power of 2 that fits within our dimensions
283
+ width = 2 ** (max_width.bit_length() - 1)
284
+ if width > max_width:
285
+ width = width // 2
286
+
287
+ height = 2 ** (max_height.bit_length() - 1)
288
+ if height > max_height:
289
+ height = height // 2
290
+
291
+ # Ensure we don't exceed maximum threads per threadgroup
292
+ while width * height > MAX_THREADS_PER_GROUP:
293
+ # Reduce the larger dimension first
294
+ if width >= height:
295
+ width = width // 2
296
+ else:
297
+ height = height // 2
298
+
299
+ # Ensure minimum size for efficiency
300
+ width = max(8, width)
301
+ height = max(8, height)
302
+
303
+ return (width, height, 1)
304
+
305
+ except Exception:
306
+ # Return safe defaults if calculation fails
307
+ return default_threadgroup
@@ -0,0 +1,8 @@
1
+ from .kimi_vl import (
2
+ LanguageModel,
3
+ Model,
4
+ ModelConfig,
5
+ TextConfig,
6
+ VisionConfig,
7
+ VisionModel,
8
+ )
@@ -0,0 +1,143 @@
1
+ import glob
2
+ import inspect
3
+ import json
4
+ import re
5
+ from dataclasses import dataclass
6
+ from pathlib import Path
7
+ from typing import List, Optional
8
+
9
+ import mlx.core as mx
10
+ import mlx.nn as nn
11
+ import numpy as np
12
+ from huggingface_hub import snapshot_download
13
+ from transformers import AutoConfig
14
+
15
+ from .language import LanguageModel, TextConfig
16
+ from .vision import VisionConfig, VisionModel
17
+
18
+
19
+ @dataclass
20
+ class ModelConfig:
21
+ text_config: TextConfig
22
+ vision_config: VisionConfig
23
+ model_type: str
24
+ ignore_index: int = -100
25
+ vocab_size: int = 128259
26
+ scale_factor: int = 2
27
+ media_placeholder_token_id: int = 163606
28
+ image_token_index: Optional[int] = None
29
+ eos_token_id: Optional[List[int]] = None
30
+
31
+ def __post_init__(self):
32
+ if self.image_token_index is None:
33
+ self.image_token_index = self.media_placeholder_token_id
34
+
35
+ @classmethod
36
+ def from_dict(cls, params):
37
+ return cls(
38
+ **{
39
+ k: v
40
+ for k, v in params.items()
41
+ if k in inspect.signature(cls).parameters
42
+ }
43
+ )
44
+
45
+
46
+ class KimiVLMultiModalProjector(nn.Module):
47
+
48
+ def __init__(self, config: ModelConfig):
49
+ super().__init__()
50
+
51
+ self.hidden_size = (
52
+ config.vision_config.hidden_size
53
+ * config.vision_config.merge_kernel_size[0]
54
+ * config.vision_config.merge_kernel_size[1]
55
+ )
56
+
57
+ self.pre_norm = nn.LayerNorm(config.vision_config.hidden_size, eps=1e-05)
58
+ self.linear_1 = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
59
+ self.act = nn.GELU()
60
+ self.linear_2 = nn.Linear(
61
+ self.hidden_size, config.text_config.hidden_size, bias=True
62
+ )
63
+
64
+ def __call__(self, image_features: list[mx.array]) -> mx.array:
65
+ image_features = mx.concatenate(image_features, axis=0)
66
+ h = self.pre_norm(image_features).reshape(-1, self.hidden_size)
67
+ h = self.linear_1(h)
68
+ h = self.act(h)
69
+ h = self.linear_2(h)
70
+ return h
71
+
72
+
73
+ class Model(nn.Module):
74
+ def __init__(self, config: ModelConfig):
75
+ super().__init__()
76
+ self.model_type = config.model_type
77
+ self.config = config
78
+
79
+ self.vision_tower = VisionModel(config.vision_config)
80
+ self.language_model = LanguageModel(config.text_config)
81
+ self.multi_modal_projector = KimiVLMultiModalProjector(config)
82
+
83
+ def get_input_embeddings(
84
+ self,
85
+ input_ids: Optional[mx.array] = None,
86
+ pixel_values: Optional[mx.array] = None,
87
+ grid_thw: Optional[mx.array] = None,
88
+ ):
89
+ if pixel_values is None:
90
+ return self.language_model.embed_tokens(input_ids)
91
+
92
+ inputs_embeds = self.language_model.embed_tokens(input_ids)
93
+
94
+ hidden_state = self.vision_tower(
95
+ pixel_values.transpose(0, 2, 3, 1),
96
+ output_hidden_states=True,
97
+ grid_thw=grid_thw,
98
+ )
99
+
100
+ image_features = self.multi_modal_projector(hidden_state)
101
+
102
+ final_inputs_embeds = self._prepare_inputs_for_multimodal(
103
+ image_features, inputs_embeds, input_ids
104
+ )
105
+ return final_inputs_embeds
106
+
107
+ def _prepare_inputs_for_multimodal(self, image_features, inputs_embeds, input_ids):
108
+ image_token_index = self.config.image_token_index
109
+
110
+ # Positions of <image> tokens in input_ids, assuming batch size is 1
111
+ image_positions = np.where(input_ids == image_token_index)[1].tolist()
112
+
113
+ inputs_embeds[:, image_positions, :] = image_features
114
+
115
+ return inputs_embeds
116
+
117
+ @property
118
+ def layers(self):
119
+ return self.language_model.model.layers
120
+
121
+ def __call__(
122
+ self,
123
+ input_ids: mx.array,
124
+ pixel_values: mx.array,
125
+ cache=None,
126
+ **kwargs,
127
+ ):
128
+ image_grid_thw = kwargs.pop("image_grid_hws", None)
129
+ video_grid_thw = kwargs.pop("video_grid_hws", None)
130
+ grid_thw = image_grid_thw if image_grid_thw is not None else video_grid_thw
131
+ input_embeddings = self.get_input_embeddings(
132
+ input_ids, pixel_values, grid_thw=grid_thw
133
+ )
134
+ logits = self.language_model(
135
+ inputs=input_ids, cache=cache, inputs_embeds=input_embeddings
136
+ )
137
+ return logits
138
+
139
+ def sanitize(self, weights):
140
+ return {
141
+ k.replace("encoder.", "") if "vision_tower" in k else k: v
142
+ for k, v in weights.items()
143
+ }