neverlib 0.2.2__py3-none-any.whl → 0.2.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- neverlib/.history/Docs/audio_aug/test_snr_20250806011311.py +0 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011331.py +75 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011342.py +57 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011352.py +57 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011403.py +57 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011413.py +57 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011435.py +55 -0
- neverlib/.history/Docs/vad/1_20250810032405.py +0 -0
- neverlib/.history/Docs/vad/1_20250810032417.py +39 -0
- neverlib/.history/audio_aug/audio_aug_20250806010451.py +125 -0
- neverlib/.history/audio_aug/audio_aug_20250806010750.py +138 -0
- neverlib/.history/audio_aug/audio_aug_20250806010759.py +140 -0
- neverlib/.history/audio_aug/audio_aug_20250806010803.py +140 -0
- neverlib/.history/audio_aug/audio_aug_20250806010809.py +140 -0
- neverlib/.history/audio_aug/audio_aug_20250806011108.py +140 -0
- neverlib/.history/dataAnalyze/__init___20250805234204.py +87 -0
- neverlib/.history/dataAnalyze/__init___20250806204125.py +14 -0
- neverlib/.history/dataAnalyze/__init___20250806204139.py +14 -0
- neverlib/.history/dataAnalyze/__init___20250806204159.py +14 -0
- neverlib/.history/filter/__init___20250820103351.py +70 -0
- neverlib/.history/filter/__init___20250821102348.py +70 -0
- neverlib/.history/filter/__init___20250821102405.py +14 -0
- neverlib/.history/filter/auto_eq/__init___20250819213121.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102241.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102259.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102307.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102310.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102318.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102507.py +36 -0
- neverlib/.history/filter/auto_eq/de_eq_20250820103848.py +361 -0
- neverlib/.history/filter/auto_eq/de_eq_20250821102422.py +360 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250805234206.py +75 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820140732.py +75 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820140745.py +75 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820140816.py +75 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820140938.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141003.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141006.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141019.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141049.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141211.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141227.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141311.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141340.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141712.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141733.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141755.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250821102434.py +76 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250821102500.py +76 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250821102502.py +76 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820102957.py +380 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113054.py +380 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113150.py +380 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113520.py +385 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113525.py +385 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250821102212.py +385 -0
- neverlib/.history/metrics/dnsmos_20250806001612.py +160 -0
- neverlib/.history/metrics/dnsmos_20250815180659.py +160 -0
- neverlib/.history/metrics/dnsmos_20250815180701.py +158 -0
- neverlib/.history/metrics/dnsmos_20250815181321.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181327.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181331.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181620.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181631.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181742.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181824.py +153 -0
- neverlib/.history/metrics/dnsmos_20250815181834.py +153 -0
- neverlib/.history/metrics/dnsmos_20250815181922.py +153 -0
- neverlib/.history/metrics/dnsmos_20250815182011.py +147 -0
- neverlib/.history/metrics/dnsmos_20250815182036.py +144 -0
- neverlib/.history/metrics/dnsmos_20250815182936.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815182942.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815183032.py +137 -0
- neverlib/.history/metrics/dnsmos_20250815183101.py +144 -0
- neverlib/.history/metrics/dnsmos_20250815183121.py +144 -0
- neverlib/.history/metrics/dnsmos_20250815183123.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815183214.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815183240.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815183248.py +144 -0
- neverlib/.history/metrics/dnsmos_20250815183407.py +142 -0
- neverlib/.history/metrics/dnsmos_20250815183409.py +142 -0
- neverlib/.history/metrics/dnsmos_20250815183431.py +142 -0
- neverlib/.history/metrics/dnsmos_20250815183507.py +140 -0
- neverlib/.history/metrics/dnsmos_20250815183513.py +139 -0
- neverlib/.history/metrics/dnsmos_20250815183618.py +139 -0
- neverlib/.history/metrics/dnsmos_20250815183709.py +140 -0
- neverlib/.history/metrics/dnsmos_20250815183756.py +137 -0
- neverlib/.history/metrics/dnsmos_20250815183815.py +128 -0
- neverlib/.history/metrics/dnsmos_20250815183827.py +129 -0
- neverlib/.history/metrics/dnsmos_20250815183913.py +117 -0
- neverlib/.history/metrics/dnsmos_20250815183914.py +117 -0
- neverlib/.history/metrics/dnsmos_20250815184003.py +118 -0
- neverlib/.history/metrics/dnsmos_20250815184040.py +118 -0
- neverlib/.history/metrics/dnsmos_20250815184049.py +118 -0
- neverlib/.history/metrics/dnsmos_20250815184104.py +117 -0
- neverlib/.history/metrics/dnsmos_20250815184200.py +117 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816015944.py +128 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020142.py +128 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020156.py +128 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020554.py +130 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020600.py +125 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020631.py +120 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020746.py +118 -0
- neverlib/.history/metrics/lpc_me_20250816013111.py +0 -0
- neverlib/.history/metrics/lpc_me_20250816013129.py +121 -0
- neverlib/.history/metrics/lpc_me_20250816015430.py +103 -0
- neverlib/.history/metrics/lpc_me_20250816015535.py +96 -0
- neverlib/.history/metrics/lpc_me_20250816015542.py +96 -0
- neverlib/.history/metrics/lpc_me_20250816015636.py +97 -0
- neverlib/.history/metrics/lpc_me_20250816015658.py +104 -0
- neverlib/.history/metrics/lpc_me_20250816015703.py +100 -0
- neverlib/.history/metrics/lpc_me_20250816015945.py +128 -0
- neverlib/.history/metrics/snr_20250806010538.py +177 -0
- neverlib/.history/metrics/snr_20250806211634.py +184 -0
- neverlib/.history/metrics/spec_20250805234209.py +45 -0
- neverlib/.history/metrics/spec_20250816135530.py +11 -0
- neverlib/.history/metrics/spec_20250816135654.py +16 -0
- neverlib/.history/metrics/spec_20250816135736.py +68 -0
- neverlib/.history/metrics/spec_20250816135904.py +75 -0
- neverlib/.history/metrics/spec_20250816135921.py +82 -0
- neverlib/.history/metrics/spec_20250816140111.py +82 -0
- neverlib/.history/metrics/spec_20250816140543.py +136 -0
- neverlib/.history/metrics/spec_20250816140559.py +172 -0
- neverlib/.history/metrics/spec_20250816140602.py +172 -0
- neverlib/.history/metrics/spec_20250816140608.py +172 -0
- neverlib/.history/metrics/spec_20250816140654.py +148 -0
- neverlib/.history/metrics/spec_20250816140705.py +144 -0
- neverlib/.history/metrics/spec_20250816140755.py +138 -0
- neverlib/.history/metrics/spec_20250816140823.py +170 -0
- neverlib/.history/metrics/spec_20250816140832.py +170 -0
- neverlib/.history/metrics/spec_20250816140833.py +170 -0
- neverlib/.history/metrics/spec_20250816140922.py +147 -0
- neverlib/.history/metrics/spec_20250816141148.py +107 -0
- neverlib/.history/metrics/spec_20250816141219.py +123 -0
- neverlib/.history/metrics/spec_20250816141732.py +178 -0
- neverlib/.history/metrics/spec_20250816141740.py +178 -0
- neverlib/.history/metrics/spec_20250816142030.py +178 -0
- neverlib/.history/metrics/spec_20250816142107.py +135 -0
- neverlib/.history/metrics/spec_20250816142126.py +135 -0
- neverlib/.history/metrics/spec_20250816142410.py +135 -0
- neverlib/.history/metrics/spec_20250816142415.py +136 -0
- neverlib/.history/metrics/spec_metric_20250816135156.py +0 -0
- neverlib/.history/metrics/spec_metric_20250816135226.py +5 -0
- neverlib/.history/metrics/spec_metric_20250816135227.py +10 -0
- neverlib/.history/metrics/spec_metric_20250816135306.py +15 -0
- neverlib/.history/metrics/spec_metric_20250816135442.py +31 -0
- neverlib/.history/metrics/spec_metric_20250816135448.py +31 -0
- neverlib/.history/metrics/spec_metric_20250816135520.py +29 -0
- neverlib/.history/metrics/spec_metric_20250816135537.py +63 -0
- neverlib/.history/metrics/spec_metric_20250816135653.py +65 -0
- neverlib/.history/vad/PreProcess_20250805234211.py +63 -0
- neverlib/.history/vad/PreProcess_20250809232455.py +63 -0
- neverlib/.history/vad/PreProcess_20250816020725.py +66 -0
- neverlib/.history/vad/VAD_Silero_20250805234211.py +50 -0
- neverlib/.history/vad/VAD_Silero_20250809232456.py +50 -0
- neverlib/.history/vad/VAD_WebRTC_20250805234211.py +61 -0
- neverlib/.history/vad/VAD_WebRTC_20250809232456.py +61 -0
- neverlib/.history/vad/VAD_funasr_20250805234211.py +54 -0
- neverlib/.history/vad/VAD_funasr_20250809232456.py +54 -0
- neverlib/.history/vad/VAD_vadlib_20250805234211.py +70 -0
- neverlib/.history/vad/VAD_vadlib_20250809232455.py +70 -0
- neverlib/.history/vad/VAD_whisper_20250805234211.py +55 -0
- neverlib/.history/vad/VAD_whisper_20250809232456.py +55 -0
- neverlib/.specstory/.what-is-this.md +69 -0
- neverlib/.specstory/history/2025-08-05_17-06Z-/350/277/231/344/270/200/346/255/245/347/232/204/347/233/256/347/232/204/346/230/257/344/273/200/344/271/210.md +424 -0
- neverlib/Docs/audio_aug/test_snr.py +55 -0
- neverlib/__init__.py +2 -2
- neverlib/audio_aug/HarmonicDistortion.py +79 -0
- neverlib/audio_aug/TFDrop.py +41 -0
- neverlib/audio_aug/TFMask.py +56 -0
- neverlib/audio_aug/__init__.py +1 -1
- neverlib/audio_aug/audio_aug.py +19 -5
- neverlib/audio_aug/clip_aug.py +41 -0
- neverlib/audio_aug/coder_aug.py +209 -0
- neverlib/audio_aug/coder_aug2.py +118 -0
- neverlib/audio_aug/loss_packet_aug.py +103 -0
- neverlib/audio_aug/quant_aug.py +78 -0
- neverlib/data_analyze/README.md +234 -0
- neverlib/data_analyze/__init__.py +14 -0
- neverlib/data_analyze/dataset_analyzer.py +590 -0
- neverlib/data_analyze/quality_metrics.py +364 -0
- neverlib/data_analyze/rms_distrubution.py +62 -0
- neverlib/data_analyze/spectral_analysis.py +218 -0
- neverlib/data_analyze/statistics.py +406 -0
- neverlib/data_analyze/temporal_features.py +126 -0
- neverlib/data_analyze/visualization.py +468 -0
- neverlib/filter/README.md +101 -0
- neverlib/filter/__init__.py +7 -0
- neverlib/filter/auto_eq/README.md +165 -0
- neverlib/filter/auto_eq/__init__.py +36 -0
- neverlib/filter/auto_eq/de_eq.py +360 -0
- neverlib/filter/auto_eq/freq_eq.py +76 -0
- neverlib/filter/auto_eq/ga_eq_advanced.py +577 -0
- neverlib/filter/auto_eq/ga_eq_basic.py +385 -0
- neverlib/filter/biquad.py +45 -0
- neverlib/filter/common.py +5 -6
- neverlib/filter/core.py +339 -0
- neverlib/metrics/dnsmos.py +117 -0
- neverlib/metrics/lpc_lsp.py +118 -0
- neverlib/metrics/snr.py +184 -0
- neverlib/metrics/spec.py +136 -0
- neverlib/metrics/test_pesq.py +35 -0
- neverlib/metrics/time.py +68 -0
- neverlib/tests/test_vad.py +21 -0
- neverlib/utils/audio_split.py +2 -1
- neverlib/utils/message.py +4 -4
- neverlib/utils/utils.py +36 -16
- neverlib/vad/PreProcess.py +6 -3
- neverlib/vad/README.md +10 -10
- neverlib/vad/VAD_Energy.py +1 -1
- neverlib/vad/VAD_Silero.py +2 -2
- neverlib/vad/VAD_WebRTC.py +2 -2
- neverlib/vad/VAD_funasr.py +2 -2
- neverlib/vad/VAD_statistics.py +3 -3
- neverlib/vad/VAD_vadlib.py +3 -3
- neverlib/vad/VAD_whisper.py +2 -2
- neverlib/vad/__init__.py +1 -1
- neverlib/vad/class_get_speech.py +4 -4
- neverlib/vad/class_vad.py +1 -1
- neverlib/vad/utils.py +47 -5
- {neverlib-0.2.2.dist-info → neverlib-0.2.4.dist-info}/METADATA +120 -120
- neverlib-0.2.4.dist-info/RECORD +229 -0
- {neverlib-0.2.2.dist-info → neverlib-0.2.4.dist-info}/WHEEL +1 -1
- neverlib/Documents/vad/VAD_Energy.ipynb +0 -159
- neverlib/Documents/vad/VAD_Silero.ipynb +0 -305
- neverlib/Documents/vad/VAD_WebRTC.ipynb +0 -183
- neverlib/Documents/vad/VAD_funasr.ipynb +0 -179
- neverlib/Documents/vad/VAD_ppasr.ipynb +0 -175
- neverlib/Documents/vad/VAD_statistics.ipynb +0 -522
- neverlib/Documents/vad/VAD_vadlib.ipynb +0 -184
- neverlib/Documents/vad/VAD_whisper.ipynb +0 -430
- neverlib/utils/waveform_analyzer.py +0 -51
- neverlib/wav_data/000_short.wav +0 -0
- neverlib-0.2.2.dist-info/RECORD +0 -40
- {neverlib-0.2.2.dist-info → neverlib-0.2.4.dist-info}/licenses/LICENSE +0 -0
- {neverlib-0.2.2.dist-info → neverlib-0.2.4.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,468 @@
|
|
|
1
|
+
"""
|
|
2
|
+
可视化模块
|
|
3
|
+
Visualization Module
|
|
4
|
+
|
|
5
|
+
提供音频数据可视化功能
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
import librosa
|
|
10
|
+
import matplotlib.pyplot as plt
|
|
11
|
+
import matplotlib.patches as patches
|
|
12
|
+
from matplotlib.colors import LinearSegmentedColormap
|
|
13
|
+
import seaborn as sns
|
|
14
|
+
from typing import List, Dict, Tuple, Optional, Union
|
|
15
|
+
import warnings
|
|
16
|
+
from scipy.signal import spectrogram
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class AudioVisualizer:
|
|
20
|
+
"""音频可视化器类"""
|
|
21
|
+
|
|
22
|
+
def __init__(self, sr: int = 22050, figsize: Tuple[int, int] = (12, 8)):
|
|
23
|
+
"""
|
|
24
|
+
初始化可视化器
|
|
25
|
+
|
|
26
|
+
Args:
|
|
27
|
+
sr: 采样率
|
|
28
|
+
figsize: 图形大小
|
|
29
|
+
"""
|
|
30
|
+
self.sr = sr
|
|
31
|
+
self.figsize = figsize
|
|
32
|
+
|
|
33
|
+
# 设置中文字体支持
|
|
34
|
+
plt.rcParams['font.sans-serif'] = ['SimHei', 'DejaVu Sans']
|
|
35
|
+
plt.rcParams['axes.unicode_minus'] = False
|
|
36
|
+
|
|
37
|
+
# 设置样式
|
|
38
|
+
plt.style.use('default')
|
|
39
|
+
sns.set_palette("husl")
|
|
40
|
+
|
|
41
|
+
def plot_waveform(self, audio: np.ndarray, title: str = "音频波形图",
|
|
42
|
+
show_time: bool = True, ax: Optional[plt.Axes] = None) -> plt.Figure:
|
|
43
|
+
"""
|
|
44
|
+
绘制音频波形图
|
|
45
|
+
|
|
46
|
+
Args:
|
|
47
|
+
audio: 音频信号
|
|
48
|
+
title: 图标题
|
|
49
|
+
show_time: 是否显示时间轴
|
|
50
|
+
ax: matplotlib轴对象
|
|
51
|
+
|
|
52
|
+
Returns:
|
|
53
|
+
图形对象
|
|
54
|
+
"""
|
|
55
|
+
if ax is None:
|
|
56
|
+
fig, ax = plt.subplots(figsize=self.figsize)
|
|
57
|
+
else:
|
|
58
|
+
fig = ax.figure
|
|
59
|
+
|
|
60
|
+
if show_time:
|
|
61
|
+
time_axis = np.linspace(0, len(audio) / self.sr, len(audio))
|
|
62
|
+
ax.plot(time_axis, audio, linewidth=0.5, alpha=0.8)
|
|
63
|
+
ax.set_xlabel('时间 (s)')
|
|
64
|
+
else:
|
|
65
|
+
ax.plot(audio, linewidth=0.5, alpha=0.8)
|
|
66
|
+
ax.set_xlabel('样本点')
|
|
67
|
+
|
|
68
|
+
ax.set_ylabel('幅度')
|
|
69
|
+
ax.set_title(title)
|
|
70
|
+
ax.grid(True, alpha=0.3)
|
|
71
|
+
|
|
72
|
+
# 添加零线
|
|
73
|
+
ax.axhline(y=0, color='red', linestyle='--', alpha=0.5)
|
|
74
|
+
|
|
75
|
+
plt.tight_layout()
|
|
76
|
+
return fig
|
|
77
|
+
|
|
78
|
+
def plot_spectrogram(self, audio: np.ndarray, title: str = "频谱图",
|
|
79
|
+
n_fft: int = 2048, hop_length: int = 512,
|
|
80
|
+
ax: Optional[plt.Axes] = None) -> plt.Figure:
|
|
81
|
+
"""
|
|
82
|
+
绘制频谱图
|
|
83
|
+
|
|
84
|
+
Args:
|
|
85
|
+
audio: 音频信号
|
|
86
|
+
title: 图标题
|
|
87
|
+
n_fft: FFT窗口大小
|
|
88
|
+
hop_length: 跳跃长度
|
|
89
|
+
ax: matplotlib轴对象
|
|
90
|
+
|
|
91
|
+
Returns:
|
|
92
|
+
图形对象
|
|
93
|
+
"""
|
|
94
|
+
if ax is None:
|
|
95
|
+
fig, ax = plt.subplots(figsize=self.figsize)
|
|
96
|
+
else:
|
|
97
|
+
fig = ax.figure
|
|
98
|
+
|
|
99
|
+
# 计算频谱图
|
|
100
|
+
D = librosa.stft(audio, n_fft=n_fft, hop_length=hop_length)
|
|
101
|
+
S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)
|
|
102
|
+
|
|
103
|
+
# 绘制
|
|
104
|
+
img = librosa.display.specshow(S_db, sr=self.sr, hop_length=hop_length,
|
|
105
|
+
x_axis='time', y_axis='hz', ax=ax)
|
|
106
|
+
|
|
107
|
+
ax.set_title(title)
|
|
108
|
+
ax.set_xlabel('时间 (s)')
|
|
109
|
+
ax.set_ylabel('频率 (Hz)')
|
|
110
|
+
|
|
111
|
+
# 添加颜色条
|
|
112
|
+
cbar = plt.colorbar(img, ax=ax, format='%+2.0f dB')
|
|
113
|
+
cbar.set_label('幅度 (dB)')
|
|
114
|
+
|
|
115
|
+
plt.tight_layout()
|
|
116
|
+
return fig
|
|
117
|
+
|
|
118
|
+
def plot_mel_spectrogram(self, audio: np.ndarray, title: str = "梅尔频谱图",
|
|
119
|
+
n_mels: int = 128, ax: Optional[plt.Axes] = None) -> plt.Figure:
|
|
120
|
+
"""
|
|
121
|
+
绘制梅尔频谱图
|
|
122
|
+
|
|
123
|
+
Args:
|
|
124
|
+
audio: 音频信号
|
|
125
|
+
title: 图标题
|
|
126
|
+
n_mels: 梅尔滤波器数量
|
|
127
|
+
ax: matplotlib轴对象
|
|
128
|
+
|
|
129
|
+
Returns:
|
|
130
|
+
图形对象
|
|
131
|
+
"""
|
|
132
|
+
if ax is None:
|
|
133
|
+
fig, ax = plt.subplots(figsize=self.figsize)
|
|
134
|
+
else:
|
|
135
|
+
fig = ax.figure
|
|
136
|
+
|
|
137
|
+
# 计算梅尔频谱图
|
|
138
|
+
S = librosa.feature.melspectrogram(y=audio, sr=self.sr, n_mels=n_mels)
|
|
139
|
+
S_db = librosa.power_to_db(S, ref=np.max)
|
|
140
|
+
|
|
141
|
+
# 绘制
|
|
142
|
+
img = librosa.display.specshow(S_db, sr=self.sr, x_axis='time',
|
|
143
|
+
y_axis='mel', ax=ax)
|
|
144
|
+
|
|
145
|
+
ax.set_title(title)
|
|
146
|
+
ax.set_xlabel('时间 (s)')
|
|
147
|
+
ax.set_ylabel('梅尔频率')
|
|
148
|
+
|
|
149
|
+
# 添加颜色条
|
|
150
|
+
cbar = plt.colorbar(img, ax=ax, format='%+2.0f dB')
|
|
151
|
+
cbar.set_label('功率 (dB)')
|
|
152
|
+
|
|
153
|
+
plt.tight_layout()
|
|
154
|
+
return fig
|
|
155
|
+
|
|
156
|
+
def plot_spectrum(self, audio: np.ndarray, title: str = "频谱",
|
|
157
|
+
log_scale: bool = True, ax: Optional[plt.Axes] = None) -> plt.Figure:
|
|
158
|
+
"""
|
|
159
|
+
绘制频谱
|
|
160
|
+
|
|
161
|
+
Args:
|
|
162
|
+
audio: 音频信号
|
|
163
|
+
title: 图标题
|
|
164
|
+
log_scale: 是否使用对数刻度
|
|
165
|
+
ax: matplotlib轴对象
|
|
166
|
+
|
|
167
|
+
Returns:
|
|
168
|
+
图形对象
|
|
169
|
+
"""
|
|
170
|
+
if ax is None:
|
|
171
|
+
fig, ax = plt.subplots(figsize=self.figsize)
|
|
172
|
+
else:
|
|
173
|
+
fig = ax.figure
|
|
174
|
+
|
|
175
|
+
# 计算FFT
|
|
176
|
+
fft_data = np.fft.fft(audio)
|
|
177
|
+
magnitude = np.abs(fft_data)
|
|
178
|
+
freqs = np.fft.fftfreq(len(audio), 1/self.sr)
|
|
179
|
+
|
|
180
|
+
# 只取正频率部分
|
|
181
|
+
positive_idx = freqs >= 0
|
|
182
|
+
freqs = freqs[positive_idx]
|
|
183
|
+
magnitude = magnitude[positive_idx]
|
|
184
|
+
|
|
185
|
+
if log_scale:
|
|
186
|
+
magnitude_db = 20 * np.log10(magnitude + 1e-10)
|
|
187
|
+
ax.plot(freqs, magnitude_db)
|
|
188
|
+
ax.set_ylabel('幅度 (dB)')
|
|
189
|
+
else:
|
|
190
|
+
ax.plot(freqs, magnitude)
|
|
191
|
+
ax.set_ylabel('幅度')
|
|
192
|
+
|
|
193
|
+
ax.set_xlabel('频率 (Hz)')
|
|
194
|
+
ax.set_title(title)
|
|
195
|
+
ax.grid(True, alpha=0.3)
|
|
196
|
+
|
|
197
|
+
plt.tight_layout()
|
|
198
|
+
return fig
|
|
199
|
+
|
|
200
|
+
def plot_features_comparison(self, features_dict: Dict[str, np.ndarray],
|
|
201
|
+
title: str = "特征对比") -> plt.Figure:
|
|
202
|
+
"""
|
|
203
|
+
绘制多个特征的对比图
|
|
204
|
+
|
|
205
|
+
Args:
|
|
206
|
+
features_dict: 特征字典 {特征名: 特征值数组}
|
|
207
|
+
title: 图标题
|
|
208
|
+
|
|
209
|
+
Returns:
|
|
210
|
+
图形对象
|
|
211
|
+
"""
|
|
212
|
+
n_features = len(features_dict)
|
|
213
|
+
fig, axes = plt.subplots(n_features, 1, figsize=(self.figsize[0], self.figsize[1] * n_features / 2))
|
|
214
|
+
|
|
215
|
+
if n_features == 1:
|
|
216
|
+
axes = [axes]
|
|
217
|
+
|
|
218
|
+
for i, (feature_name, feature_values) in enumerate(features_dict.items()):
|
|
219
|
+
if len(feature_values.shape) == 1:
|
|
220
|
+
# 一维特征
|
|
221
|
+
time_axis = np.linspace(0, len(feature_values) / (self.sr / 512), len(feature_values))
|
|
222
|
+
axes[i].plot(time_axis, feature_values)
|
|
223
|
+
axes[i].set_ylabel(feature_name)
|
|
224
|
+
else:
|
|
225
|
+
# 二维特征(如MFCC)
|
|
226
|
+
img = axes[i].imshow(feature_values, aspect='auto', origin='lower')
|
|
227
|
+
axes[i].set_ylabel(feature_name)
|
|
228
|
+
plt.colorbar(img, ax=axes[i])
|
|
229
|
+
|
|
230
|
+
axes[i].set_title(f'{feature_name} 特征')
|
|
231
|
+
axes[i].grid(True, alpha=0.3)
|
|
232
|
+
|
|
233
|
+
axes[-1].set_xlabel('时间 (s)')
|
|
234
|
+
plt.suptitle(title)
|
|
235
|
+
plt.tight_layout()
|
|
236
|
+
return fig
|
|
237
|
+
|
|
238
|
+
def plot_statistics_distribution(self, stats_dict: Dict[str, List[float]],
|
|
239
|
+
title: str = "统计分布图") -> plt.Figure:
|
|
240
|
+
"""
|
|
241
|
+
绘制统计分布图
|
|
242
|
+
|
|
243
|
+
Args:
|
|
244
|
+
stats_dict: 统计数据字典
|
|
245
|
+
title: 图标题
|
|
246
|
+
|
|
247
|
+
Returns:
|
|
248
|
+
图形对象
|
|
249
|
+
"""
|
|
250
|
+
n_stats = len(stats_dict)
|
|
251
|
+
fig, axes = plt.subplots(2, (n_stats + 1) // 2, figsize=(self.figsize[0], self.figsize[1]))
|
|
252
|
+
|
|
253
|
+
if n_stats == 1:
|
|
254
|
+
axes = [axes]
|
|
255
|
+
elif n_stats == 2:
|
|
256
|
+
axes = axes.flatten()
|
|
257
|
+
else:
|
|
258
|
+
axes = axes.flatten()
|
|
259
|
+
|
|
260
|
+
for i, (stat_name, values) in enumerate(stats_dict.items()):
|
|
261
|
+
if i >= len(axes):
|
|
262
|
+
break
|
|
263
|
+
|
|
264
|
+
# 绘制直方图和KDE
|
|
265
|
+
axes[i].hist(values, bins=30, alpha=0.7, density=True, color='skyblue')
|
|
266
|
+
|
|
267
|
+
try:
|
|
268
|
+
sns.kdeplot(values, ax=axes[i], color='red')
|
|
269
|
+
except:
|
|
270
|
+
pass
|
|
271
|
+
|
|
272
|
+
axes[i].set_title(f'{stat_name} 分布')
|
|
273
|
+
axes[i].set_xlabel(stat_name)
|
|
274
|
+
axes[i].set_ylabel('密度')
|
|
275
|
+
axes[i].grid(True, alpha=0.3)
|
|
276
|
+
|
|
277
|
+
# 隐藏未使用的子图
|
|
278
|
+
for j in range(i + 1, len(axes)):
|
|
279
|
+
axes[j].set_visible(False)
|
|
280
|
+
|
|
281
|
+
plt.suptitle(title)
|
|
282
|
+
plt.tight_layout()
|
|
283
|
+
return fig
|
|
284
|
+
|
|
285
|
+
def plot_rms_distribution(self, rms_values: List[float],
|
|
286
|
+
title: str = "RMS分布图") -> plt.Figure:
|
|
287
|
+
"""
|
|
288
|
+
绘制RMS分布图
|
|
289
|
+
|
|
290
|
+
Args:
|
|
291
|
+
rms_values: RMS值列表
|
|
292
|
+
title: 图标题
|
|
293
|
+
|
|
294
|
+
Returns:
|
|
295
|
+
图形对象
|
|
296
|
+
"""
|
|
297
|
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=self.figsize)
|
|
298
|
+
|
|
299
|
+
# 线性尺度分布
|
|
300
|
+
ax1.hist(rms_values, bins=50, alpha=0.7, color='lightblue', edgecolor='black')
|
|
301
|
+
ax1.set_xlabel('RMS 幅度')
|
|
302
|
+
ax1.set_ylabel('频次')
|
|
303
|
+
ax1.set_title('RMS 线性分布')
|
|
304
|
+
ax1.grid(True, alpha=0.3)
|
|
305
|
+
|
|
306
|
+
# 对数尺度分布
|
|
307
|
+
rms_db = [20 * np.log10(rms + 1e-10) for rms in rms_values]
|
|
308
|
+
ax2.hist(rms_db, bins=50, alpha=0.7, color='lightgreen', edgecolor='black')
|
|
309
|
+
ax2.set_xlabel('RMS (dB)')
|
|
310
|
+
ax2.set_ylabel('频次')
|
|
311
|
+
ax2.set_title('RMS 对数分布')
|
|
312
|
+
ax2.grid(True, alpha=0.3)
|
|
313
|
+
|
|
314
|
+
plt.suptitle(title)
|
|
315
|
+
plt.tight_layout()
|
|
316
|
+
return fig
|
|
317
|
+
|
|
318
|
+
def plot_audio_comparison(self, audio1: np.ndarray, audio2: np.ndarray,
|
|
319
|
+
labels: List[str] = None, title: str = "音频对比") -> plt.Figure:
|
|
320
|
+
"""
|
|
321
|
+
绘制两个音频的对比图
|
|
322
|
+
|
|
323
|
+
Args:
|
|
324
|
+
audio1: 第一个音频
|
|
325
|
+
audio2: 第二个音频
|
|
326
|
+
labels: 标签列表
|
|
327
|
+
title: 图标题
|
|
328
|
+
|
|
329
|
+
Returns:
|
|
330
|
+
图形对象
|
|
331
|
+
"""
|
|
332
|
+
if labels is None:
|
|
333
|
+
labels = ['音频1', '音频2']
|
|
334
|
+
|
|
335
|
+
fig, axes = plt.subplots(3, 2, figsize=(self.figsize[0], self.figsize[1] * 1.5))
|
|
336
|
+
|
|
337
|
+
# 时域波形对比
|
|
338
|
+
time1 = np.linspace(0, len(audio1) / self.sr, len(audio1))
|
|
339
|
+
time2 = np.linspace(0, len(audio2) / self.sr, len(audio2))
|
|
340
|
+
|
|
341
|
+
axes[0, 0].plot(time1, audio1, alpha=0.8)
|
|
342
|
+
axes[0, 0].set_title(f'{labels[0]} - 波形')
|
|
343
|
+
axes[0, 0].set_xlabel('时间 (s)')
|
|
344
|
+
axes[0, 0].set_ylabel('幅度')
|
|
345
|
+
axes[0, 0].grid(True, alpha=0.3)
|
|
346
|
+
|
|
347
|
+
axes[0, 1].plot(time2, audio2, alpha=0.8, color='orange')
|
|
348
|
+
axes[0, 1].set_title(f'{labels[1]} - 波形')
|
|
349
|
+
axes[0, 1].set_xlabel('时间 (s)')
|
|
350
|
+
axes[0, 1].set_ylabel('幅度')
|
|
351
|
+
axes[0, 1].grid(True, alpha=0.3)
|
|
352
|
+
|
|
353
|
+
# 频谱对比
|
|
354
|
+
self.plot_spectrum(audio1, f'{labels[0]} - 频谱', ax=axes[1, 0])
|
|
355
|
+
self.plot_spectrum(audio2, f'{labels[1]} - 频谱', ax=axes[1, 1])
|
|
356
|
+
|
|
357
|
+
# 频谱图对比
|
|
358
|
+
self.plot_spectrogram(audio1, f'{labels[0]} - 频谱图', ax=axes[2, 0])
|
|
359
|
+
self.plot_spectrogram(audio2, f'{labels[1]} - 频谱图', ax=axes[2, 1])
|
|
360
|
+
|
|
361
|
+
plt.suptitle(title)
|
|
362
|
+
plt.tight_layout()
|
|
363
|
+
return fig
|
|
364
|
+
|
|
365
|
+
|
|
366
|
+
def plot_dataset_overview(file_paths: List[str], max_files: int = 10,
|
|
367
|
+
sr: int = 22050) -> plt.Figure:
|
|
368
|
+
"""
|
|
369
|
+
绘制数据集概览
|
|
370
|
+
|
|
371
|
+
Args:
|
|
372
|
+
file_paths: 音频文件路径列表
|
|
373
|
+
max_files: 最大显示文件数
|
|
374
|
+
sr: 采样率
|
|
375
|
+
|
|
376
|
+
Returns:
|
|
377
|
+
图形对象
|
|
378
|
+
"""
|
|
379
|
+
visualizer = AudioVisualizer(sr=sr)
|
|
380
|
+
|
|
381
|
+
# 限制文件数量
|
|
382
|
+
selected_files = file_paths[:max_files]
|
|
383
|
+
|
|
384
|
+
fig, axes = plt.subplots(len(selected_files), 2,
|
|
385
|
+
figsize=(15, 3 * len(selected_files)))
|
|
386
|
+
|
|
387
|
+
if len(selected_files) == 1:
|
|
388
|
+
axes = axes.reshape(1, -1)
|
|
389
|
+
|
|
390
|
+
for i, file_path in enumerate(selected_files):
|
|
391
|
+
try:
|
|
392
|
+
audio, _ = librosa.load(file_path, sr=sr)
|
|
393
|
+
|
|
394
|
+
# 波形图
|
|
395
|
+
visualizer.plot_waveform(audio, f'文件 {i+1}: 波形', ax=axes[i, 0])
|
|
396
|
+
|
|
397
|
+
# 频谱图
|
|
398
|
+
visualizer.plot_spectrogram(audio, f'文件 {i+1}: 频谱图', ax=axes[i, 1])
|
|
399
|
+
|
|
400
|
+
except Exception as e:
|
|
401
|
+
axes[i, 0].text(0.5, 0.5, f'加载失败: {str(e)}',
|
|
402
|
+
ha='center', va='center', transform=axes[i, 0].transAxes)
|
|
403
|
+
axes[i, 1].text(0.5, 0.5, f'加载失败: {str(e)}',
|
|
404
|
+
ha='center', va='center', transform=axes[i, 1].transAxes)
|
|
405
|
+
|
|
406
|
+
plt.suptitle('数据集概览')
|
|
407
|
+
plt.tight_layout()
|
|
408
|
+
return fig
|
|
409
|
+
|
|
410
|
+
|
|
411
|
+
def create_analysis_dashboard(audio: np.ndarray, sr: int = 22050) -> plt.Figure:
|
|
412
|
+
"""
|
|
413
|
+
创建音频分析仪表板
|
|
414
|
+
|
|
415
|
+
Args:
|
|
416
|
+
audio: 音频信号
|
|
417
|
+
sr: 采样率
|
|
418
|
+
|
|
419
|
+
Returns:
|
|
420
|
+
仪表板图形对象
|
|
421
|
+
"""
|
|
422
|
+
visualizer = AudioVisualizer(sr=sr)
|
|
423
|
+
|
|
424
|
+
fig = plt.figure(figsize=(16, 12))
|
|
425
|
+
|
|
426
|
+
# 创建网格布局
|
|
427
|
+
gs = fig.add_gridspec(3, 3, hspace=0.3, wspace=0.3)
|
|
428
|
+
|
|
429
|
+
# 时域波形
|
|
430
|
+
ax1 = fig.add_subplot(gs[0, :])
|
|
431
|
+
visualizer.plot_waveform(audio, "时域波形", ax=ax1)
|
|
432
|
+
|
|
433
|
+
# 频谱图
|
|
434
|
+
ax2 = fig.add_subplot(gs[1, :2])
|
|
435
|
+
visualizer.plot_spectrogram(audio, "频谱图", ax=ax2)
|
|
436
|
+
|
|
437
|
+
# 频谱
|
|
438
|
+
ax3 = fig.add_subplot(gs[1, 2])
|
|
439
|
+
visualizer.plot_spectrum(audio, "频谱", ax=ax3)
|
|
440
|
+
|
|
441
|
+
# 梅尔频谱图
|
|
442
|
+
ax4 = fig.add_subplot(gs[2, :2])
|
|
443
|
+
visualizer.plot_mel_spectrogram(audio, "梅尔频谱图", ax=ax4)
|
|
444
|
+
|
|
445
|
+
# 特征统计
|
|
446
|
+
ax5 = fig.add_subplot(gs[2, 2])
|
|
447
|
+
|
|
448
|
+
# 计算基本统计
|
|
449
|
+
duration = len(audio) / sr
|
|
450
|
+
max_amp = np.max(np.abs(audio))
|
|
451
|
+
rms_amp = np.sqrt(np.mean(audio ** 2))
|
|
452
|
+
|
|
453
|
+
stats_text = f"""音频统计信息:
|
|
454
|
+
时长: {duration:.2f}s
|
|
455
|
+
最大幅度: {max_amp:.4f}
|
|
456
|
+
RMS: {rms_amp:.4f}
|
|
457
|
+
RMS (dB): {20*np.log10(rms_amp):.2f}
|
|
458
|
+
采样率: {sr} Hz
|
|
459
|
+
样本数: {len(audio)}
|
|
460
|
+
"""
|
|
461
|
+
|
|
462
|
+
ax5.text(0.1, 0.5, stats_text, transform=ax5.transAxes,
|
|
463
|
+
fontsize=10, verticalalignment='center')
|
|
464
|
+
ax5.set_title("统计信息")
|
|
465
|
+
ax5.axis('off')
|
|
466
|
+
|
|
467
|
+
plt.suptitle("音频分析仪表板", fontsize=16)
|
|
468
|
+
return fig
|
|
@@ -0,0 +1,101 @@
|
|
|
1
|
+
# neverlib.filter
|
|
2
|
+
|
|
3
|
+
本项目包含音频滤波器的实现和自动EQ匹配算法, 主要基于 scipy.signal 进行封装和扩展, 提供便捷的音频滤波器设计、处理功能以及智能EQ补偿解决方案。
|
|
4
|
+
|
|
5
|
+
## 主要功能
|
|
6
|
+
|
|
7
|
+
### 滤波器类型
|
|
8
|
+
- 低通滤波器 (Low Pass Filter, LPF)
|
|
9
|
+
- 高通滤波器 (High Pass Filter, HPF)
|
|
10
|
+
- 带通滤波器 (Band Pass Filter, BPF)
|
|
11
|
+
- 恒定裙边增益模式 (constant skirt gain, peak gain = Q)
|
|
12
|
+
- 恒定 0dB 峰值增益模式 (constant 0 dB peak gain)
|
|
13
|
+
- 陷波滤波器 (Notch Filter)
|
|
14
|
+
- 全通滤波器 (All Pass Filter, APF)
|
|
15
|
+
- 峰值滤波器 (Peaking EQ)
|
|
16
|
+
- 低切滤波器 (Low Shelf Filter)
|
|
17
|
+
- 高切滤波器 (High Shelf Filter)
|
|
18
|
+
|
|
19
|
+
### 核心文件说明
|
|
20
|
+
- `filters.py`: 提供 EQFilter 类, 包含多种滤波器的设计和实现
|
|
21
|
+
- `biquad.py`: 二阶节(Biquad)滤波器的实现, 支持逐点处理
|
|
22
|
+
- `common.py`: 基础滤波器函数, 提供 numpy/scipy 和 torch 版本
|
|
23
|
+
|
|
24
|
+
### 自动EQ匹配算法 (AudoEQ/)
|
|
25
|
+
提供多种智能EQ匹配算法, 可以自动分析两个音频文件的频谱差异并生成最优的EQ补偿参数:
|
|
26
|
+
|
|
27
|
+
#### 🧬 基于优化算法的EQ匹配
|
|
28
|
+
- `auto_eq_ga_basic.py`: **基础遗传算法** - 使用DEAP库实现, 代码简洁, 适合学习和快速原型
|
|
29
|
+
- `auto_eq_ga_advanced.py`: **高级遗传算法** - 面向对象设计, 包含日志、检查点、早停等生产级功能
|
|
30
|
+
- `auto_eq_de.py`: **差分进化算法** - 使用scipy优化, 全局收敛性好, 适合高精度匹配
|
|
31
|
+
|
|
32
|
+
#### 📊 基于频谱分析的EQ匹配
|
|
33
|
+
- `auto_eq_spectral_direct.py`: **频谱直接补偿** - 基于STFT频谱分析, 直接计算频谱差异, 速度最快
|
|
34
|
+
|
|
35
|
+
详细使用说明请参考 `AudoEQ/README.md`
|
|
36
|
+
|
|
37
|
+
## 使用说明
|
|
38
|
+
|
|
39
|
+
对于基础滤波需求, 推荐直接使用 scipy.signal 的原生函数:
|
|
40
|
+
```python
|
|
41
|
+
from scipy import signal
|
|
42
|
+
|
|
43
|
+
# 设计巴特沃斯滤波器
|
|
44
|
+
b, a = signal.butter(N=2, Wn=100, btype='high', fs=16000)
|
|
45
|
+
# 应用滤波器
|
|
46
|
+
filtered = signal.lfilter(b, a, audio)
|
|
47
|
+
```
|
|
48
|
+
|
|
49
|
+
对于需要批量处理或自定义参数的场景, 可以使用本库的封装:
|
|
50
|
+
```python
|
|
51
|
+
from neverlib.filter import EQFilter, BiquadFilter
|
|
52
|
+
|
|
53
|
+
# 使用 EQFilter
|
|
54
|
+
eq = EQFilter(fs=16000)
|
|
55
|
+
b, a = eq.LowpassFilter(fc=300, Q=0.707)
|
|
56
|
+
|
|
57
|
+
# 使用 BiquadFilter 进行逐点处理
|
|
58
|
+
biquad = BiquadFilter(b, a)
|
|
59
|
+
output = [biquad.process(x) for x in input_signal]
|
|
60
|
+
```
|
|
61
|
+
|
|
62
|
+
### 自动EQ匹配快速开始
|
|
63
|
+
|
|
64
|
+
对于需要自动EQ匹配的场景, 可以直接运行AudoEQ中的脚本:
|
|
65
|
+
|
|
66
|
+
```bash
|
|
67
|
+
# 快速频谱匹配(推荐入门)
|
|
68
|
+
cd AudoEQ
|
|
69
|
+
python auto_eq_spectral_direct.py
|
|
70
|
+
|
|
71
|
+
# 高精度优化匹配
|
|
72
|
+
python auto_eq_de.py # 差分进化算法
|
|
73
|
+
python auto_eq_ga_basic.py # 基础遗传算法
|
|
74
|
+
python auto_eq_ga_advanced.py # 高级遗传算法
|
|
75
|
+
```
|
|
76
|
+
|
|
77
|
+
使用前请修改脚本中的音频文件路径:
|
|
78
|
+
```python
|
|
79
|
+
SOURCE_AUDIO_PATH = "path/to/source.wav" # 源音频
|
|
80
|
+
TARGET_AUDIO_PATH = "path/to/target.wav" # 目标音频
|
|
81
|
+
OUTPUT_MATCHED_AUDIO_PATH = "path/to/output.wav" # 输出音频
|
|
82
|
+
```
|
|
83
|
+
|
|
84
|
+
## 详细教程
|
|
85
|
+
|
|
86
|
+
### 滤波器教程
|
|
87
|
+
请参考 Documents/filter/ 目录下的 Jupyter notebooks:
|
|
88
|
+
- `filter_family.ipynb`: 各类滤波器的设计和频率响应示例
|
|
89
|
+
- `biquad.ipynb`: 二阶节滤波器的实现和验证
|
|
90
|
+
- `scipy_filter_family.ipynb`: scipy 原生滤波器的使用示例
|
|
91
|
+
|
|
92
|
+
### 自动EQ匹配教程
|
|
93
|
+
请参考 `AudoEQ/README.md` 了解:
|
|
94
|
+
- 各种EQ匹配算法的详细介绍和对比
|
|
95
|
+
- 参数调优指南和性能优化建议
|
|
96
|
+
- 常见问题解决方案和故障排除
|
|
97
|
+
|
|
98
|
+
## 参考资料
|
|
99
|
+
- [Audio-EQ-Cookbook](http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt)
|
|
100
|
+
- [beqdesigner](https://github.com/3ll3d00d/beqdesigner)
|
|
101
|
+
- [torch-audiomentations](https://github.com/iver56/torch-audiomentations)
|
neverlib/filter/__init__.py
CHANGED
|
@@ -1,3 +1,8 @@
|
|
|
1
|
+
'''
|
|
2
|
+
Author: 凌逆战 | Never
|
|
3
|
+
Date: 2025-03-17 19:23:33
|
|
4
|
+
Description:
|
|
5
|
+
'''
|
|
1
6
|
"""
|
|
2
7
|
节省路径
|
|
3
8
|
from neverlib.filter import common
|
|
@@ -5,3 +10,5 @@ from neverlib.filter import common
|
|
|
5
10
|
from neverlib.filter.common import *
|
|
6
11
|
"""
|
|
7
12
|
from .common import *
|
|
13
|
+
from .core import *
|
|
14
|
+
from .biquad import *
|