nexaai 1.0.19rc6__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nexaai might be problematic. Click here for more details.
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +1 -1
- nexaai/binds/libnexa_bridge.dylib +0 -0
- nexaai/binds/nexa_llama_cpp/libggml-base.dylib +0 -0
- nexaai/binds/nexa_llama_cpp/libggml-cpu.so +0 -0
- nexaai/binds/nexa_llama_cpp/libggml-metal.so +0 -0
- nexaai/binds/nexa_llama_cpp/libggml.dylib +0 -0
- nexaai/binds/nexa_llama_cpp/libllama.dylib +0 -0
- nexaai/binds/nexa_llama_cpp/libmtmd.dylib +0 -0
- nexaai/binds/nexa_llama_cpp/libnexa_plugin.dylib +0 -0
- nexaai/binds/nexa_mlx/libnexa_plugin.dylib +0 -0
- nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +12 -0
- nexaai/binds/nexa_mlx/py-lib/asr/interface.py +122 -0
- nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/common/utils.py +25 -0
- nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/cv/generate.py +195 -0
- nexaai/binds/nexa_mlx/py-lib/cv/interface.py +151 -0
- nexaai/binds/nexa_mlx/py-lib/cv/main.py +81 -0
- nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +1736 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +333 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +617 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/main.py +173 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +399 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +1 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +244 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +82 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +281 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +306 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +116 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +65 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +386 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +105 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +100 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +460 -0
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +274 -0
- nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/llm/generate.py +149 -0
- nexaai/binds/nexa_mlx/py-lib/llm/interface.py +764 -0
- nexaai/binds/nexa_mlx/py-lib/llm/main.py +68 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +174 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +287 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/main.py +127 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +330 -0
- nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +1 -0
- nexaai/binds/nexa_mlx/py-lib/sd/interface.py +362 -0
- nexaai/binds/nexa_mlx/py-lib/sd/main.py +286 -0
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +306 -0
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +116 -0
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +65 -0
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +385 -0
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +105 -0
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +100 -0
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +460 -0
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +274 -0
- nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +12 -0
- nexaai/binds/nexa_mlx/py-lib/tts/interface.py +276 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +3 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +572 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +294 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +276 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +504 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/main.py +320 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +68 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +193 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +186 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +233 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +503 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +202 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +230 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +10 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +264 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +472 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +591 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +526 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +356 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +366 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +488 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +591 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +213 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +315 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +238 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +2 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +1038 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +139 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +322 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +629 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +1022 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +9 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +294 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +191 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +267 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +175 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +192 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +233 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +9 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +140 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +220 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +393 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +293 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +307 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +143 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +509 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +522 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +386 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +138 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +560 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +240 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +153 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +259 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +9 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +236 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +256 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +303 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +230 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +160 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +243 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +283 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +416 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +172 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +499 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +243 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +133 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +465 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +10 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +230 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +385 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +557 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +526 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +282 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +160 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +242 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +21 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +243 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +71 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +324 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +229 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +161 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +320 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +2 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +108 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +490 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +168 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +414 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +2 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +104 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +490 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +167 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +312 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +117 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +531 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +701 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +255 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +303 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +407 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +476 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +1223 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1309 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +8 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +62 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +209 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +215 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +474 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +39 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +344 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +9 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +70 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +296 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +160 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +928 -0
- nexaai/binds/nexa_nexaml/libggml-base.dylib +0 -0
- nexaai/binds/nexa_nexaml/libggml-cpu.so +0 -0
- nexaai/binds/nexa_nexaml/libggml-metal.so +0 -0
- nexaai/binds/nexa_nexaml/libggml.dylib +0 -0
- nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +276 -0
- nexaai/mlx_backend/vlm/interface.py +21 -4
- nexaai/mlx_backend/vlm/main.py +6 -2
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +117 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +531 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +701 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +255 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +303 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +407 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/processor.py +476 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +1309 -0
- nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/switch_layers.py +210 -0
- nexaai/utils/manifest_utils.py +222 -15
- nexaai/utils/model_manager.py +83 -7
- nexaai/utils/model_types.py +2 -0
- {nexaai-1.0.19rc6.dist-info → nexaai-1.0.19rc7.dist-info}/METADATA +1 -1
- {nexaai-1.0.19rc6.dist-info → nexaai-1.0.19rc7.dist-info}/RECORD +224 -24
- {nexaai-1.0.19rc6.dist-info → nexaai-1.0.19rc7.dist-info}/WHEEL +0 -0
- {nexaai-1.0.19rc6.dist-info → nexaai-1.0.19rc7.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,286 @@
|
|
|
1
|
+
from interface import ImageGen, ImageGenerationConfig, ImageSamplerConfig, Image
|
|
2
|
+
import numpy as np
|
|
3
|
+
from PIL import Image as PILImage
|
|
4
|
+
import mlx.core as mx
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
def test_txt2image(
|
|
8
|
+
prompt="A photo of an astronaut riding a horse on Mars.",
|
|
9
|
+
model="sdxl",
|
|
10
|
+
local_model_path="",
|
|
11
|
+
n_images=1,
|
|
12
|
+
steps=None,
|
|
13
|
+
cfg=None,
|
|
14
|
+
negative_prompt="",
|
|
15
|
+
n_rows=1,
|
|
16
|
+
decoding_batch_size=1,
|
|
17
|
+
float16=True,
|
|
18
|
+
quantize=False,
|
|
19
|
+
preload_models=False,
|
|
20
|
+
output="out_txt2img.png",
|
|
21
|
+
seed=None,
|
|
22
|
+
verbose=False,
|
|
23
|
+
width=512,
|
|
24
|
+
height=512,
|
|
25
|
+
):
|
|
26
|
+
"""Generate images from text prompt using high-level interface"""
|
|
27
|
+
|
|
28
|
+
# Determine model path based on model type
|
|
29
|
+
if model == "sdxl":
|
|
30
|
+
model_path = local_model_path or "stabilityai/sdxl-turbo"
|
|
31
|
+
default_cfg = 0.0
|
|
32
|
+
default_steps = 2
|
|
33
|
+
else:
|
|
34
|
+
model_path = local_model_path or "stabilityai/stable-diffusion-2-1-base"
|
|
35
|
+
default_cfg = 7.5
|
|
36
|
+
default_steps = 50
|
|
37
|
+
|
|
38
|
+
# Use provided values or defaults
|
|
39
|
+
cfg = cfg or default_cfg
|
|
40
|
+
steps = steps or default_steps
|
|
41
|
+
|
|
42
|
+
# Create ImageGen instance with proper parameters
|
|
43
|
+
image_gen = ImageGen(model_path, "", device=None, float16=float16, quantize=quantize)
|
|
44
|
+
|
|
45
|
+
# Load the model
|
|
46
|
+
if not image_gen.load_model(model_path):
|
|
47
|
+
print(f"Failed to load model: {model_path}")
|
|
48
|
+
return None
|
|
49
|
+
|
|
50
|
+
# Create sampler configuration
|
|
51
|
+
sampler_config = ImageSamplerConfig(
|
|
52
|
+
method="ddim",
|
|
53
|
+
steps=steps,
|
|
54
|
+
guidance_scale=cfg,
|
|
55
|
+
seed=seed if seed is not None else -1,
|
|
56
|
+
)
|
|
57
|
+
|
|
58
|
+
# Create generation configuration with all parameters
|
|
59
|
+
gen_config = ImageGenerationConfig(
|
|
60
|
+
prompts=prompt,
|
|
61
|
+
negative_prompts=negative_prompt,
|
|
62
|
+
height=height,
|
|
63
|
+
width=width,
|
|
64
|
+
sampler_config=sampler_config,
|
|
65
|
+
n_images=n_images,
|
|
66
|
+
n_rows=n_rows,
|
|
67
|
+
decoding_batch_size=decoding_batch_size,
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
if verbose:
|
|
71
|
+
print(f"Generating {n_images} image(s) with prompt: '{prompt}'")
|
|
72
|
+
print(f"Model: {model_path}, Steps: {steps}, CFG: {cfg}")
|
|
73
|
+
print(f"Float16: {float16}, Quantize: {quantize}")
|
|
74
|
+
|
|
75
|
+
# Generate image using txt2img
|
|
76
|
+
result_image = image_gen.txt2img(prompt, gen_config)
|
|
77
|
+
|
|
78
|
+
# Free memory by deleting model components (following main_duplicate.py pattern)
|
|
79
|
+
if image_gen.model:
|
|
80
|
+
if model == "sdxl":
|
|
81
|
+
if hasattr(image_gen.model, "text_encoder_1"):
|
|
82
|
+
del image_gen.model.text_encoder_1
|
|
83
|
+
if hasattr(image_gen.model, "text_encoder_2"):
|
|
84
|
+
del image_gen.model.text_encoder_2
|
|
85
|
+
else:
|
|
86
|
+
if hasattr(image_gen.model, "text_encoder"):
|
|
87
|
+
del image_gen.model.text_encoder
|
|
88
|
+
|
|
89
|
+
if hasattr(image_gen.model, "unet"):
|
|
90
|
+
del image_gen.model.unet
|
|
91
|
+
if hasattr(image_gen.model, "sampler"):
|
|
92
|
+
del image_gen.model.sampler
|
|
93
|
+
|
|
94
|
+
# Get peak memory usage
|
|
95
|
+
peak_mem_unet = mx.metal.get_peak_memory() / 1024**3
|
|
96
|
+
|
|
97
|
+
# Convert to PIL and save
|
|
98
|
+
image_np = result_image.to_numpy()
|
|
99
|
+
image_pil = PILImage.fromarray((image_np * 255).astype(np.uint8))
|
|
100
|
+
image_pil.save(output)
|
|
101
|
+
|
|
102
|
+
print(f"Text-to-image output saved to: {output}")
|
|
103
|
+
|
|
104
|
+
# Get final peak memory usage
|
|
105
|
+
peak_mem_overall = mx.metal.get_peak_memory() / 1024**3
|
|
106
|
+
|
|
107
|
+
# Report memory usage
|
|
108
|
+
if verbose:
|
|
109
|
+
print(f"Peak memory used for unet: {peak_mem_unet:.3f}GB")
|
|
110
|
+
print(f"Peak memory used overall: {peak_mem_overall:.3f}GB")
|
|
111
|
+
|
|
112
|
+
# Clean up
|
|
113
|
+
image_gen.close()
|
|
114
|
+
|
|
115
|
+
return output
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
def test_image2image(
|
|
119
|
+
prompt="A lit fireplace",
|
|
120
|
+
model="sdxl",
|
|
121
|
+
strength=0.5,
|
|
122
|
+
local_model_path="",
|
|
123
|
+
n_images=1,
|
|
124
|
+
steps=None,
|
|
125
|
+
cfg=None,
|
|
126
|
+
negative_prompt="",
|
|
127
|
+
n_rows=1,
|
|
128
|
+
decoding_batch_size=1,
|
|
129
|
+
quantize=False,
|
|
130
|
+
float16=True,
|
|
131
|
+
preload_models=False,
|
|
132
|
+
init_image_path="out_txt2img.png",
|
|
133
|
+
output="out_img2img.png",
|
|
134
|
+
verbose=False,
|
|
135
|
+
seed=None,
|
|
136
|
+
width=256,
|
|
137
|
+
height=256,
|
|
138
|
+
):
|
|
139
|
+
"""Generate images from image and text prompt using high-level interface"""
|
|
140
|
+
|
|
141
|
+
# Determine model path based on model type
|
|
142
|
+
if model == "sdxl":
|
|
143
|
+
model_path = local_model_path or "stabilityai/sdxl-turbo"
|
|
144
|
+
default_cfg = 0.0
|
|
145
|
+
default_steps = 2
|
|
146
|
+
else:
|
|
147
|
+
model_path = local_model_path or "stabilityai/stable-diffusion-2-1-base"
|
|
148
|
+
default_cfg = 7.5
|
|
149
|
+
default_steps = 50
|
|
150
|
+
|
|
151
|
+
# Use provided values or defaults
|
|
152
|
+
cfg = cfg or default_cfg
|
|
153
|
+
steps = steps or default_steps
|
|
154
|
+
|
|
155
|
+
# Load and process input image
|
|
156
|
+
try:
|
|
157
|
+
pil_img = PILImage.open(init_image_path)
|
|
158
|
+
# Ensure RGB format
|
|
159
|
+
if pil_img.mode != "RGB":
|
|
160
|
+
pil_img = pil_img.convert("RGB")
|
|
161
|
+
|
|
162
|
+
# Convert to numpy array and then to our Image class
|
|
163
|
+
img_np = np.array(pil_img).astype(np.float32) / 255.0 # Normalize to [0,1]
|
|
164
|
+
init_image = Image.from_numpy(img_np)
|
|
165
|
+
|
|
166
|
+
except FileNotFoundError:
|
|
167
|
+
print(f"Error: Image file '{init_image_path}' not found.")
|
|
168
|
+
return None
|
|
169
|
+
except Exception as e:
|
|
170
|
+
print(f"Error loading image: {e}")
|
|
171
|
+
return None
|
|
172
|
+
|
|
173
|
+
# Create ImageGen instance
|
|
174
|
+
image_gen = ImageGen(model_path, "", device=None)
|
|
175
|
+
|
|
176
|
+
# Load the model
|
|
177
|
+
if not image_gen.load_model(model_path):
|
|
178
|
+
print(f"Failed to load model: {model_path}")
|
|
179
|
+
return None
|
|
180
|
+
|
|
181
|
+
# Create sampler configuration
|
|
182
|
+
sampler_config = ImageSamplerConfig(
|
|
183
|
+
method="ddim",
|
|
184
|
+
steps=steps,
|
|
185
|
+
guidance_scale=cfg,
|
|
186
|
+
seed=seed if seed is not None else -1,
|
|
187
|
+
)
|
|
188
|
+
|
|
189
|
+
# Create generation configuration
|
|
190
|
+
gen_config = ImageGenerationConfig(
|
|
191
|
+
prompts=prompt,
|
|
192
|
+
negative_prompts=negative_prompt,
|
|
193
|
+
height=height,
|
|
194
|
+
width=width,
|
|
195
|
+
sampler_config=sampler_config,
|
|
196
|
+
init_image=init_image,
|
|
197
|
+
strength=strength,
|
|
198
|
+
)
|
|
199
|
+
|
|
200
|
+
if verbose:
|
|
201
|
+
print(f"Generating image with prompt: '{prompt}' and strength: {strength}")
|
|
202
|
+
print(f"Model: {model_path}, Steps: {steps}, CFG: {cfg}")
|
|
203
|
+
|
|
204
|
+
# Generate image using img2img
|
|
205
|
+
result_image = image_gen.img2img(init_image, prompt, gen_config)
|
|
206
|
+
|
|
207
|
+
# Free memory by deleting model components (following main_duplicate.py pattern)
|
|
208
|
+
if image_gen.model:
|
|
209
|
+
if model == "sdxl":
|
|
210
|
+
if hasattr(image_gen.model, "text_encoder_1"):
|
|
211
|
+
del image_gen.model.text_encoder_1
|
|
212
|
+
if hasattr(image_gen.model, "text_encoder_2"):
|
|
213
|
+
del image_gen.model.text_encoder_2
|
|
214
|
+
else:
|
|
215
|
+
if hasattr(image_gen.model, "text_encoder"):
|
|
216
|
+
del image_gen.model.text_encoder
|
|
217
|
+
|
|
218
|
+
if hasattr(image_gen.model, "unet"):
|
|
219
|
+
del image_gen.model.unet
|
|
220
|
+
if hasattr(image_gen.model, "sampler"):
|
|
221
|
+
del image_gen.model.sampler
|
|
222
|
+
|
|
223
|
+
# Get peak memory usage
|
|
224
|
+
peak_mem_unet = mx.metal.get_peak_memory() / 1024**3
|
|
225
|
+
|
|
226
|
+
# Convert to PIL and save
|
|
227
|
+
image_np = result_image.to_numpy()
|
|
228
|
+
image_pil = PILImage.fromarray((image_np * 255).astype(np.uint8))
|
|
229
|
+
image_pil.save(output)
|
|
230
|
+
|
|
231
|
+
print(f"Image-to-image output saved to: {output}")
|
|
232
|
+
|
|
233
|
+
# Get final peak memory usage
|
|
234
|
+
peak_mem_overall = mx.metal.get_peak_memory() / 1024**3
|
|
235
|
+
|
|
236
|
+
# Report memory usage
|
|
237
|
+
if verbose:
|
|
238
|
+
print(f"Peak memory used for unet: {peak_mem_unet:.3f}GB")
|
|
239
|
+
print(f"Peak memory used overall: {peak_mem_overall:.3f}GB")
|
|
240
|
+
|
|
241
|
+
# Clean up
|
|
242
|
+
image_gen.close()
|
|
243
|
+
|
|
244
|
+
return output
|
|
245
|
+
|
|
246
|
+
|
|
247
|
+
if __name__ == "__main__":
|
|
248
|
+
# Text-to-image parameters
|
|
249
|
+
txt2img_params = {
|
|
250
|
+
"prompt": "A photo of an astronaut riding a horse on Mars.",
|
|
251
|
+
"model": "sdxl",
|
|
252
|
+
"n_images": 1,
|
|
253
|
+
"n_rows": 1,
|
|
254
|
+
"output": "out_txt2img.png",
|
|
255
|
+
"verbose": True,
|
|
256
|
+
"width": 256,
|
|
257
|
+
"height": 256,
|
|
258
|
+
}
|
|
259
|
+
|
|
260
|
+
# Image-to-image parameters
|
|
261
|
+
img2img_params = {
|
|
262
|
+
"prompt": "A lit fireplace",
|
|
263
|
+
"model": "sdxl",
|
|
264
|
+
"strength": 0.5,
|
|
265
|
+
"n_images": 1,
|
|
266
|
+
"n_rows": 1,
|
|
267
|
+
"init_image_path": "out_txt2img.png",
|
|
268
|
+
"output": "out_img2img.png",
|
|
269
|
+
"verbose": True,
|
|
270
|
+
"width": 512,
|
|
271
|
+
"height": 512,
|
|
272
|
+
}
|
|
273
|
+
|
|
274
|
+
print("Running text-to-image generation...")
|
|
275
|
+
generated_image = test_txt2image(**txt2img_params)
|
|
276
|
+
|
|
277
|
+
if generated_image:
|
|
278
|
+
print(f"\nRunning image-to-image generation using: {generated_image}")
|
|
279
|
+
img2img_params["init_image_path"] = generated_image
|
|
280
|
+
test_image2image(**img2img_params)
|
|
281
|
+
|
|
282
|
+
print(f"\nPipeline complete!")
|
|
283
|
+
print(f"Text-to-image result: {txt2img_params['output']}")
|
|
284
|
+
print(f"Image-to-image result: {img2img_params['output']}")
|
|
285
|
+
else:
|
|
286
|
+
print("Failed to generate initial image, skipping img2img test")
|
|
@@ -0,0 +1,306 @@
|
|
|
1
|
+
# Copyright © 2023-2024 Apple Inc.
|
|
2
|
+
|
|
3
|
+
import time
|
|
4
|
+
from typing import Optional, Tuple
|
|
5
|
+
|
|
6
|
+
import mlx.core as mx
|
|
7
|
+
|
|
8
|
+
from .model_io import (
|
|
9
|
+
_DEFAULT_MODEL,
|
|
10
|
+
load_autoencoder,
|
|
11
|
+
load_diffusion_config,
|
|
12
|
+
load_text_encoder,
|
|
13
|
+
load_tokenizer,
|
|
14
|
+
load_unet,
|
|
15
|
+
)
|
|
16
|
+
from .sampler import SimpleEulerAncestralSampler, SimpleEulerSampler
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class StableDiffusion:
|
|
20
|
+
def __init__(self, model: str = _DEFAULT_MODEL, float16: bool = False):
|
|
21
|
+
self.dtype = mx.float16 if float16 else mx.float32
|
|
22
|
+
self.diffusion_config = load_diffusion_config(model)
|
|
23
|
+
self.unet = load_unet(model, float16)
|
|
24
|
+
self.text_encoder = load_text_encoder(model, float16)
|
|
25
|
+
self.autoencoder = load_autoencoder(model, False)
|
|
26
|
+
self.sampler = SimpleEulerSampler(self.diffusion_config)
|
|
27
|
+
self.tokenizer = load_tokenizer(model)
|
|
28
|
+
|
|
29
|
+
def ensure_models_are_loaded(self):
|
|
30
|
+
mx.eval(self.unet.parameters())
|
|
31
|
+
mx.eval(self.text_encoder.parameters())
|
|
32
|
+
mx.eval(self.autoencoder.parameters())
|
|
33
|
+
|
|
34
|
+
def _tokenize(self, tokenizer, text: str, negative_text: Optional[str] = None):
|
|
35
|
+
# Tokenize the text
|
|
36
|
+
tokens = [tokenizer.tokenize(text)]
|
|
37
|
+
if negative_text is not None:
|
|
38
|
+
tokens += [tokenizer.tokenize(negative_text)]
|
|
39
|
+
lengths = [len(t) for t in tokens]
|
|
40
|
+
N = max(lengths)
|
|
41
|
+
tokens = [t + [0] * (N - len(t)) for t in tokens]
|
|
42
|
+
tokens = mx.array(tokens)
|
|
43
|
+
|
|
44
|
+
return tokens
|
|
45
|
+
|
|
46
|
+
def _get_text_conditioning(
|
|
47
|
+
self,
|
|
48
|
+
text: str,
|
|
49
|
+
n_images: int = 1,
|
|
50
|
+
cfg_weight: float = 7.5,
|
|
51
|
+
negative_text: str = "",
|
|
52
|
+
):
|
|
53
|
+
# Tokenize the text
|
|
54
|
+
tokens = self._tokenize(
|
|
55
|
+
self.tokenizer, text, (negative_text if cfg_weight > 1 else None)
|
|
56
|
+
)
|
|
57
|
+
|
|
58
|
+
# Compute the features
|
|
59
|
+
conditioning = self.text_encoder(tokens).last_hidden_state
|
|
60
|
+
|
|
61
|
+
# Repeat the conditioning for each of the generated images
|
|
62
|
+
if n_images > 1:
|
|
63
|
+
conditioning = mx.repeat(conditioning, n_images, axis=0)
|
|
64
|
+
|
|
65
|
+
return conditioning
|
|
66
|
+
|
|
67
|
+
def _denoising_step(
|
|
68
|
+
self, x_t, t, t_prev, conditioning, cfg_weight: float = 7.5, text_time=None
|
|
69
|
+
):
|
|
70
|
+
x_t_unet = mx.concatenate([x_t] * 2, axis=0) if cfg_weight > 1 else x_t
|
|
71
|
+
t_unet = mx.broadcast_to(t, [len(x_t_unet)])
|
|
72
|
+
eps_pred = self.unet(
|
|
73
|
+
x_t_unet, t_unet, encoder_x=conditioning, text_time=text_time
|
|
74
|
+
)
|
|
75
|
+
|
|
76
|
+
if cfg_weight > 1:
|
|
77
|
+
eps_text, eps_neg = eps_pred.split(2)
|
|
78
|
+
eps_pred = eps_neg + cfg_weight * (eps_text - eps_neg)
|
|
79
|
+
|
|
80
|
+
x_t_prev = self.sampler.step(eps_pred, x_t, t, t_prev)
|
|
81
|
+
|
|
82
|
+
return x_t_prev
|
|
83
|
+
|
|
84
|
+
def _denoising_loop(
|
|
85
|
+
self,
|
|
86
|
+
x_T,
|
|
87
|
+
T,
|
|
88
|
+
conditioning,
|
|
89
|
+
num_steps: int = 50,
|
|
90
|
+
cfg_weight: float = 7.5,
|
|
91
|
+
text_time=None,
|
|
92
|
+
):
|
|
93
|
+
x_t = x_T
|
|
94
|
+
for t, t_prev in self.sampler.timesteps(
|
|
95
|
+
num_steps, start_time=T, dtype=self.dtype
|
|
96
|
+
):
|
|
97
|
+
x_t = self._denoising_step(
|
|
98
|
+
x_t, t, t_prev, conditioning, cfg_weight, text_time
|
|
99
|
+
)
|
|
100
|
+
yield x_t
|
|
101
|
+
|
|
102
|
+
def generate_latents(
|
|
103
|
+
self,
|
|
104
|
+
text: str,
|
|
105
|
+
n_images: int = 1,
|
|
106
|
+
num_steps: int = 50,
|
|
107
|
+
cfg_weight: float = 7.5,
|
|
108
|
+
negative_text: str = "",
|
|
109
|
+
latent_size: Tuple[int] = (64, 64),
|
|
110
|
+
seed=None,
|
|
111
|
+
):
|
|
112
|
+
# Set the PRNG state
|
|
113
|
+
seed = int(time.time()) if seed is None else seed
|
|
114
|
+
mx.random.seed(seed)
|
|
115
|
+
|
|
116
|
+
# Get the text conditioning
|
|
117
|
+
conditioning = self._get_text_conditioning(
|
|
118
|
+
text, n_images, cfg_weight, negative_text
|
|
119
|
+
)
|
|
120
|
+
|
|
121
|
+
# Create the latent variables
|
|
122
|
+
x_T = self.sampler.sample_prior(
|
|
123
|
+
(n_images, *latent_size, self.autoencoder.latent_channels), dtype=self.dtype
|
|
124
|
+
)
|
|
125
|
+
|
|
126
|
+
# Perform the denoising loop
|
|
127
|
+
yield from self._denoising_loop(
|
|
128
|
+
x_T, self.sampler.max_time, conditioning, num_steps, cfg_weight
|
|
129
|
+
)
|
|
130
|
+
|
|
131
|
+
def generate_latents_from_image(
|
|
132
|
+
self,
|
|
133
|
+
image,
|
|
134
|
+
text: str,
|
|
135
|
+
n_images: int = 1,
|
|
136
|
+
strength: float = 0.8,
|
|
137
|
+
num_steps: int = 50,
|
|
138
|
+
cfg_weight: float = 7.5,
|
|
139
|
+
negative_text: str = "",
|
|
140
|
+
seed=None,
|
|
141
|
+
):
|
|
142
|
+
# Set the PRNG state
|
|
143
|
+
seed = int(time.time()) if seed is None else seed
|
|
144
|
+
mx.random.seed(seed)
|
|
145
|
+
|
|
146
|
+
# Define the num steps and start step
|
|
147
|
+
start_step = self.sampler.max_time * strength
|
|
148
|
+
num_steps = int(num_steps * strength)
|
|
149
|
+
|
|
150
|
+
# Get the text conditioning
|
|
151
|
+
conditioning = self._get_text_conditioning(
|
|
152
|
+
text, n_images, cfg_weight, negative_text
|
|
153
|
+
)
|
|
154
|
+
|
|
155
|
+
# Get the latents from the input image and add noise according to the
|
|
156
|
+
# start time.
|
|
157
|
+
x_0, _ = self.autoencoder.encode(image[None])
|
|
158
|
+
x_0 = mx.broadcast_to(x_0, (n_images,) + x_0.shape[1:])
|
|
159
|
+
x_T = self.sampler.add_noise(x_0, mx.array(start_step))
|
|
160
|
+
|
|
161
|
+
# Perform the denoising loop
|
|
162
|
+
yield from self._denoising_loop(
|
|
163
|
+
x_T, start_step, conditioning, num_steps, cfg_weight
|
|
164
|
+
)
|
|
165
|
+
|
|
166
|
+
def decode(self, x_t):
|
|
167
|
+
x = self.autoencoder.decode(x_t)
|
|
168
|
+
x = mx.clip(x / 2 + 0.5, 0, 1)
|
|
169
|
+
return x
|
|
170
|
+
|
|
171
|
+
|
|
172
|
+
class StableDiffusionXL(StableDiffusion):
|
|
173
|
+
def __init__(self, model: str = _DEFAULT_MODEL, float16: bool = False):
|
|
174
|
+
super().__init__(model, float16)
|
|
175
|
+
|
|
176
|
+
self.sampler = SimpleEulerAncestralSampler(self.diffusion_config)
|
|
177
|
+
|
|
178
|
+
self.text_encoder_1 = self.text_encoder
|
|
179
|
+
self.tokenizer_1 = self.tokenizer
|
|
180
|
+
del self.tokenizer, self.text_encoder
|
|
181
|
+
|
|
182
|
+
self.text_encoder_2 = load_text_encoder(
|
|
183
|
+
model,
|
|
184
|
+
float16,
|
|
185
|
+
model_key="text_encoder_2",
|
|
186
|
+
)
|
|
187
|
+
self.tokenizer_2 = load_tokenizer(
|
|
188
|
+
model,
|
|
189
|
+
merges_key="tokenizer_2_merges",
|
|
190
|
+
vocab_key="tokenizer_2_vocab",
|
|
191
|
+
)
|
|
192
|
+
|
|
193
|
+
def ensure_models_are_loaded(self):
|
|
194
|
+
mx.eval(self.unet.parameters())
|
|
195
|
+
mx.eval(self.text_encoder_1.parameters())
|
|
196
|
+
mx.eval(self.text_encoder_2.parameters())
|
|
197
|
+
mx.eval(self.autoencoder.parameters())
|
|
198
|
+
|
|
199
|
+
def _get_text_conditioning(
|
|
200
|
+
self,
|
|
201
|
+
text: str,
|
|
202
|
+
n_images: int = 1,
|
|
203
|
+
cfg_weight: float = 7.5,
|
|
204
|
+
negative_text: str = "",
|
|
205
|
+
):
|
|
206
|
+
tokens_1 = self._tokenize(
|
|
207
|
+
self.tokenizer_1,
|
|
208
|
+
text,
|
|
209
|
+
(negative_text if cfg_weight > 1 else None),
|
|
210
|
+
)
|
|
211
|
+
tokens_2 = self._tokenize(
|
|
212
|
+
self.tokenizer_2,
|
|
213
|
+
text,
|
|
214
|
+
(negative_text if cfg_weight > 1 else None),
|
|
215
|
+
)
|
|
216
|
+
|
|
217
|
+
conditioning_1 = self.text_encoder_1(tokens_1)
|
|
218
|
+
conditioning_2 = self.text_encoder_2(tokens_2)
|
|
219
|
+
conditioning = mx.concatenate(
|
|
220
|
+
[conditioning_1.hidden_states[-2], conditioning_2.hidden_states[-2]],
|
|
221
|
+
axis=-1,
|
|
222
|
+
)
|
|
223
|
+
pooled_conditioning = conditioning_2.pooled_output
|
|
224
|
+
|
|
225
|
+
if n_images > 1:
|
|
226
|
+
conditioning = mx.repeat(conditioning, n_images, axis=0)
|
|
227
|
+
pooled_conditioning = mx.repeat(pooled_conditioning, n_images, axis=0)
|
|
228
|
+
|
|
229
|
+
return conditioning, pooled_conditioning
|
|
230
|
+
|
|
231
|
+
def generate_latents(
|
|
232
|
+
self,
|
|
233
|
+
text: str,
|
|
234
|
+
n_images: int = 1,
|
|
235
|
+
num_steps: int = 2,
|
|
236
|
+
cfg_weight: float = 0.0,
|
|
237
|
+
negative_text: str = "",
|
|
238
|
+
latent_size: Tuple[int] = (64, 64),
|
|
239
|
+
seed=None,
|
|
240
|
+
):
|
|
241
|
+
# Set the PRNG state
|
|
242
|
+
seed = int(time.time()) if seed is None else seed
|
|
243
|
+
mx.random.seed(seed)
|
|
244
|
+
|
|
245
|
+
# Get the text conditioning
|
|
246
|
+
conditioning, pooled_conditioning = self._get_text_conditioning(
|
|
247
|
+
text, n_images, cfg_weight, negative_text
|
|
248
|
+
)
|
|
249
|
+
text_time = (
|
|
250
|
+
pooled_conditioning,
|
|
251
|
+
mx.array([[512, 512, 0, 0, 512, 512.0]] * len(pooled_conditioning)),
|
|
252
|
+
)
|
|
253
|
+
|
|
254
|
+
# Create the latent variables
|
|
255
|
+
x_T = self.sampler.sample_prior(
|
|
256
|
+
(n_images, *latent_size, self.autoencoder.latent_channels), dtype=self.dtype
|
|
257
|
+
)
|
|
258
|
+
|
|
259
|
+
# Perform the denoising loop
|
|
260
|
+
yield from self._denoising_loop(
|
|
261
|
+
x_T,
|
|
262
|
+
self.sampler.max_time,
|
|
263
|
+
conditioning,
|
|
264
|
+
num_steps,
|
|
265
|
+
cfg_weight,
|
|
266
|
+
text_time=text_time,
|
|
267
|
+
)
|
|
268
|
+
|
|
269
|
+
def generate_latents_from_image(
|
|
270
|
+
self,
|
|
271
|
+
image,
|
|
272
|
+
text: str,
|
|
273
|
+
n_images: int = 1,
|
|
274
|
+
strength: float = 0.8,
|
|
275
|
+
num_steps: int = 2,
|
|
276
|
+
cfg_weight: float = 0.0,
|
|
277
|
+
negative_text: str = "",
|
|
278
|
+
seed=None,
|
|
279
|
+
):
|
|
280
|
+
# Set the PRNG state
|
|
281
|
+
seed = seed or int(time.time())
|
|
282
|
+
mx.random.seed(seed)
|
|
283
|
+
|
|
284
|
+
# Define the num steps and start step
|
|
285
|
+
start_step = self.sampler.max_time * strength
|
|
286
|
+
num_steps = int(num_steps * strength)
|
|
287
|
+
|
|
288
|
+
# Get the text conditioning
|
|
289
|
+
conditioning, pooled_conditioning = self._get_text_conditioning(
|
|
290
|
+
text, n_images, cfg_weight, negative_text
|
|
291
|
+
)
|
|
292
|
+
text_time = (
|
|
293
|
+
pooled_conditioning,
|
|
294
|
+
mx.array([[512, 512, 0, 0, 512, 512.0]] * len(pooled_conditioning)),
|
|
295
|
+
)
|
|
296
|
+
|
|
297
|
+
# Get the latents from the input image and add noise according to the
|
|
298
|
+
# start time.
|
|
299
|
+
x_0, _ = self.autoencoder.encode(image[None])
|
|
300
|
+
x_0 = mx.broadcast_to(x_0, (n_images,) + x_0.shape[1:])
|
|
301
|
+
x_T = self.sampler.add_noise(x_0, mx.array(start_step))
|
|
302
|
+
|
|
303
|
+
# Perform the denoising loop
|
|
304
|
+
yield from self._denoising_loop(
|
|
305
|
+
x_T, start_step, conditioning, num_steps, cfg_weight, text_time=text_time
|
|
306
|
+
)
|
|
@@ -0,0 +1,116 @@
|
|
|
1
|
+
# Copyright © 2023-2024 Apple Inc.
|
|
2
|
+
|
|
3
|
+
from dataclasses import dataclass
|
|
4
|
+
from typing import List, Optional
|
|
5
|
+
|
|
6
|
+
import mlx.core as mx
|
|
7
|
+
import mlx.nn as nn
|
|
8
|
+
|
|
9
|
+
from .config import CLIPTextModelConfig
|
|
10
|
+
|
|
11
|
+
_ACTIVATIONS = {"quick_gelu": nn.gelu_fast_approx, "gelu": nn.gelu}
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
@dataclass
|
|
15
|
+
class CLIPOutput:
|
|
16
|
+
# The last_hidden_state indexed at the EOS token and possibly projected if
|
|
17
|
+
# the model has a projection layer
|
|
18
|
+
pooled_output: Optional[mx.array] = None
|
|
19
|
+
|
|
20
|
+
# The full sequence output of the transformer after the final layernorm
|
|
21
|
+
last_hidden_state: Optional[mx.array] = None
|
|
22
|
+
|
|
23
|
+
# A list of hidden states corresponding to the outputs of the transformer layers
|
|
24
|
+
hidden_states: Optional[List[mx.array]] = None
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class CLIPEncoderLayer(nn.Module):
|
|
28
|
+
"""The transformer encoder layer from CLIP."""
|
|
29
|
+
|
|
30
|
+
def __init__(self, model_dims: int, num_heads: int, activation: str):
|
|
31
|
+
super().__init__()
|
|
32
|
+
|
|
33
|
+
self.layer_norm1 = nn.LayerNorm(model_dims)
|
|
34
|
+
self.layer_norm2 = nn.LayerNorm(model_dims)
|
|
35
|
+
|
|
36
|
+
self.attention = nn.MultiHeadAttention(model_dims, num_heads)
|
|
37
|
+
# Add biases to the attention projections to match CLIP
|
|
38
|
+
self.attention.query_proj.bias = mx.zeros(model_dims)
|
|
39
|
+
self.attention.key_proj.bias = mx.zeros(model_dims)
|
|
40
|
+
self.attention.value_proj.bias = mx.zeros(model_dims)
|
|
41
|
+
self.attention.out_proj.bias = mx.zeros(model_dims)
|
|
42
|
+
|
|
43
|
+
self.linear1 = nn.Linear(model_dims, 4 * model_dims)
|
|
44
|
+
self.linear2 = nn.Linear(4 * model_dims, model_dims)
|
|
45
|
+
|
|
46
|
+
self.act = _ACTIVATIONS[activation]
|
|
47
|
+
|
|
48
|
+
def __call__(self, x, attn_mask=None):
|
|
49
|
+
y = self.layer_norm1(x)
|
|
50
|
+
y = self.attention(y, y, y, attn_mask)
|
|
51
|
+
x = y + x
|
|
52
|
+
|
|
53
|
+
y = self.layer_norm2(x)
|
|
54
|
+
y = self.linear1(y)
|
|
55
|
+
y = self.act(y)
|
|
56
|
+
y = self.linear2(y)
|
|
57
|
+
x = y + x
|
|
58
|
+
|
|
59
|
+
return x
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
class CLIPTextModel(nn.Module):
|
|
63
|
+
"""Implements the text encoder transformer from CLIP."""
|
|
64
|
+
|
|
65
|
+
def __init__(self, config: CLIPTextModelConfig):
|
|
66
|
+
super().__init__()
|
|
67
|
+
|
|
68
|
+
self.token_embedding = nn.Embedding(config.vocab_size, config.model_dims)
|
|
69
|
+
self.position_embedding = nn.Embedding(config.max_length, config.model_dims)
|
|
70
|
+
self.layers = [
|
|
71
|
+
CLIPEncoderLayer(config.model_dims, config.num_heads, config.hidden_act)
|
|
72
|
+
for i in range(config.num_layers)
|
|
73
|
+
]
|
|
74
|
+
self.final_layer_norm = nn.LayerNorm(config.model_dims)
|
|
75
|
+
|
|
76
|
+
if config.projection_dim is not None:
|
|
77
|
+
self.text_projection = nn.Linear(
|
|
78
|
+
config.model_dims, config.projection_dim, bias=False
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
def _get_mask(self, N, dtype):
|
|
82
|
+
indices = mx.arange(N)
|
|
83
|
+
mask = indices[:, None] < indices[None]
|
|
84
|
+
mask = mask.astype(dtype) * (-6e4 if dtype == mx.float16 else -1e9)
|
|
85
|
+
return mask
|
|
86
|
+
|
|
87
|
+
def __call__(self, x):
|
|
88
|
+
# Extract some shapes
|
|
89
|
+
B, N = x.shape
|
|
90
|
+
eos_tokens = x.argmax(-1)
|
|
91
|
+
|
|
92
|
+
# Compute the embeddings
|
|
93
|
+
x = self.token_embedding(x)
|
|
94
|
+
x = x + self.position_embedding.weight[:N]
|
|
95
|
+
|
|
96
|
+
# Compute the features from the transformer
|
|
97
|
+
mask = self._get_mask(N, x.dtype)
|
|
98
|
+
hidden_states = []
|
|
99
|
+
for l in self.layers:
|
|
100
|
+
x = l(x, mask)
|
|
101
|
+
hidden_states.append(x)
|
|
102
|
+
|
|
103
|
+
# Apply the final layernorm and return
|
|
104
|
+
x = self.final_layer_norm(x)
|
|
105
|
+
last_hidden_state = x
|
|
106
|
+
|
|
107
|
+
# Select the EOS token
|
|
108
|
+
pooled_output = x[mx.arange(len(x)), eos_tokens]
|
|
109
|
+
if "text_projection" in self:
|
|
110
|
+
pooled_output = self.text_projection(pooled_output)
|
|
111
|
+
|
|
112
|
+
return CLIPOutput(
|
|
113
|
+
pooled_output=pooled_output,
|
|
114
|
+
last_hidden_state=last_hidden_state,
|
|
115
|
+
hidden_states=hidden_states,
|
|
116
|
+
)
|