neverlib 0.2.7__py3-none-any.whl → 0.2.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- neverlib/QA/ImpactNoiseRejection.py +119 -0
- neverlib/QA/gen_init.py +107 -6
- neverlib/QA/impact_noise_rejection.png +0 -0
- neverlib/QA/out.pcm +0 -0
- neverlib/QA/out.wav +0 -0
- neverlib/__init__.py +19 -0
- neverlib/audio_aug/README.md +3 -0
- neverlib/audio_aug/__init__.py +2 -4
- neverlib/filter/core.py +8 -5
- neverlib/metrics/README.md +35 -0
- neverlib/metrics/__init__.py +1 -1
- neverlib/metrics/pesq_c/PESQ +0 -0
- neverlib/signal_gen/babble_noise_generate.py +113 -0
- neverlib/tests/__init__.py +16 -1
- neverlib/tests/test_imports.py +2 -0
- neverlib/utils/README.md +29 -0
- neverlib/utils/__init__.py +7 -6
- neverlib/utils/audio_split.py +21 -20
- neverlib/utils/checkGPU.py +52 -79
- neverlib/utils/floder.py +115 -0
- neverlib/utils/pcm.py +42 -0
- neverlib/utils/utils.py +3 -77
- neverlib/vad/PreProcess.py +66 -66
- {neverlib-0.2.7.dist-info → neverlib-0.2.9.dist-info}/METADATA +15 -1
- neverlib-0.2.9.dist-info/RECORD +119 -0
- neverlib/.claude/settings.local.json +0 -9
- neverlib/.history/Docs/audio_aug/del_20250827162530.py +0 -0
- neverlib/.history/Docs/audio_aug/del_20250827162540.py +0 -2
- neverlib/.history/Docs/audio_aug/del_20250827162541.py +0 -7
- neverlib/.history/Docs/audio_aug/del_20250827162606.py +0 -7
- neverlib/.history/Docs/audio_aug/del_20250827162637.py +0 -8
- neverlib/.history/Docs/audio_aug/del_20250827162645.py +0 -8
- neverlib/.history/Docs/audio_aug/del_20250827162723.py +0 -9
- neverlib/.history/Docs/audio_aug/del_20250827162739.py +0 -9
- neverlib/.history/Docs/audio_aug/test_snr_20250806011311.py +0 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011331.py +0 -75
- neverlib/.history/Docs/audio_aug/test_snr_20250806011342.py +0 -57
- neverlib/.history/Docs/audio_aug/test_snr_20250806011352.py +0 -57
- neverlib/.history/Docs/audio_aug/test_snr_20250806011403.py +0 -57
- neverlib/.history/Docs/audio_aug/test_snr_20250806011413.py +0 -57
- neverlib/.history/Docs/audio_aug/test_snr_20250806011435.py +0 -55
- neverlib/.history/Docs/audio_aug/test_snr_20250827161751.py +0 -55
- neverlib/.history/Docs/audio_aug/test_snr_20250827161754.py +0 -55
- neverlib/.history/Docs/audio_aug/test_snr_20250827161833.py +0 -54
- neverlib/.history/Docs/audio_aug/test_snr_20250827162017.py +0 -56
- neverlib/.history/Docs/audio_aug/test_snr_20250827162021.py +0 -57
- neverlib/.history/Docs/audio_aug/test_snr_20250827162028.py +0 -57
- neverlib/.history/Docs/audio_aug/test_snr_20250827162033.py +0 -55
- neverlib/.history/Docs/audio_aug_test/del_20250827162738.py +0 -9
- neverlib/.history/Docs/audio_aug_test/del_20250827162819.py +0 -9
- neverlib/.history/Docs/audio_aug_test/del_20250827162830.py +0 -9
- neverlib/.history/Docs/audio_aug_test/del_20250827162846.py +0 -9
- neverlib/.history/Docs/audio_aug_test/del_20250827162851.py +0 -9
- neverlib/.history/Docs/audio_aug_test/del_20250827162903.py +0 -10
- neverlib/.history/Docs/audio_aug_test/del_20250827162921.py +0 -10
- neverlib/.history/Docs/audio_aug_test/del_20250827162926.py +0 -10
- neverlib/.history/Docs/audio_aug_test/del_20250827163030.py +0 -10
- neverlib/.history/Docs/audio_aug_test/del_20250827163032.py +0 -10
- neverlib/.history/Docs/vad/1_20250810032405.py +0 -0
- neverlib/.history/Docs/vad/1_20250810032417.py +0 -39
- neverlib/.history/QA/html2markdown_20250822234112.md +0 -0
- neverlib/.history/QA/html2markdown_20250822234140.py +0 -9
- neverlib/.history/QA/html2markdown_20250822234141.md +0 -9
- neverlib/.history/QA/html2markdown_20250822234159.py +0 -12
- neverlib/.history/QA/html2markdown_20250822234200.py +0 -17
- neverlib/.history/QA/html2markdown_20250822234236.py +0 -17
- neverlib/.history/QA/html2markdown_20250822234340.py +0 -14
- neverlib/.history/QA/html2markdown_20250822234522.py +0 -18
- neverlib/.history/QA/html2markdown_20250822234601.py +0 -20
- neverlib/.history/QA/html2markdown_20250822234615.py +0 -22
- neverlib/.history/QA/html2markdown_20250822234715.py +0 -28
- neverlib/.history/QA/html2markdown_20250822234720.py +0 -27
- neverlib/.history/QA/html2markdown_20250822234903.py +0 -27
- neverlib/.history/__init___20250805234212.py +0 -41
- neverlib/.history/__init___20250904102635.py +0 -39
- neverlib/.history/__init___20250904102836.py +0 -34
- neverlib/.history/__init___20250904102838.py +0 -39
- neverlib/.history/__init___20250904102851.py +0 -33
- neverlib/.history/audio_aug/audio_aug_20250806010451.py +0 -125
- neverlib/.history/audio_aug/audio_aug_20250806010750.py +0 -138
- neverlib/.history/audio_aug/audio_aug_20250806010759.py +0 -140
- neverlib/.history/audio_aug/audio_aug_20250806010803.py +0 -140
- neverlib/.history/audio_aug/audio_aug_20250806010809.py +0 -140
- neverlib/.history/audio_aug/audio_aug_20250806011108.py +0 -140
- neverlib/.history/audio_aug/audio_aug_20250826155913.py +0 -158
- neverlib/.history/audio_aug/audio_aug_20250826164159.py +0 -159
- neverlib/.history/audio_aug/audio_aug_20250826164217.py +0 -160
- neverlib/.history/audio_aug/audio_aug_20250826164408.py +0 -161
- neverlib/.history/audio_aug/audio_aug_20250826164423.py +0 -161
- neverlib/.history/audio_aug/audio_aug_20250826164529.py +0 -161
- neverlib/.history/audio_aug/audio_aug_20250826164824.py +0 -161
- neverlib/.history/audio_aug/audio_aug_20250826164932.py +0 -162
- neverlib/.history/audio_aug/audio_aug_20250826164947.py +0 -162
- neverlib/.history/audio_aug/audio_aug_20250826165403.py +0 -162
- neverlib/.history/audio_aug/audio_aug_20250826165421.py +0 -162
- neverlib/.history/audio_aug/audio_aug_20250826165509.py +0 -163
- neverlib/.history/audio_aug/audio_aug_20250826165702.py +0 -163
- neverlib/.history/audio_aug/audio_aug_20250826165732.py +0 -165
- neverlib/.history/audio_aug/audio_aug_20250826170041.py +0 -163
- neverlib/.history/audio_aug/audio_aug_20250826170105.py +0 -164
- neverlib/.history/audio_aug/audio_aug_20250826170154.py +0 -164
- neverlib/.history/audio_aug/audio_aug_20250826170220.py +0 -165
- neverlib/.history/audio_aug/audio_aug_20250826170221.py +0 -165
- neverlib/.history/audio_aug/audio_aug_20250826170228.py +0 -165
- neverlib/.history/audio_aug/audio_aug_20250826170231.py +0 -165
- neverlib/.history/audio_aug/audio_aug_20250826212001.py +0 -165
- neverlib/.history/audio_aug/audio_aug_20250826220038.py +0 -165
- neverlib/.history/audio_aug/audio_aug_20250826220133.py +0 -165
- neverlib/.history/audio_aug/audio_aug_20250826220148.py +0 -165
- neverlib/.history/audio_aug/audio_aug_20250826220154.py +0 -165
- neverlib/.history/audio_aug/audio_aug_20250826220156.py +0 -165
- neverlib/.history/audio_aug/audio_aug_20250826220314.py +0 -165
- neverlib/.history/audio_aug/audio_aug_20250826220343.py +0 -184
- neverlib/.history/audio_aug/audio_aug_20250826220345.py +0 -184
- neverlib/.history/audio_aug/audio_aug_20250826220349.py +0 -184
- neverlib/.history/audio_aug/audio_aug_20250826220429.py +0 -184
- neverlib/.history/audio_aug/audio_aug_20250826220447.py +0 -184
- neverlib/.history/audio_aug/audio_aug_20250826220601.py +0 -186
- neverlib/.history/audio_aug/audio_aug_20250826220638.py +0 -186
- neverlib/.history/audio_aug/audio_aug_20250826220641.py +0 -186
- neverlib/.history/audio_aug/audio_aug_20250826220647.py +0 -186
- neverlib/.history/audio_aug/audio_aug_20250826220653.py +0 -186
- neverlib/.history/audio_aug/audio_aug_20250826220655.py +0 -186
- neverlib/.history/audio_aug/audio_aug_20250826220731.py +0 -185
- neverlib/.history/audio_aug/audio_aug_20250826220739.py +0 -185
- neverlib/.history/audio_aug/audio_aug_20250826220747.py +0 -185
- neverlib/.history/audio_aug/audio_aug_20250826220801.py +0 -186
- neverlib/.history/audio_aug/audio_aug_20250826220822.py +0 -186
- neverlib/.history/audio_aug/audio_aug_20250826220901.py +0 -186
- neverlib/.history/audio_aug/audio_aug_20250826221107.py +0 -187
- neverlib/.history/audio_aug/audio_aug_20250826221310.py +0 -188
- neverlib/.history/audio_aug/audio_aug_20250826221353.py +0 -191
- neverlib/.history/audio_aug/audio_aug_20250826221821.py +0 -191
- neverlib/.history/audio_aug/audio_aug_20250826221838.py +0 -191
- neverlib/.history/audio_aug/audio_aug_20250826221906.py +0 -191
- neverlib/.history/audio_aug/audio_aug_20250826221930.py +0 -191
- neverlib/.history/audio_aug/audio_aug_20250826221939.py +0 -191
- neverlib/.history/audio_aug/audio_aug_20250826221955.py +0 -191
- neverlib/.history/audio_aug/audio_aug_20250826222008.py +0 -197
- neverlib/.history/audio_aug/audio_aug_20250826222017.py +0 -200
- neverlib/.history/audio_aug/audio_aug_20250826222046.py +0 -203
- neverlib/.history/audio_aug/audio_aug_20250826222105.py +0 -203
- neverlib/.history/audio_aug/audio_aug_20250826222206.py +0 -203
- neverlib/.history/audio_aug/audio_aug_20250826222302.py +0 -203
- neverlib/.history/audio_aug/audio_aug_20250826222336.py +0 -203
- neverlib/.history/audio_aug/audio_aug_20250826222455.py +0 -204
- neverlib/.history/audio_aug/audio_aug_20250826222526.py +0 -204
- neverlib/.history/audio_aug/audio_aug_20250826222541.py +0 -204
- neverlib/.history/audio_aug/audio_aug_20250826222624.py +0 -202
- neverlib/.history/audio_aug/audio_aug_20250826222714.py +0 -205
- neverlib/.history/audio_aug/audio_aug_20250826222820.py +0 -205
- neverlib/.history/audio_aug/audio_aug_20250826222827.py +0 -205
- neverlib/.history/audio_aug/audio_aug_20250826222927.py +0 -232
- neverlib/.history/audio_aug/audio_aug_20250826223009.py +0 -232
- neverlib/.history/audio_aug/audio_aug_20250826223054.py +0 -232
- neverlib/.history/audio_aug/audio_aug_20250826223225.py +0 -233
- neverlib/.history/audio_aug/audio_aug_20250826223344.py +0 -236
- neverlib/.history/audio_aug/audio_aug_20250826223356.py +0 -236
- neverlib/.history/audio_aug/audio_aug_20250826223955.py +0 -242
- neverlib/.history/audio_aug/audio_aug_20250826224210.py +0 -240
- neverlib/.history/audio_aug/audio_aug_20250826224250.py +0 -242
- neverlib/.history/audio_aug/audio_aug_20250826224323.py +0 -280
- neverlib/.history/audio_aug/audio_aug_20250826224452.py +0 -263
- neverlib/.history/audio_aug/audio_aug_20250826224455.py +0 -263
- neverlib/.history/audio_aug/audio_aug_20250826224502.py +0 -263
- neverlib/.history/audio_aug/audio_aug_20250826224528.py +0 -263
- neverlib/.history/audio_aug/audio_aug_20250826224658.py +0 -263
- neverlib/.history/audio_aug/audio_aug_20250826224833.py +0 -264
- neverlib/.history/audio_aug/audio_aug_20250826225013.py +0 -269
- neverlib/.history/audio_aug/audio_aug_20250826225050.py +0 -269
- neverlib/.history/audio_aug/audio_aug_20250826225241.py +0 -268
- neverlib/.history/audio_aug/audio_aug_20250826225315.py +0 -266
- neverlib/.history/audio_aug/audio_aug_20250826225404.py +0 -266
- neverlib/.history/audio_aug/audio_aug_20250826225502.py +0 -265
- neverlib/.history/audio_aug/audio_aug_20250826225950.py +0 -267
- neverlib/.history/audio_aug/audio_aug_20250826225959.py +0 -268
- neverlib/.history/audio_aug/audio_aug_20250826230222.py +0 -271
- neverlib/.history/audio_aug/audio_aug_20250826230248.py +0 -270
- neverlib/.history/audio_aug/audio_aug_20250826230638.py +0 -266
- neverlib/.history/audio_aug/audio_aug_20250826230755.py +0 -266
- neverlib/.history/audio_aug/audio_aug_20250826230941.py +0 -265
- neverlib/.history/audio_aug/audio_aug_20250826231054.py +0 -266
- neverlib/.history/audio_aug/audio_aug_20250826231117.py +0 -266
- neverlib/.history/audio_aug/audio_aug_20250826231219.py +0 -266
- neverlib/.history/audio_aug/audio_aug_20250826232330.py +0 -266
- neverlib/.history/audio_aug/audio_aug_20250826232352.py +0 -266
- neverlib/.history/audio_aug/audio_aug_20250827152748.py +0 -268
- neverlib/.history/audio_aug/audio_aug_20250827152806.py +0 -268
- neverlib/.history/audio_aug/audio_aug_20250827152808.py +0 -268
- neverlib/.history/audio_aug/audio_aug_20250827152917.py +0 -283
- neverlib/.history/audio_aug/audio_aug_20250827152929.py +0 -281
- neverlib/.history/audio_aug/audio_aug_20250827153100.py +0 -286
- neverlib/.history/audio_aug/audio_aug_20250827153102.py +0 -286
- neverlib/.history/audio_aug/audio_aug_20250827153301.py +0 -295
- neverlib/.history/audio_aug/audio_aug_20250827153331.py +0 -298
- neverlib/.history/audio_aug/audio_aug_20250827153525.py +0 -303
- neverlib/.history/audio_aug/audio_aug_20250827153533.py +0 -304
- neverlib/.history/audio_aug/audio_aug_20250827153541.py +0 -321
- neverlib/.history/audio_aug/audio_aug_20250827153805.py +0 -322
- neverlib/.history/audio_aug/audio_aug_20250827153832.py +0 -323
- neverlib/.history/audio_aug/audio_aug_20250827153836.py +0 -324
- neverlib/.history/audio_aug/audio_aug_20250827153846.py +0 -324
- neverlib/.history/audio_aug/audio_aug_20250827153859.py +0 -325
- neverlib/.history/audio_aug/audio_aug_20250827154453.py +0 -337
- neverlib/.history/audio_aug/audio_aug_20250827154513.py +0 -355
- neverlib/.history/audio_aug/audio_aug_20250827154538.py +0 -356
- neverlib/.history/audio_aug/audio_aug_20250827154541.py +0 -357
- neverlib/.history/audio_aug/audio_aug_20250827154612.py +0 -357
- neverlib/.history/audio_aug/audio_aug_20250827154657.py +0 -360
- neverlib/.history/audio_aug/audio_aug_20250827154708.py +0 -360
- neverlib/.history/audio_aug/audio_aug_20250827154728.py +0 -366
- neverlib/.history/audio_aug/audio_aug_20250827154755.py +0 -367
- neverlib/.history/audio_aug/audio_aug_20250827154800.py +0 -367
- neverlib/.history/audio_aug/audio_aug_20250827154917.py +0 -368
- neverlib/.history/audio_aug/audio_aug_20250827154928.py +0 -369
- neverlib/.history/audio_aug/audio_aug_20250827154932.py +0 -370
- neverlib/.history/audio_aug/audio_aug_20250827154947.py +0 -372
- neverlib/.history/audio_aug/audio_aug_20250827155015.py +0 -375
- neverlib/.history/audio_aug/audio_aug_20250827155106.py +0 -375
- neverlib/.history/audio_aug/audio_aug_20250827155114.py +0 -393
- neverlib/.history/audio_aug/audio_aug_20250827155207.py +0 -415
- neverlib/.history/audio_aug/audio_aug_20250827155300.py +0 -415
- neverlib/.history/audio_aug/audio_aug_20250827155321.py +0 -471
- neverlib/.history/audio_aug/audio_aug_20250827164703.py +0 -471
- neverlib/.history/audio_aug/audio_aug_20250827164749.py +0 -471
- neverlib/.history/audio_aug/audio_aug_20250827165252.py +0 -472
- neverlib/.history/audio_aug/audio_aug_20250827165334.py +0 -472
- neverlib/.history/audio_aug/audio_aug_20250827165404.py +0 -473
- neverlib/.history/audio_aug/audio_aug_20250827165610.py +0 -473
- neverlib/.history/audio_aug/audio_aug_20250827165805.py +0 -473
- neverlib/.history/audio_aug/audio_aug_20250827170056.py +0 -473
- neverlib/.history/audio_aug/audio_aug_20250827170106.py +0 -472
- neverlib/.history/audio_aug/audio_aug_20250827170143.py +0 -472
- neverlib/.history/audio_aug/audio_aug_20250827170216.py +0 -472
- neverlib/.history/audio_aug/audio_aug_20250827170218.py +0 -472
- neverlib/.history/audio_aug/audio_aug_20250827170314.py +0 -472
- neverlib/.history/audio_aug/audio_aug_20250827171500.py +0 -471
- neverlib/.history/audio_aug/audio_aug_20250827172347.py +0 -471
- neverlib/.history/audio_aug/audio_aug_20250827172558.py +0 -470
- neverlib/.history/audio_aug/audio_aug_20250827172559.py +0 -470
- neverlib/.history/audio_aug/audio_aug_20250827172801.py +0 -470
- neverlib/.history/audio_aug/audio_aug_20250827182522.py +0 -470
- neverlib/.history/audio_aug/audio_aug_20250827182526.py +0 -470
- neverlib/.history/audio_aug/audio_aug_20250827182626.py +0 -470
- neverlib/.history/audio_aug/audio_aug_20250827182715.py +0 -470
- neverlib/.history/audio_aug/audio_aug_20250904185444.py +0 -470
- neverlib/.history/audio_aug/audio_aug_20250904185538.py +0 -445
- neverlib/.history/dataAnalyze/__init___20250805234204.py +0 -87
- neverlib/.history/dataAnalyze/__init___20250806204125.py +0 -14
- neverlib/.history/dataAnalyze/__init___20250806204139.py +0 -14
- neverlib/.history/dataAnalyze/__init___20250806204159.py +0 -14
- neverlib/.history/data_analyze/__init___20250806204158.py +0 -14
- neverlib/.history/data_analyze/__init___20250827163248.py +0 -14
- neverlib/.history/filter/__init___20250820103351.py +0 -70
- neverlib/.history/filter/__init___20250821102348.py +0 -70
- neverlib/.history/filter/__init___20250821102405.py +0 -14
- neverlib/.history/filter/auto_eq/__init___20250819213121.py +0 -36
- neverlib/.history/filter/auto_eq/__init___20250821102241.py +0 -36
- neverlib/.history/filter/auto_eq/__init___20250821102259.py +0 -36
- neverlib/.history/filter/auto_eq/__init___20250821102307.py +0 -36
- neverlib/.history/filter/auto_eq/__init___20250821102310.py +0 -36
- neverlib/.history/filter/auto_eq/__init___20250821102318.py +0 -36
- neverlib/.history/filter/auto_eq/__init___20250821102507.py +0 -36
- neverlib/.history/filter/auto_eq/de_eq_20250820103848.py +0 -361
- neverlib/.history/filter/auto_eq/de_eq_20250821102422.py +0 -360
- neverlib/.history/filter/auto_eq/freq_eq_20250805234206.py +0 -75
- neverlib/.history/filter/auto_eq/freq_eq_20250820140732.py +0 -75
- neverlib/.history/filter/auto_eq/freq_eq_20250820140745.py +0 -75
- neverlib/.history/filter/auto_eq/freq_eq_20250820140816.py +0 -75
- neverlib/.history/filter/auto_eq/freq_eq_20250820140938.py +0 -77
- neverlib/.history/filter/auto_eq/freq_eq_20250820141003.py +0 -77
- neverlib/.history/filter/auto_eq/freq_eq_20250820141006.py +0 -77
- neverlib/.history/filter/auto_eq/freq_eq_20250820141019.py +0 -77
- neverlib/.history/filter/auto_eq/freq_eq_20250820141049.py +0 -77
- neverlib/.history/filter/auto_eq/freq_eq_20250820141211.py +0 -77
- neverlib/.history/filter/auto_eq/freq_eq_20250820141227.py +0 -77
- neverlib/.history/filter/auto_eq/freq_eq_20250820141311.py +0 -78
- neverlib/.history/filter/auto_eq/freq_eq_20250820141340.py +0 -78
- neverlib/.history/filter/auto_eq/freq_eq_20250820141712.py +0 -78
- neverlib/.history/filter/auto_eq/freq_eq_20250820141733.py +0 -78
- neverlib/.history/filter/auto_eq/freq_eq_20250820141755.py +0 -78
- neverlib/.history/filter/auto_eq/freq_eq_20250821102434.py +0 -76
- neverlib/.history/filter/auto_eq/freq_eq_20250821102500.py +0 -76
- neverlib/.history/filter/auto_eq/freq_eq_20250821102502.py +0 -76
- neverlib/.history/filter/auto_eq/freq_eq_20250821143140.py +0 -76
- neverlib/.history/filter/auto_eq/freq_eq_20250821153208.py +0 -76
- neverlib/.history/filter/auto_eq/freq_eq_20250821153214.py +0 -76
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820102957.py +0 -380
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113054.py +0 -380
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113150.py +0 -380
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113520.py +0 -385
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113525.py +0 -385
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250821102212.py +0 -385
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250901110521.py +0 -385
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250901110652.py +0 -385
- neverlib/.history/filter/common_20250806002134.py +0 -37
- neverlib/.history/filter/common_20250821120448.py +0 -49
- neverlib/.history/filter/common_20250821120453.py +0 -49
- neverlib/.history/metrics/dnsmos_20250806001612.py +0 -160
- neverlib/.history/metrics/dnsmos_20250815180659.py +0 -160
- neverlib/.history/metrics/dnsmos_20250815180701.py +0 -158
- neverlib/.history/metrics/dnsmos_20250815181321.py +0 -154
- neverlib/.history/metrics/dnsmos_20250815181327.py +0 -154
- neverlib/.history/metrics/dnsmos_20250815181331.py +0 -154
- neverlib/.history/metrics/dnsmos_20250815181620.py +0 -154
- neverlib/.history/metrics/dnsmos_20250815181631.py +0 -154
- neverlib/.history/metrics/dnsmos_20250815181742.py +0 -154
- neverlib/.history/metrics/dnsmos_20250815181824.py +0 -153
- neverlib/.history/metrics/dnsmos_20250815181834.py +0 -153
- neverlib/.history/metrics/dnsmos_20250815181922.py +0 -153
- neverlib/.history/metrics/dnsmos_20250815182011.py +0 -147
- neverlib/.history/metrics/dnsmos_20250815182036.py +0 -144
- neverlib/.history/metrics/dnsmos_20250815182936.py +0 -143
- neverlib/.history/metrics/dnsmos_20250815182942.py +0 -143
- neverlib/.history/metrics/dnsmos_20250815183032.py +0 -137
- neverlib/.history/metrics/dnsmos_20250815183101.py +0 -144
- neverlib/.history/metrics/dnsmos_20250815183121.py +0 -144
- neverlib/.history/metrics/dnsmos_20250815183123.py +0 -143
- neverlib/.history/metrics/dnsmos_20250815183214.py +0 -143
- neverlib/.history/metrics/dnsmos_20250815183240.py +0 -143
- neverlib/.history/metrics/dnsmos_20250815183248.py +0 -144
- neverlib/.history/metrics/dnsmos_20250815183407.py +0 -142
- neverlib/.history/metrics/dnsmos_20250815183409.py +0 -142
- neverlib/.history/metrics/dnsmos_20250815183431.py +0 -142
- neverlib/.history/metrics/dnsmos_20250815183507.py +0 -140
- neverlib/.history/metrics/dnsmos_20250815183513.py +0 -139
- neverlib/.history/metrics/dnsmos_20250815183618.py +0 -139
- neverlib/.history/metrics/dnsmos_20250815183709.py +0 -140
- neverlib/.history/metrics/dnsmos_20250815183756.py +0 -137
- neverlib/.history/metrics/dnsmos_20250815183815.py +0 -128
- neverlib/.history/metrics/dnsmos_20250815183827.py +0 -129
- neverlib/.history/metrics/dnsmos_20250815183913.py +0 -117
- neverlib/.history/metrics/dnsmos_20250815183914.py +0 -117
- neverlib/.history/metrics/dnsmos_20250815184003.py +0 -118
- neverlib/.history/metrics/dnsmos_20250815184040.py +0 -118
- neverlib/.history/metrics/dnsmos_20250815184049.py +0 -118
- neverlib/.history/metrics/dnsmos_20250815184104.py +0 -117
- neverlib/.history/metrics/dnsmos_20250815184200.py +0 -117
- neverlib/.history/metrics/lpc_lsp_metric_20250816015944.py +0 -128
- neverlib/.history/metrics/lpc_lsp_metric_20250816020142.py +0 -128
- neverlib/.history/metrics/lpc_lsp_metric_20250816020156.py +0 -128
- neverlib/.history/metrics/lpc_lsp_metric_20250816020554.py +0 -130
- neverlib/.history/metrics/lpc_lsp_metric_20250816020600.py +0 -125
- neverlib/.history/metrics/lpc_lsp_metric_20250816020631.py +0 -120
- neverlib/.history/metrics/lpc_lsp_metric_20250816020746.py +0 -118
- neverlib/.history/metrics/lpc_me_20250816013111.py +0 -0
- neverlib/.history/metrics/lpc_me_20250816013129.py +0 -121
- neverlib/.history/metrics/lpc_me_20250816015430.py +0 -103
- neverlib/.history/metrics/lpc_me_20250816015535.py +0 -96
- neverlib/.history/metrics/lpc_me_20250816015542.py +0 -96
- neverlib/.history/metrics/lpc_me_20250816015636.py +0 -97
- neverlib/.history/metrics/lpc_me_20250816015658.py +0 -104
- neverlib/.history/metrics/lpc_me_20250816015703.py +0 -100
- neverlib/.history/metrics/lpc_me_20250816015945.py +0 -128
- neverlib/.history/metrics/snr_20250806010538.py +0 -177
- neverlib/.history/metrics/snr_20250806211634.py +0 -184
- neverlib/.history/metrics/snr_20250827224201.py +0 -182
- neverlib/.history/metrics/snr_20250827234019.py +0 -186
- neverlib/.history/metrics/snr_20250827234028.py +0 -186
- neverlib/.history/metrics/snr_20250827234030.py +0 -186
- neverlib/.history/metrics/spec_20250805234209.py +0 -45
- neverlib/.history/metrics/spec_20250816135530.py +0 -11
- neverlib/.history/metrics/spec_20250816135654.py +0 -16
- neverlib/.history/metrics/spec_20250816135736.py +0 -68
- neverlib/.history/metrics/spec_20250816135904.py +0 -75
- neverlib/.history/metrics/spec_20250816135921.py +0 -82
- neverlib/.history/metrics/spec_20250816140111.py +0 -82
- neverlib/.history/metrics/spec_20250816140543.py +0 -136
- neverlib/.history/metrics/spec_20250816140559.py +0 -172
- neverlib/.history/metrics/spec_20250816140602.py +0 -172
- neverlib/.history/metrics/spec_20250816140608.py +0 -172
- neverlib/.history/metrics/spec_20250816140654.py +0 -148
- neverlib/.history/metrics/spec_20250816140705.py +0 -144
- neverlib/.history/metrics/spec_20250816140755.py +0 -138
- neverlib/.history/metrics/spec_20250816140823.py +0 -170
- neverlib/.history/metrics/spec_20250816140832.py +0 -170
- neverlib/.history/metrics/spec_20250816140833.py +0 -170
- neverlib/.history/metrics/spec_20250816140922.py +0 -147
- neverlib/.history/metrics/spec_20250816141148.py +0 -107
- neverlib/.history/metrics/spec_20250816141219.py +0 -123
- neverlib/.history/metrics/spec_20250816141732.py +0 -178
- neverlib/.history/metrics/spec_20250816141740.py +0 -178
- neverlib/.history/metrics/spec_20250816142030.py +0 -178
- neverlib/.history/metrics/spec_20250816142107.py +0 -135
- neverlib/.history/metrics/spec_20250816142126.py +0 -135
- neverlib/.history/metrics/spec_20250816142410.py +0 -135
- neverlib/.history/metrics/spec_20250816142415.py +0 -136
- neverlib/.history/metrics/spec_metric_20250816135156.py +0 -0
- neverlib/.history/metrics/spec_metric_20250816135226.py +0 -5
- neverlib/.history/metrics/spec_metric_20250816135227.py +0 -10
- neverlib/.history/metrics/spec_metric_20250816135306.py +0 -15
- neverlib/.history/metrics/spec_metric_20250816135442.py +0 -31
- neverlib/.history/metrics/spec_metric_20250816135448.py +0 -31
- neverlib/.history/metrics/spec_metric_20250816135520.py +0 -29
- neverlib/.history/metrics/spec_metric_20250816135537.py +0 -63
- neverlib/.history/metrics/spec_metric_20250816135653.py +0 -65
- neverlib/.history/utils/audio_split_20250805234209.py +0 -268
- neverlib/.history/utils/audio_split_20250904185309.py +0 -268
- neverlib/.history/utils/utils_20250813165516.py +0 -330
- neverlib/.history/utils/utils_20250904181341.py +0 -328
- neverlib/.history/utils/utils_20250904185546.py +0 -352
- neverlib/.history/utils/utils_20250904185548.py +0 -353
- neverlib/.history/utils/utils_20250904185603.py +0 -353
- neverlib/.history/utils/utils_20250904185636.py +0 -353
- neverlib/.history/utils/utils_20250904185658.py +0 -358
- neverlib/.history/utils/utils_20250904190053.py +0 -359
- neverlib/.history/vad/PreProcess_20250805234211.py +0 -63
- neverlib/.history/vad/PreProcess_20250809232455.py +0 -63
- neverlib/.history/vad/PreProcess_20250816020725.py +0 -66
- neverlib/.history/vad/VAD_Silero_20250805234211.py +0 -50
- neverlib/.history/vad/VAD_Silero_20250809232456.py +0 -50
- neverlib/.history/vad/VAD_WebRTC_20250805234211.py +0 -61
- neverlib/.history/vad/VAD_WebRTC_20250809232456.py +0 -61
- neverlib/.history/vad/VAD_funasr_20250805234211.py +0 -54
- neverlib/.history/vad/VAD_funasr_20250809232456.py +0 -54
- neverlib/.history/vad/VAD_vadlib_20250805234211.py +0 -70
- neverlib/.history/vad/VAD_vadlib_20250809232455.py +0 -70
- neverlib/.history/vad/VAD_whisper_20250805234211.py +0 -55
- neverlib/.history/vad/VAD_whisper_20250809232456.py +0 -55
- neverlib/.specstory/.what-is-this.md +0 -69
- neverlib/.specstory/history/2025-08-05_17-06Z-/350/277/231/344/270/200/346/255/245/347/232/204/347/233/256/347/232/204/346/230/257/344/273/200/344/271/210.md +0 -424
- neverlib/.specstory/history/2025-08-22_02-10Z-/345/256/214/345/226/204/345/207/275/346/225/260/347/232/204/345/212/237/350/203/275/345/222/214/345/217/230/351/207/217/345/220/215/345/273/272/350/256/256.md +0 -247
- neverlib/.specstory/history/2025-08-26_11-54Z-oserror-missing-shared-object-file.md +0 -87
- neverlib/.specstory/history/2025-08-27_08-07Z-/345/256/214/345/226/204/346/265/213/350/257/225/346/226/207/346/241/243/347/232/204/350/256/250/350/256/272.md +0 -296
- neverlib/.specstory/history/2025-08-27_08-29Z-delete-python-file-command.md +0 -211
- neverlib/.specstory/history/2025-08-27_09-05Z-/345/234/250jupyter/344/270/255/346/222/255/346/224/276/351/237/263/351/242/221/347/232/204/344/273/243/347/240/201/344/277/256/346/224/271.md +0 -357
- neverlib-0.2.7.dist-info/RECORD +0 -510
- {neverlib-0.2.7.dist-info → neverlib-0.2.9.dist-info}/WHEEL +0 -0
- {neverlib-0.2.7.dist-info → neverlib-0.2.9.dist-info}/licenses/LICENSE +0 -0
- {neverlib-0.2.7.dist-info → neverlib-0.2.9.dist-info}/top_level.txt +0 -0
|
@@ -1,77 +0,0 @@
|
|
|
1
|
-
'''
|
|
2
|
-
Author: 凌逆战 | Never
|
|
3
|
-
Date: 2025-08-04 21:49:05
|
|
4
|
-
Description: 自动EQ补偿
|
|
5
|
-
'''
|
|
6
|
-
import os
|
|
7
|
-
import numpy as np
|
|
8
|
-
import librosa
|
|
9
|
-
import soundfile as sf
|
|
10
|
-
import pandas
|
|
11
|
-
import matplotlib.pyplot as plt
|
|
12
|
-
|
|
13
|
-
np.set_printoptions(precision=8)
|
|
14
|
-
np.set_printoptions(suppress=True) # 打印不使用科学计数法
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
|
|
18
|
-
freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
|
|
19
|
-
|
|
20
|
-
stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
21
|
-
stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
22
|
-
magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
|
|
23
|
-
# 求时间平均, 频响曲线 Frequency_Response_curve
|
|
24
|
-
reference_response = np.mean(magnitude_reference, axis=1)
|
|
25
|
-
target_response = np.mean(magnitude_target, axis=1)
|
|
26
|
-
|
|
27
|
-
reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
|
|
28
|
-
target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
|
|
29
|
-
|
|
30
|
-
eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
|
|
31
|
-
# print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
|
|
32
|
-
|
|
33
|
-
if plot_results:
|
|
34
|
-
plt.figure(figsize=(10, 5))
|
|
35
|
-
# plt.plot(freq_bins, target_response_db, label="Target Response")
|
|
36
|
-
plt.plot(freq_bins, eq_curve, label="EQ Curve")
|
|
37
|
-
# compensated_response = reference_response_db + eq_curve # 补偿后的曲线
|
|
38
|
-
# plt.plot(freq_bins, compensated_response, label="Compensated Response")
|
|
39
|
-
plt.xlabel('Frequency (Hz)')
|
|
40
|
-
plt.ylabel('Amplitude (dB)')
|
|
41
|
-
plt.title('Frequency Response Compensation')
|
|
42
|
-
plt.grid(True)
|
|
43
|
-
plt.legend()
|
|
44
|
-
plt.xscale('log')
|
|
45
|
-
plt.grid(True, ls="--", alpha=0.4)
|
|
46
|
-
plt.tight_layout()
|
|
47
|
-
# plt.show()
|
|
48
|
-
plt.savefig(f"./frequency_eq_fft{window_size}.png")
|
|
49
|
-
|
|
50
|
-
# 拿到EQ之后我们对音频进行EQ补偿
|
|
51
|
-
reference_phase = np.angle(stft_reference) # (F,T)
|
|
52
|
-
for freq_idx in range(magnitude_reference.shape[0]):
|
|
53
|
-
magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
|
|
54
|
-
compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
|
|
55
|
-
compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
|
|
56
|
-
|
|
57
|
-
return eq_curve, compensated_audio
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
if __name__ == "__main__":
|
|
61
|
-
SAMPLE_RATE = 16000
|
|
62
|
-
WINDOW_SIZE = FFT_SIZE = 512
|
|
63
|
-
# reference_audio_path = "../data/white.wav"
|
|
64
|
-
# target_audio_path = "../data/white_EQ.wav"
|
|
65
|
-
|
|
66
|
-
# 读取音频文件
|
|
67
|
-
# reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
|
|
68
|
-
# target_audio, _ = sf.read(target_audio_path, dtype='float32')
|
|
69
|
-
wav_3956, sr = sf.read("../../data/3956_speech.wav")
|
|
70
|
-
reference_audio = wav_3956[:, 1]
|
|
71
|
-
target_audio = wav_3956[:, 0]
|
|
72
|
-
eq_curve, compensated_audio = compute_frequency_eq(
|
|
73
|
-
reference_audio, target_audio,
|
|
74
|
-
SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
|
|
75
|
-
plot_results=True
|
|
76
|
-
)
|
|
77
|
-
sf.write("../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
|
|
@@ -1,77 +0,0 @@
|
|
|
1
|
-
'''
|
|
2
|
-
Author: 凌逆战 | Never
|
|
3
|
-
Date: 2025-08-04 21:49:05
|
|
4
|
-
Description: 自动EQ补偿
|
|
5
|
-
'''
|
|
6
|
-
import os
|
|
7
|
-
import numpy as np
|
|
8
|
-
import librosa
|
|
9
|
-
import soundfile as sf
|
|
10
|
-
import pandas
|
|
11
|
-
import matplotlib.pyplot as plt
|
|
12
|
-
|
|
13
|
-
np.set_printoptions(precision=8)
|
|
14
|
-
np.set_printoptions(suppress=True) # 打印不使用科学计数法
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
|
|
18
|
-
freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
|
|
19
|
-
|
|
20
|
-
stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
21
|
-
stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
22
|
-
magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
|
|
23
|
-
# 求时间平均, 频响曲线 Frequency_Response_curve
|
|
24
|
-
reference_response = np.mean(magnitude_reference, axis=1)
|
|
25
|
-
target_response = np.mean(magnitude_target, axis=1)
|
|
26
|
-
|
|
27
|
-
reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
|
|
28
|
-
target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
|
|
29
|
-
|
|
30
|
-
eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
|
|
31
|
-
# print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
|
|
32
|
-
|
|
33
|
-
if plot_results:
|
|
34
|
-
plt.figure(figsize=(10, 5))
|
|
35
|
-
# plt.plot(freq_bins, target_response_db, label="Target Response")
|
|
36
|
-
plt.plot(freq_bins, eq_curve, label="EQ Curve")
|
|
37
|
-
# compensated_response = reference_response_db + eq_curve # 补偿后的曲线
|
|
38
|
-
# plt.plot(freq_bins, compensated_response, label="Compensated Response")
|
|
39
|
-
plt.xlabel('Frequency (Hz)')
|
|
40
|
-
plt.ylabel('Amplitude (dB)')
|
|
41
|
-
plt.title('Frequency Response Compensation')
|
|
42
|
-
plt.grid(True)
|
|
43
|
-
plt.legend()
|
|
44
|
-
plt.xscale('log')
|
|
45
|
-
plt.grid(True, ls="--", alpha=0.4)
|
|
46
|
-
plt.tight_layout()
|
|
47
|
-
# plt.show()
|
|
48
|
-
plt.savefig(f"./frequency_eq_fft{window_size}.png")
|
|
49
|
-
|
|
50
|
-
# 拿到EQ之后我们对音频进行EQ补偿
|
|
51
|
-
reference_phase = np.angle(stft_reference) # (F,T)
|
|
52
|
-
for freq_idx in range(magnitude_reference.shape[0]):
|
|
53
|
-
magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
|
|
54
|
-
compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
|
|
55
|
-
compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
|
|
56
|
-
|
|
57
|
-
return eq_curve, compensated_audio
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
if __name__ == "__main__":
|
|
61
|
-
SAMPLE_RATE = 16000
|
|
62
|
-
WINDOW_SIZE = FFT_SIZE = 512
|
|
63
|
-
# reference_audio_path = "../data/white.wav"
|
|
64
|
-
# target_audio_path = "../data/white_EQ.wav"
|
|
65
|
-
|
|
66
|
-
# 读取音频文件
|
|
67
|
-
# reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
|
|
68
|
-
# target_audio, _ = sf.read(target_audio_path, dtype='float32')
|
|
69
|
-
wav_3956, sr = sf.read("../../data/3956_speech.wav")
|
|
70
|
-
reference_audio = wav_3956[:, 1]
|
|
71
|
-
target_audio = wav_3956[:, 0]
|
|
72
|
-
eq_curve, compensated_audio = compute_frequency_eq(
|
|
73
|
-
reference_audio, target_audio,
|
|
74
|
-
SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
|
|
75
|
-
plot_results=True
|
|
76
|
-
)
|
|
77
|
-
sf.write("../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
|
|
@@ -1,77 +0,0 @@
|
|
|
1
|
-
'''
|
|
2
|
-
Author: 凌逆战 | Never
|
|
3
|
-
Date: 2025-08-04 21:49:05
|
|
4
|
-
Description: 自动EQ补偿
|
|
5
|
-
'''
|
|
6
|
-
import os
|
|
7
|
-
import numpy as np
|
|
8
|
-
import librosa
|
|
9
|
-
import soundfile as sf
|
|
10
|
-
import pandas
|
|
11
|
-
import matplotlib.pyplot as plt
|
|
12
|
-
|
|
13
|
-
np.set_printoptions(precision=8)
|
|
14
|
-
np.set_printoptions(suppress=True) # 打印不使用科学计数法
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
|
|
18
|
-
freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
|
|
19
|
-
|
|
20
|
-
stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
21
|
-
stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
22
|
-
magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
|
|
23
|
-
# 求时间平均, 频响曲线 Frequency_Response_curve
|
|
24
|
-
reference_response = np.mean(magnitude_reference, axis=1)
|
|
25
|
-
target_response = np.mean(magnitude_target, axis=1)
|
|
26
|
-
|
|
27
|
-
reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
|
|
28
|
-
target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
|
|
29
|
-
|
|
30
|
-
eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
|
|
31
|
-
# print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
|
|
32
|
-
|
|
33
|
-
if plot_results:
|
|
34
|
-
plt.figure(figsize=(10, 5))
|
|
35
|
-
# plt.plot(freq_bins, target_response_db, label="Target Response")
|
|
36
|
-
plt.plot(freq_bins, eq_curve, label="EQ Curve")
|
|
37
|
-
# compensated_response = reference_response_db + eq_curve # 补偿后的曲线
|
|
38
|
-
# plt.plot(freq_bins, compensated_response, label="Compensated Response")
|
|
39
|
-
plt.xlabel('Frequency (Hz)')
|
|
40
|
-
plt.ylabel('Amplitude (dB)')
|
|
41
|
-
plt.title('Frequency Response Compensation')
|
|
42
|
-
plt.grid(True)
|
|
43
|
-
plt.legend()
|
|
44
|
-
plt.xscale('log')
|
|
45
|
-
plt.grid(True, ls="--", alpha=0.4)
|
|
46
|
-
plt.tight_layout()
|
|
47
|
-
# plt.show()
|
|
48
|
-
plt.savefig(f"./frequency_eq_fft{window_size}.png")
|
|
49
|
-
|
|
50
|
-
# 拿到EQ之后我们对音频进行EQ补偿
|
|
51
|
-
reference_phase = np.angle(stft_reference) # (F,T)
|
|
52
|
-
for freq_idx in range(magnitude_reference.shape[0]):
|
|
53
|
-
magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
|
|
54
|
-
compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
|
|
55
|
-
compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
|
|
56
|
-
|
|
57
|
-
return eq_curve, compensated_audio
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
if __name__ == "__main__":
|
|
61
|
-
SAMPLE_RATE = 16000
|
|
62
|
-
WINDOW_SIZE = FFT_SIZE = 512
|
|
63
|
-
# reference_audio_path = "../data/white.wav"
|
|
64
|
-
# target_audio_path = "../data/white_EQ.wav"
|
|
65
|
-
|
|
66
|
-
# 读取音频文件
|
|
67
|
-
# reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
|
|
68
|
-
# target_audio, _ = sf.read(target_audio_path, dtype='float32')
|
|
69
|
-
wav_3956, sr = sf.read("../../data/3956_speech.wav")
|
|
70
|
-
reference_audio = wav_3956[:, 1]
|
|
71
|
-
target_audio = wav_3956[:, 0]
|
|
72
|
-
eq_curve, compensated_audio = compute_frequency_eq(
|
|
73
|
-
reference_audio, target_audio,
|
|
74
|
-
SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
|
|
75
|
-
plot_results=True
|
|
76
|
-
)
|
|
77
|
-
sf.write("../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
|
|
@@ -1,77 +0,0 @@
|
|
|
1
|
-
'''
|
|
2
|
-
Author: 凌逆战 | Never
|
|
3
|
-
Date: 2025-08-04 21:49:05
|
|
4
|
-
Description: 自动EQ补偿
|
|
5
|
-
'''
|
|
6
|
-
import os
|
|
7
|
-
import numpy as np
|
|
8
|
-
import librosa
|
|
9
|
-
import soundfile as sf
|
|
10
|
-
import pandas
|
|
11
|
-
import matplotlib.pyplot as plt
|
|
12
|
-
|
|
13
|
-
np.set_printoptions(precision=8)
|
|
14
|
-
np.set_printoptions(suppress=True) # 打印不使用科学计数法
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
|
|
18
|
-
freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
|
|
19
|
-
|
|
20
|
-
stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
21
|
-
stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
22
|
-
magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
|
|
23
|
-
# 求时间平均, 频响曲线 Frequency_Response_curve
|
|
24
|
-
reference_response = np.mean(magnitude_reference, axis=1)
|
|
25
|
-
target_response = np.mean(magnitude_target, axis=1)
|
|
26
|
-
|
|
27
|
-
reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
|
|
28
|
-
target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
|
|
29
|
-
|
|
30
|
-
eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
|
|
31
|
-
# print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
|
|
32
|
-
|
|
33
|
-
if plot_results:
|
|
34
|
-
plt.figure(figsize=(10, 5))
|
|
35
|
-
# plt.plot(freq_bins, target_response_db, label="Target Response")
|
|
36
|
-
plt.plot(freq_bins, eq_curve, label="EQ Curve")
|
|
37
|
-
# compensated_response = reference_response_db + eq_curve # 补偿后的曲线
|
|
38
|
-
# plt.plot(freq_bins, compensated_response, label="Compensated Response")
|
|
39
|
-
plt.xlabel('Frequency (Hz)')
|
|
40
|
-
plt.ylabel('Amplitude (dB)')
|
|
41
|
-
plt.title('Frequency Response Compensation')
|
|
42
|
-
plt.grid(True)
|
|
43
|
-
plt.legend()
|
|
44
|
-
plt.xscale('log')
|
|
45
|
-
plt.grid(True, ls="--", alpha=0.4)
|
|
46
|
-
plt.tight_layout()
|
|
47
|
-
# plt.show()
|
|
48
|
-
plt.savefig(f"./frequency_eq_fft{window_size}.png")
|
|
49
|
-
|
|
50
|
-
# 拿到EQ之后我们对音频进行EQ补偿
|
|
51
|
-
reference_phase = np.angle(stft_reference) # (F,T)
|
|
52
|
-
for freq_idx in range(magnitude_reference.shape[0]):
|
|
53
|
-
magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
|
|
54
|
-
compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
|
|
55
|
-
compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
|
|
56
|
-
|
|
57
|
-
return eq_curve, compensated_audio
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
if __name__ == "__main__":
|
|
61
|
-
SAMPLE_RATE = 16000
|
|
62
|
-
WINDOW_SIZE = FFT_SIZE = 512
|
|
63
|
-
# reference_audio_path = "../data/white.wav"
|
|
64
|
-
# target_audio_path = "../data/white_EQ.wav"
|
|
65
|
-
|
|
66
|
-
# 读取音频文件
|
|
67
|
-
# reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
|
|
68
|
-
# target_audio, _ = sf.read(target_audio_path, dtype='float32')
|
|
69
|
-
wav_3956, sr = sf.read("../data/3956_speech.wav")
|
|
70
|
-
reference_audio = wav_3956[:, 1]
|
|
71
|
-
target_audio = wav_3956[:, 0]
|
|
72
|
-
eq_curve, compensated_audio = compute_frequency_eq(
|
|
73
|
-
reference_audio, target_audio,
|
|
74
|
-
SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
|
|
75
|
-
plot_results=True
|
|
76
|
-
)
|
|
77
|
-
sf.write("../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
|
|
@@ -1,77 +0,0 @@
|
|
|
1
|
-
'''
|
|
2
|
-
Author: 凌逆战 | Never
|
|
3
|
-
Date: 2025-08-04 21:49:05
|
|
4
|
-
Description: 自动EQ补偿
|
|
5
|
-
'''
|
|
6
|
-
import os
|
|
7
|
-
import numpy as np
|
|
8
|
-
import librosa
|
|
9
|
-
import soundfile as sf
|
|
10
|
-
import pandas
|
|
11
|
-
import matplotlib.pyplot as plt
|
|
12
|
-
|
|
13
|
-
np.set_printoptions(precision=8)
|
|
14
|
-
np.set_printoptions(suppress=True) # 打印不使用科学计数法
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
|
|
18
|
-
freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
|
|
19
|
-
|
|
20
|
-
stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
21
|
-
stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
22
|
-
magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
|
|
23
|
-
# 求时间平均, 频响曲线 Frequency_Response_curve
|
|
24
|
-
reference_response = np.mean(magnitude_reference, axis=1)
|
|
25
|
-
target_response = np.mean(magnitude_target, axis=1)
|
|
26
|
-
|
|
27
|
-
reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
|
|
28
|
-
target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
|
|
29
|
-
|
|
30
|
-
eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
|
|
31
|
-
# print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
|
|
32
|
-
|
|
33
|
-
if plot_results:
|
|
34
|
-
plt.figure(figsize=(10, 5))
|
|
35
|
-
# plt.plot(freq_bins, target_response_db, label="Target Response")
|
|
36
|
-
plt.plot(freq_bins, eq_curve, label="EQ Curve")
|
|
37
|
-
# compensated_response = reference_response_db + eq_curve # 补偿后的曲线
|
|
38
|
-
# plt.plot(freq_bins, compensated_response, label="Compensated Response")
|
|
39
|
-
plt.xlabel('Frequency (Hz)')
|
|
40
|
-
plt.ylabel('Amplitude (dB)')
|
|
41
|
-
plt.title('Frequency Response Compensation')
|
|
42
|
-
plt.grid(True)
|
|
43
|
-
plt.legend()
|
|
44
|
-
plt.xscale('log')
|
|
45
|
-
plt.grid(True, ls="--", alpha=0.4)
|
|
46
|
-
plt.tight_layout()
|
|
47
|
-
# plt.show()
|
|
48
|
-
plt.savefig(f"./frequency_eq_fft{window_size}.png")
|
|
49
|
-
|
|
50
|
-
# 拿到EQ之后我们对音频进行EQ补偿
|
|
51
|
-
reference_phase = np.angle(stft_reference) # (F,T)
|
|
52
|
-
for freq_idx in range(magnitude_reference.shape[0]):
|
|
53
|
-
magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
|
|
54
|
-
compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
|
|
55
|
-
compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
|
|
56
|
-
|
|
57
|
-
return eq_curve, compensated_audio
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
if __name__ == "__main__":
|
|
61
|
-
SAMPLE_RATE = 16000
|
|
62
|
-
WINDOW_SIZE = FFT_SIZE = 512
|
|
63
|
-
# reference_audio_path = "../data/white.wav"
|
|
64
|
-
# target_audio_path = "../data/white_EQ.wav"
|
|
65
|
-
|
|
66
|
-
# 读取音频文件
|
|
67
|
-
# reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
|
|
68
|
-
# target_audio, _ = sf.read(target_audio_path, dtype='float32')
|
|
69
|
-
wav_3956, sr = sf.read("./data/3956_speech.wav")
|
|
70
|
-
reference_audio = wav_3956[:, 1]
|
|
71
|
-
target_audio = wav_3956[:, 0]
|
|
72
|
-
eq_curve, compensated_audio = compute_frequency_eq(
|
|
73
|
-
reference_audio, target_audio,
|
|
74
|
-
SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
|
|
75
|
-
plot_results=True
|
|
76
|
-
)
|
|
77
|
-
sf.write("../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
|
|
@@ -1,77 +0,0 @@
|
|
|
1
|
-
'''
|
|
2
|
-
Author: 凌逆战 | Never
|
|
3
|
-
Date: 2025-08-04 21:49:05
|
|
4
|
-
Description: 自动EQ补偿
|
|
5
|
-
'''
|
|
6
|
-
import os
|
|
7
|
-
import numpy as np
|
|
8
|
-
import librosa
|
|
9
|
-
import soundfile as sf
|
|
10
|
-
import pandas
|
|
11
|
-
import matplotlib.pyplot as plt
|
|
12
|
-
|
|
13
|
-
np.set_printoptions(precision=8)
|
|
14
|
-
np.set_printoptions(suppress=True) # 打印不使用科学计数法
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
|
|
18
|
-
freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
|
|
19
|
-
|
|
20
|
-
stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
21
|
-
stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
22
|
-
magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
|
|
23
|
-
# 求时间平均, 频响曲线 Frequency_Response_curve
|
|
24
|
-
reference_response = np.mean(magnitude_reference, axis=1)
|
|
25
|
-
target_response = np.mean(magnitude_target, axis=1)
|
|
26
|
-
|
|
27
|
-
reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
|
|
28
|
-
target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
|
|
29
|
-
|
|
30
|
-
eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
|
|
31
|
-
# print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
|
|
32
|
-
|
|
33
|
-
if plot_results:
|
|
34
|
-
plt.figure(figsize=(10, 5))
|
|
35
|
-
# plt.plot(freq_bins, target_response_db, label="Target Response")
|
|
36
|
-
plt.plot(freq_bins, eq_curve, label="EQ Curve")
|
|
37
|
-
# compensated_response = reference_response_db + eq_curve # 补偿后的曲线
|
|
38
|
-
# plt.plot(freq_bins, compensated_response, label="Compensated Response")
|
|
39
|
-
plt.xlabel('Frequency (Hz)')
|
|
40
|
-
plt.ylabel('Amplitude (dB)')
|
|
41
|
-
plt.title('Frequency Response Compensation')
|
|
42
|
-
plt.grid(True)
|
|
43
|
-
plt.legend()
|
|
44
|
-
plt.xscale('log')
|
|
45
|
-
plt.grid(True, ls="--", alpha=0.4)
|
|
46
|
-
plt.tight_layout()
|
|
47
|
-
# plt.show()
|
|
48
|
-
plt.savefig(f"./frequency_eq_fft{window_size}.png")
|
|
49
|
-
|
|
50
|
-
# 拿到EQ之后我们对音频进行EQ补偿
|
|
51
|
-
reference_phase = np.angle(stft_reference) # (F,T)
|
|
52
|
-
for freq_idx in range(magnitude_reference.shape[0]):
|
|
53
|
-
magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
|
|
54
|
-
compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
|
|
55
|
-
compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
|
|
56
|
-
|
|
57
|
-
return eq_curve, compensated_audio
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
if __name__ == "__main__":
|
|
61
|
-
SAMPLE_RATE = 16000
|
|
62
|
-
WINDOW_SIZE = FFT_SIZE = 512
|
|
63
|
-
# reference_audio_path = "../data/white.wav"
|
|
64
|
-
# target_audio_path = "../data/white_EQ.wav"
|
|
65
|
-
|
|
66
|
-
# 读取音频文件
|
|
67
|
-
# reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
|
|
68
|
-
# target_audio, _ = sf.read(target_audio_path, dtype='float32')
|
|
69
|
-
wav_3956, sr = sf.read("../data/3956_speech.wav")
|
|
70
|
-
reference_audio = wav_3956[:, 1]
|
|
71
|
-
target_audio = wav_3956[:, 0]
|
|
72
|
-
eq_curve, compensated_audio = compute_frequency_eq(
|
|
73
|
-
reference_audio, target_audio,
|
|
74
|
-
SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
|
|
75
|
-
plot_results=True
|
|
76
|
-
)
|
|
77
|
-
sf.write("../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
|
|
@@ -1,77 +0,0 @@
|
|
|
1
|
-
'''
|
|
2
|
-
Author: 凌逆战 | Never
|
|
3
|
-
Date: 2025-08-04 21:49:05
|
|
4
|
-
Description: 自动EQ补偿
|
|
5
|
-
'''
|
|
6
|
-
import os
|
|
7
|
-
import numpy as np
|
|
8
|
-
import librosa
|
|
9
|
-
import soundfile as sf
|
|
10
|
-
import pandas
|
|
11
|
-
import matplotlib.pyplot as plt
|
|
12
|
-
|
|
13
|
-
np.set_printoptions(precision=8)
|
|
14
|
-
np.set_printoptions(suppress=True) # 打印不使用科学计数法
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
|
|
18
|
-
freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
|
|
19
|
-
|
|
20
|
-
stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
21
|
-
stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
22
|
-
magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
|
|
23
|
-
# 求时间平均, 频响曲线 Frequency_Response_curve
|
|
24
|
-
reference_response = np.mean(magnitude_reference, axis=1)
|
|
25
|
-
target_response = np.mean(magnitude_target, axis=1)
|
|
26
|
-
|
|
27
|
-
reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
|
|
28
|
-
target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
|
|
29
|
-
|
|
30
|
-
eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
|
|
31
|
-
# print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
|
|
32
|
-
|
|
33
|
-
if plot_results:
|
|
34
|
-
plt.figure(figsize=(10, 5))
|
|
35
|
-
# plt.plot(freq_bins, target_response_db, label="Target Response")
|
|
36
|
-
plt.plot(freq_bins, eq_curve, label="EQ Curve")
|
|
37
|
-
# compensated_response = reference_response_db + eq_curve # 补偿后的曲线
|
|
38
|
-
# plt.plot(freq_bins, compensated_response, label="Compensated Response")
|
|
39
|
-
plt.xlabel('Frequency (Hz)')
|
|
40
|
-
plt.ylabel('Amplitude (dB)')
|
|
41
|
-
plt.title('Frequency Response Compensation')
|
|
42
|
-
plt.grid(True)
|
|
43
|
-
plt.legend()
|
|
44
|
-
plt.xscale('log')
|
|
45
|
-
plt.grid(True, ls="--", alpha=0.4)
|
|
46
|
-
plt.tight_layout()
|
|
47
|
-
# plt.show()
|
|
48
|
-
plt.savefig(f"./frequency_eq_fft{window_size}.png")
|
|
49
|
-
|
|
50
|
-
# 拿到EQ之后我们对音频进行EQ补偿
|
|
51
|
-
reference_phase = np.angle(stft_reference) # (F,T)
|
|
52
|
-
for freq_idx in range(magnitude_reference.shape[0]):
|
|
53
|
-
magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
|
|
54
|
-
compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
|
|
55
|
-
compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
|
|
56
|
-
|
|
57
|
-
return eq_curve, compensated_audio
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
if __name__ == "__main__":
|
|
61
|
-
SAMPLE_RATE = 16000
|
|
62
|
-
WINDOW_SIZE = FFT_SIZE = 512
|
|
63
|
-
reference_audio_path = "../data/white.wav"
|
|
64
|
-
target_audio_path = "../data/white_EQ.wav"
|
|
65
|
-
|
|
66
|
-
# 读取音频文件
|
|
67
|
-
reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
|
|
68
|
-
target_audio, _ = sf.read(target_audio_path, dtype='float32')
|
|
69
|
-
# wav_3956, sr = sf.read("../data/3956_speech.wav")
|
|
70
|
-
# reference_audio = wav_3956[:, 1]
|
|
71
|
-
# target_audio = wav_3956[:, 0]
|
|
72
|
-
eq_curve, compensated_audio = compute_frequency_eq(
|
|
73
|
-
reference_audio, target_audio,
|
|
74
|
-
SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
|
|
75
|
-
plot_results=True
|
|
76
|
-
)
|
|
77
|
-
sf.write("../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
|
|
@@ -1,78 +0,0 @@
|
|
|
1
|
-
'''
|
|
2
|
-
Author: 凌逆战 | Never
|
|
3
|
-
Date: 2025-08-04 21:49:05
|
|
4
|
-
Description: 自动EQ补偿
|
|
5
|
-
'''
|
|
6
|
-
import os
|
|
7
|
-
import numpy as np
|
|
8
|
-
import librosa
|
|
9
|
-
import soundfile as sf
|
|
10
|
-
import pandas
|
|
11
|
-
import matplotlib.pyplot as plt
|
|
12
|
-
|
|
13
|
-
np.set_printoptions(precision=8)
|
|
14
|
-
np.set_printoptions(suppress=True) # 打印不使用科学计数法
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
|
|
18
|
-
freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
|
|
19
|
-
|
|
20
|
-
stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
21
|
-
stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
22
|
-
magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
|
|
23
|
-
# 求时间平均, 频响曲线 Frequency_Response_curve
|
|
24
|
-
reference_response = np.mean(magnitude_reference, axis=1)
|
|
25
|
-
target_response = np.mean(magnitude_target, axis=1)
|
|
26
|
-
|
|
27
|
-
reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
|
|
28
|
-
target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
|
|
29
|
-
|
|
30
|
-
eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
|
|
31
|
-
# print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
|
|
32
|
-
|
|
33
|
-
if plot_results:
|
|
34
|
-
plt.figure(figsize=(10, 5))
|
|
35
|
-
# plt.plot(freq_bins, target_response_db, label="Target Response")
|
|
36
|
-
plt.plot(freq_bins, eq_curve, label="EQ Curve")
|
|
37
|
-
# compensated_response = reference_response_db + eq_curve # 补偿后的曲线
|
|
38
|
-
# plt.plot(freq_bins, compensated_response, label="Compensated Response")
|
|
39
|
-
plt.xlabel('Frequency (Hz)')
|
|
40
|
-
plt.ylabel('Amplitude (dB)')
|
|
41
|
-
plt.title('Frequency Response Compensation')
|
|
42
|
-
plt.grid(True)
|
|
43
|
-
plt.legend()
|
|
44
|
-
plt.xscale('log')
|
|
45
|
-
plt.grid(True, ls="--", alpha=0.4)
|
|
46
|
-
plt.tight_layout()
|
|
47
|
-
# plt.show()
|
|
48
|
-
plt.savefig(f"./frequency_eq_fft{window_size}.png")
|
|
49
|
-
|
|
50
|
-
# 拿到EQ之后我们对音频进行EQ补偿
|
|
51
|
-
reference_phase = np.angle(stft_reference) # (F,T)
|
|
52
|
-
for freq_idx in range(magnitude_reference.shape[0]):
|
|
53
|
-
magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
|
|
54
|
-
compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
|
|
55
|
-
compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
|
|
56
|
-
|
|
57
|
-
return eq_curve, compensated_audio
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
if __name__ == "__main__":
|
|
61
|
-
SAMPLE_RATE = 16000
|
|
62
|
-
WINDOW_SIZE = FFT_SIZE = 512
|
|
63
|
-
reference_audio_path = "../data/white.wav"
|
|
64
|
-
target_audio_path = "../data/white_EQ.wav"
|
|
65
|
-
print(os.path.exists(reference_audio_path))
|
|
66
|
-
|
|
67
|
-
# 读取音频文件
|
|
68
|
-
reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
|
|
69
|
-
target_audio, _ = sf.read(target_audio_path, dtype='float32')
|
|
70
|
-
# wav_3956, sr = sf.read("../data/3956_speech.wav")
|
|
71
|
-
# reference_audio = wav_3956[:, 1]
|
|
72
|
-
# target_audio = wav_3956[:, 0]
|
|
73
|
-
eq_curve, compensated_audio = compute_frequency_eq(
|
|
74
|
-
reference_audio, target_audio,
|
|
75
|
-
SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
|
|
76
|
-
plot_results=True
|
|
77
|
-
)
|
|
78
|
-
sf.write("../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
|