neverlib 0.2.2__py3-none-any.whl → 0.2.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- neverlib/.history/Docs/audio_aug/test_snr_20250806011311.py +0 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011331.py +75 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011342.py +57 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011352.py +57 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011403.py +57 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011413.py +57 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011435.py +55 -0
- neverlib/.history/Docs/vad/1_20250810032405.py +0 -0
- neverlib/.history/Docs/vad/1_20250810032417.py +39 -0
- neverlib/.history/audio_aug/audio_aug_20250806010451.py +125 -0
- neverlib/.history/audio_aug/audio_aug_20250806010750.py +138 -0
- neverlib/.history/audio_aug/audio_aug_20250806010759.py +140 -0
- neverlib/.history/audio_aug/audio_aug_20250806010803.py +140 -0
- neverlib/.history/audio_aug/audio_aug_20250806010809.py +140 -0
- neverlib/.history/audio_aug/audio_aug_20250806011108.py +140 -0
- neverlib/.history/dataAnalyze/__init___20250805234204.py +87 -0
- neverlib/.history/dataAnalyze/__init___20250806204125.py +14 -0
- neverlib/.history/dataAnalyze/__init___20250806204139.py +14 -0
- neverlib/.history/dataAnalyze/__init___20250806204159.py +14 -0
- neverlib/.history/filter/__init___20250820103351.py +70 -0
- neverlib/.history/filter/__init___20250821102348.py +70 -0
- neverlib/.history/filter/__init___20250821102405.py +14 -0
- neverlib/.history/filter/auto_eq/__init___20250819213121.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102241.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102259.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102307.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102310.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102318.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102507.py +36 -0
- neverlib/.history/filter/auto_eq/de_eq_20250820103848.py +361 -0
- neverlib/.history/filter/auto_eq/de_eq_20250821102422.py +360 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250805234206.py +75 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820140732.py +75 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820140745.py +75 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820140816.py +75 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820140938.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141003.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141006.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141019.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141049.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141211.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141227.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141311.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141340.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141712.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141733.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141755.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250821102434.py +76 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250821102500.py +76 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250821102502.py +76 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820102957.py +380 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113054.py +380 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113150.py +380 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113520.py +385 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113525.py +385 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250821102212.py +385 -0
- neverlib/.history/metrics/dnsmos_20250806001612.py +160 -0
- neverlib/.history/metrics/dnsmos_20250815180659.py +160 -0
- neverlib/.history/metrics/dnsmos_20250815180701.py +158 -0
- neverlib/.history/metrics/dnsmos_20250815181321.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181327.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181331.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181620.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181631.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181742.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181824.py +153 -0
- neverlib/.history/metrics/dnsmos_20250815181834.py +153 -0
- neverlib/.history/metrics/dnsmos_20250815181922.py +153 -0
- neverlib/.history/metrics/dnsmos_20250815182011.py +147 -0
- neverlib/.history/metrics/dnsmos_20250815182036.py +144 -0
- neverlib/.history/metrics/dnsmos_20250815182936.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815182942.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815183032.py +137 -0
- neverlib/.history/metrics/dnsmos_20250815183101.py +144 -0
- neverlib/.history/metrics/dnsmos_20250815183121.py +144 -0
- neverlib/.history/metrics/dnsmos_20250815183123.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815183214.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815183240.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815183248.py +144 -0
- neverlib/.history/metrics/dnsmos_20250815183407.py +142 -0
- neverlib/.history/metrics/dnsmos_20250815183409.py +142 -0
- neverlib/.history/metrics/dnsmos_20250815183431.py +142 -0
- neverlib/.history/metrics/dnsmos_20250815183507.py +140 -0
- neverlib/.history/metrics/dnsmos_20250815183513.py +139 -0
- neverlib/.history/metrics/dnsmos_20250815183618.py +139 -0
- neverlib/.history/metrics/dnsmos_20250815183709.py +140 -0
- neverlib/.history/metrics/dnsmos_20250815183756.py +137 -0
- neverlib/.history/metrics/dnsmos_20250815183815.py +128 -0
- neverlib/.history/metrics/dnsmos_20250815183827.py +129 -0
- neverlib/.history/metrics/dnsmos_20250815183913.py +117 -0
- neverlib/.history/metrics/dnsmos_20250815183914.py +117 -0
- neverlib/.history/metrics/dnsmos_20250815184003.py +118 -0
- neverlib/.history/metrics/dnsmos_20250815184040.py +118 -0
- neverlib/.history/metrics/dnsmos_20250815184049.py +118 -0
- neverlib/.history/metrics/dnsmos_20250815184104.py +117 -0
- neverlib/.history/metrics/dnsmos_20250815184200.py +117 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816015944.py +128 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020142.py +128 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020156.py +128 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020554.py +130 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020600.py +125 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020631.py +120 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020746.py +118 -0
- neverlib/.history/metrics/lpc_me_20250816013111.py +0 -0
- neverlib/.history/metrics/lpc_me_20250816013129.py +121 -0
- neverlib/.history/metrics/lpc_me_20250816015430.py +103 -0
- neverlib/.history/metrics/lpc_me_20250816015535.py +96 -0
- neverlib/.history/metrics/lpc_me_20250816015542.py +96 -0
- neverlib/.history/metrics/lpc_me_20250816015636.py +97 -0
- neverlib/.history/metrics/lpc_me_20250816015658.py +104 -0
- neverlib/.history/metrics/lpc_me_20250816015703.py +100 -0
- neverlib/.history/metrics/lpc_me_20250816015945.py +128 -0
- neverlib/.history/metrics/snr_20250806010538.py +177 -0
- neverlib/.history/metrics/snr_20250806211634.py +184 -0
- neverlib/.history/metrics/spec_20250805234209.py +45 -0
- neverlib/.history/metrics/spec_20250816135530.py +11 -0
- neverlib/.history/metrics/spec_20250816135654.py +16 -0
- neverlib/.history/metrics/spec_20250816135736.py +68 -0
- neverlib/.history/metrics/spec_20250816135904.py +75 -0
- neverlib/.history/metrics/spec_20250816135921.py +82 -0
- neverlib/.history/metrics/spec_20250816140111.py +82 -0
- neverlib/.history/metrics/spec_20250816140543.py +136 -0
- neverlib/.history/metrics/spec_20250816140559.py +172 -0
- neverlib/.history/metrics/spec_20250816140602.py +172 -0
- neverlib/.history/metrics/spec_20250816140608.py +172 -0
- neverlib/.history/metrics/spec_20250816140654.py +148 -0
- neverlib/.history/metrics/spec_20250816140705.py +144 -0
- neverlib/.history/metrics/spec_20250816140755.py +138 -0
- neverlib/.history/metrics/spec_20250816140823.py +170 -0
- neverlib/.history/metrics/spec_20250816140832.py +170 -0
- neverlib/.history/metrics/spec_20250816140833.py +170 -0
- neverlib/.history/metrics/spec_20250816140922.py +147 -0
- neverlib/.history/metrics/spec_20250816141148.py +107 -0
- neverlib/.history/metrics/spec_20250816141219.py +123 -0
- neverlib/.history/metrics/spec_20250816141732.py +178 -0
- neverlib/.history/metrics/spec_20250816141740.py +178 -0
- neverlib/.history/metrics/spec_20250816142030.py +178 -0
- neverlib/.history/metrics/spec_20250816142107.py +135 -0
- neverlib/.history/metrics/spec_20250816142126.py +135 -0
- neverlib/.history/metrics/spec_20250816142410.py +135 -0
- neverlib/.history/metrics/spec_20250816142415.py +136 -0
- neverlib/.history/metrics/spec_metric_20250816135156.py +0 -0
- neverlib/.history/metrics/spec_metric_20250816135226.py +5 -0
- neverlib/.history/metrics/spec_metric_20250816135227.py +10 -0
- neverlib/.history/metrics/spec_metric_20250816135306.py +15 -0
- neverlib/.history/metrics/spec_metric_20250816135442.py +31 -0
- neverlib/.history/metrics/spec_metric_20250816135448.py +31 -0
- neverlib/.history/metrics/spec_metric_20250816135520.py +29 -0
- neverlib/.history/metrics/spec_metric_20250816135537.py +63 -0
- neverlib/.history/metrics/spec_metric_20250816135653.py +65 -0
- neverlib/.history/vad/PreProcess_20250805234211.py +63 -0
- neverlib/.history/vad/PreProcess_20250809232455.py +63 -0
- neverlib/.history/vad/PreProcess_20250816020725.py +66 -0
- neverlib/.history/vad/VAD_Silero_20250805234211.py +50 -0
- neverlib/.history/vad/VAD_Silero_20250809232456.py +50 -0
- neverlib/.history/vad/VAD_WebRTC_20250805234211.py +61 -0
- neverlib/.history/vad/VAD_WebRTC_20250809232456.py +61 -0
- neverlib/.history/vad/VAD_funasr_20250805234211.py +54 -0
- neverlib/.history/vad/VAD_funasr_20250809232456.py +54 -0
- neverlib/.history/vad/VAD_vadlib_20250805234211.py +70 -0
- neverlib/.history/vad/VAD_vadlib_20250809232455.py +70 -0
- neverlib/.history/vad/VAD_whisper_20250805234211.py +55 -0
- neverlib/.history/vad/VAD_whisper_20250809232456.py +55 -0
- neverlib/.specstory/.what-is-this.md +69 -0
- neverlib/.specstory/history/2025-08-05_17-06Z-/350/277/231/344/270/200/346/255/245/347/232/204/347/233/256/347/232/204/346/230/257/344/273/200/344/271/210.md +424 -0
- neverlib/Docs/audio_aug/test_snr.py +55 -0
- neverlib/__init__.py +2 -2
- neverlib/audio_aug/HarmonicDistortion.py +79 -0
- neverlib/audio_aug/TFDrop.py +41 -0
- neverlib/audio_aug/TFMask.py +56 -0
- neverlib/audio_aug/__init__.py +1 -1
- neverlib/audio_aug/audio_aug.py +19 -5
- neverlib/audio_aug/clip_aug.py +41 -0
- neverlib/audio_aug/coder_aug.py +209 -0
- neverlib/audio_aug/coder_aug2.py +118 -0
- neverlib/audio_aug/loss_packet_aug.py +103 -0
- neverlib/audio_aug/quant_aug.py +78 -0
- neverlib/data_analyze/README.md +234 -0
- neverlib/data_analyze/__init__.py +14 -0
- neverlib/data_analyze/dataset_analyzer.py +590 -0
- neverlib/data_analyze/quality_metrics.py +364 -0
- neverlib/data_analyze/rms_distrubution.py +62 -0
- neverlib/data_analyze/spectral_analysis.py +218 -0
- neverlib/data_analyze/statistics.py +406 -0
- neverlib/data_analyze/temporal_features.py +126 -0
- neverlib/data_analyze/visualization.py +468 -0
- neverlib/filter/README.md +101 -0
- neverlib/filter/__init__.py +7 -0
- neverlib/filter/auto_eq/README.md +165 -0
- neverlib/filter/auto_eq/__init__.py +36 -0
- neverlib/filter/auto_eq/de_eq.py +360 -0
- neverlib/filter/auto_eq/freq_eq.py +76 -0
- neverlib/filter/auto_eq/ga_eq_advanced.py +577 -0
- neverlib/filter/auto_eq/ga_eq_basic.py +385 -0
- neverlib/filter/biquad.py +45 -0
- neverlib/filter/common.py +5 -6
- neverlib/filter/core.py +339 -0
- neverlib/metrics/dnsmos.py +117 -0
- neverlib/metrics/lpc_lsp.py +118 -0
- neverlib/metrics/snr.py +184 -0
- neverlib/metrics/spec.py +136 -0
- neverlib/metrics/test_pesq.py +35 -0
- neverlib/metrics/time.py +68 -0
- neverlib/tests/test_vad.py +21 -0
- neverlib/utils/audio_split.py +2 -1
- neverlib/utils/message.py +4 -4
- neverlib/utils/utils.py +36 -16
- neverlib/vad/PreProcess.py +6 -3
- neverlib/vad/README.md +10 -10
- neverlib/vad/VAD_Energy.py +1 -1
- neverlib/vad/VAD_Silero.py +2 -2
- neverlib/vad/VAD_WebRTC.py +2 -2
- neverlib/vad/VAD_funasr.py +2 -2
- neverlib/vad/VAD_statistics.py +3 -3
- neverlib/vad/VAD_vadlib.py +3 -3
- neverlib/vad/VAD_whisper.py +2 -2
- neverlib/vad/__init__.py +1 -1
- neverlib/vad/class_get_speech.py +4 -4
- neverlib/vad/class_vad.py +1 -1
- neverlib/vad/utils.py +47 -5
- {neverlib-0.2.2.dist-info → neverlib-0.2.4.dist-info}/METADATA +120 -120
- neverlib-0.2.4.dist-info/RECORD +229 -0
- {neverlib-0.2.2.dist-info → neverlib-0.2.4.dist-info}/WHEEL +1 -1
- neverlib/Documents/vad/VAD_Energy.ipynb +0 -159
- neverlib/Documents/vad/VAD_Silero.ipynb +0 -305
- neverlib/Documents/vad/VAD_WebRTC.ipynb +0 -183
- neverlib/Documents/vad/VAD_funasr.ipynb +0 -179
- neverlib/Documents/vad/VAD_ppasr.ipynb +0 -175
- neverlib/Documents/vad/VAD_statistics.ipynb +0 -522
- neverlib/Documents/vad/VAD_vadlib.ipynb +0 -184
- neverlib/Documents/vad/VAD_whisper.ipynb +0 -430
- neverlib/utils/waveform_analyzer.py +0 -51
- neverlib/wav_data/000_short.wav +0 -0
- neverlib-0.2.2.dist-info/RECORD +0 -40
- {neverlib-0.2.2.dist-info → neverlib-0.2.4.dist-info}/licenses/LICENSE +0 -0
- {neverlib-0.2.2.dist-info → neverlib-0.2.4.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,364 @@
|
|
|
1
|
+
"""
|
|
2
|
+
音频质量评估模块
|
|
3
|
+
Audio Quality Metrics Module
|
|
4
|
+
|
|
5
|
+
提供音频质量评估和失真度分析功能
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
import librosa
|
|
10
|
+
from scipy import signal
|
|
11
|
+
from scipy.fft import fft, fftfreq
|
|
12
|
+
from typing import Tuple, Optional, Union, List
|
|
13
|
+
import warnings
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class QualityAnalyzer:
|
|
17
|
+
"""音频质量分析器类"""
|
|
18
|
+
|
|
19
|
+
def __init__(self, sr: int = 22050):
|
|
20
|
+
"""
|
|
21
|
+
初始化质量分析器
|
|
22
|
+
|
|
23
|
+
Args:
|
|
24
|
+
sr: 采样率
|
|
25
|
+
"""
|
|
26
|
+
self.sr = sr
|
|
27
|
+
|
|
28
|
+
def signal_to_noise_ratio(self, signal_audio: np.ndarray,
|
|
29
|
+
noise_audio: Optional[np.ndarray] = None,
|
|
30
|
+
signal_start: Optional[int] = None,
|
|
31
|
+
signal_end: Optional[int] = None) -> float:
|
|
32
|
+
"""
|
|
33
|
+
计算信噪比 (SNR)
|
|
34
|
+
|
|
35
|
+
Args:
|
|
36
|
+
signal_audio: 含有信号和噪声的音频
|
|
37
|
+
noise_audio: 纯噪声音频(可选)
|
|
38
|
+
signal_start: 信号开始位置(当噪声未单独提供时使用)
|
|
39
|
+
signal_end: 信号结束位置(当噪声未单独提供时使用)
|
|
40
|
+
|
|
41
|
+
Returns:
|
|
42
|
+
SNR值(dB)
|
|
43
|
+
"""
|
|
44
|
+
if noise_audio is not None:
|
|
45
|
+
# 如果提供了噪声音频
|
|
46
|
+
signal_power = np.mean(signal_audio ** 2)
|
|
47
|
+
noise_power = np.mean(noise_audio ** 2)
|
|
48
|
+
else:
|
|
49
|
+
# 从音频中提取信号和噪声部分
|
|
50
|
+
if signal_start is None or signal_end is None:
|
|
51
|
+
raise ValueError("Must provide signal_start and signal_end when noise_audio is None")
|
|
52
|
+
|
|
53
|
+
signal_part = signal_audio[signal_start:signal_end]
|
|
54
|
+
|
|
55
|
+
# 假设开头和结尾是噪声
|
|
56
|
+
noise_start = signal_audio[:signal_start] if signal_start > 0 else np.array([])
|
|
57
|
+
noise_end = signal_audio[signal_end:] if signal_end < len(signal_audio) else np.array([])
|
|
58
|
+
noise_part = np.concatenate([noise_start, noise_end]) if len(noise_start) > 0 or len(noise_end) > 0 else signal_audio[:1000]
|
|
59
|
+
|
|
60
|
+
signal_power = np.mean(signal_part ** 2)
|
|
61
|
+
noise_power = np.mean(noise_part ** 2)
|
|
62
|
+
|
|
63
|
+
if noise_power == 0:
|
|
64
|
+
return float('inf')
|
|
65
|
+
|
|
66
|
+
snr_db = 10 * np.log10(signal_power / noise_power)
|
|
67
|
+
return snr_db
|
|
68
|
+
|
|
69
|
+
def total_harmonic_distortion(self, audio: np.ndarray,
|
|
70
|
+
fundamental_freq: Optional[float] = None,
|
|
71
|
+
num_harmonics: int = 5) -> float:
|
|
72
|
+
"""
|
|
73
|
+
计算总谐波失真 (THD)
|
|
74
|
+
|
|
75
|
+
Args:
|
|
76
|
+
audio: 音频信号
|
|
77
|
+
fundamental_freq: 基频(Hz), 如果不提供则自动检测
|
|
78
|
+
num_harmonics: 考虑的谐波数量
|
|
79
|
+
|
|
80
|
+
Returns:
|
|
81
|
+
THD百分比
|
|
82
|
+
"""
|
|
83
|
+
# 计算频谱
|
|
84
|
+
spectrum = fft(audio)
|
|
85
|
+
freqs = fftfreq(len(audio), 1/self.sr)
|
|
86
|
+
magnitude = np.abs(spectrum)
|
|
87
|
+
|
|
88
|
+
# 只考虑正频率
|
|
89
|
+
positive_idx = freqs > 0
|
|
90
|
+
freqs = freqs[positive_idx]
|
|
91
|
+
magnitude = magnitude[positive_idx]
|
|
92
|
+
|
|
93
|
+
# 如果没有提供基频, 自动检测
|
|
94
|
+
if fundamental_freq is None:
|
|
95
|
+
fundamental_freq = freqs[np.argmax(magnitude)]
|
|
96
|
+
|
|
97
|
+
# 找到基频和谐波的功率
|
|
98
|
+
tolerance = fundamental_freq * 0.05 # 5%的容差
|
|
99
|
+
|
|
100
|
+
# 基频功率
|
|
101
|
+
fundamental_idx = np.where(np.abs(freqs - fundamental_freq) < tolerance)[0]
|
|
102
|
+
if len(fundamental_idx) == 0:
|
|
103
|
+
return 0.0
|
|
104
|
+
|
|
105
|
+
fundamental_power = np.max(magnitude[fundamental_idx]) ** 2
|
|
106
|
+
|
|
107
|
+
# 谐波功率
|
|
108
|
+
harmonic_power = 0
|
|
109
|
+
for h in range(2, num_harmonics + 2):
|
|
110
|
+
harmonic_freq = h * fundamental_freq
|
|
111
|
+
harmonic_idx = np.where(np.abs(freqs - harmonic_freq) < tolerance)[0]
|
|
112
|
+
if len(harmonic_idx) > 0:
|
|
113
|
+
harmonic_power += np.max(magnitude[harmonic_idx]) ** 2
|
|
114
|
+
|
|
115
|
+
if fundamental_power == 0:
|
|
116
|
+
return 0.0
|
|
117
|
+
|
|
118
|
+
thd = np.sqrt(harmonic_power / fundamental_power) * 100
|
|
119
|
+
return thd
|
|
120
|
+
|
|
121
|
+
def dynamic_range(self, audio: np.ndarray, percentile_low: float = 1,
|
|
122
|
+
percentile_high: float = 99) -> float:
|
|
123
|
+
"""
|
|
124
|
+
计算动态范围
|
|
125
|
+
|
|
126
|
+
Args:
|
|
127
|
+
audio: 音频信号
|
|
128
|
+
percentile_low: 低百分位数
|
|
129
|
+
percentile_high: 高百分位数
|
|
130
|
+
|
|
131
|
+
Returns:
|
|
132
|
+
动态范围(dB)
|
|
133
|
+
"""
|
|
134
|
+
amplitude = np.abs(audio)
|
|
135
|
+
amplitude = amplitude[amplitude > 0] # 避免log(0)
|
|
136
|
+
|
|
137
|
+
if len(amplitude) == 0:
|
|
138
|
+
return 0.0
|
|
139
|
+
|
|
140
|
+
low_level = np.percentile(amplitude, percentile_low)
|
|
141
|
+
high_level = np.percentile(amplitude, percentile_high)
|
|
142
|
+
|
|
143
|
+
dynamic_range_db = 20 * np.log10(high_level / (low_level + 1e-10))
|
|
144
|
+
return dynamic_range_db
|
|
145
|
+
|
|
146
|
+
def frequency_response(self, audio: np.ndarray,
|
|
147
|
+
reference_audio: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray]:
|
|
148
|
+
"""
|
|
149
|
+
计算频率响应特性
|
|
150
|
+
|
|
151
|
+
Args:
|
|
152
|
+
audio: 测试音频信号
|
|
153
|
+
reference_audio: 参考音频信号(可选)
|
|
154
|
+
|
|
155
|
+
Returns:
|
|
156
|
+
(频率数组, 幅度响应数组)
|
|
157
|
+
"""
|
|
158
|
+
if reference_audio is not None:
|
|
159
|
+
# 计算传递函数
|
|
160
|
+
freqs, h = signal.freqz_zpk(*signal.tf2zpk([1], [1]), fs=self.sr)
|
|
161
|
+
|
|
162
|
+
# 使用互相关计算频率响应
|
|
163
|
+
cross_corr = signal.correlate(audio, reference_audio, mode='full')
|
|
164
|
+
auto_corr = signal.correlate(reference_audio, reference_audio, mode='full')
|
|
165
|
+
|
|
166
|
+
# 频域除法得到传递函数
|
|
167
|
+
cross_spectrum = fft(cross_corr)
|
|
168
|
+
auto_spectrum = fft(auto_corr)
|
|
169
|
+
|
|
170
|
+
h_measured = cross_spectrum / (auto_spectrum + 1e-10)
|
|
171
|
+
freqs = fftfreq(len(h_measured), 1/self.sr)
|
|
172
|
+
|
|
173
|
+
# 只取正频率部分
|
|
174
|
+
positive_idx = freqs >= 0
|
|
175
|
+
freqs = freqs[positive_idx]
|
|
176
|
+
h_measured = h_measured[positive_idx]
|
|
177
|
+
|
|
178
|
+
return freqs, np.abs(h_measured)
|
|
179
|
+
else:
|
|
180
|
+
# 直接返回频谱
|
|
181
|
+
spectrum = fft(audio)
|
|
182
|
+
freqs = fftfreq(len(audio), 1/self.sr)
|
|
183
|
+
|
|
184
|
+
positive_idx = freqs >= 0
|
|
185
|
+
freqs = freqs[positive_idx]
|
|
186
|
+
spectrum = spectrum[positive_idx]
|
|
187
|
+
|
|
188
|
+
return freqs, np.abs(spectrum)
|
|
189
|
+
|
|
190
|
+
def loudness_range(self, audio: np.ndarray, gate_threshold: float = -70) -> dict:
|
|
191
|
+
"""
|
|
192
|
+
计算响度范围(基于EBU R128标准的简化版本)
|
|
193
|
+
|
|
194
|
+
Args:
|
|
195
|
+
audio: 音频信号
|
|
196
|
+
gate_threshold: 门限阈值(dB)
|
|
197
|
+
|
|
198
|
+
Returns:
|
|
199
|
+
响度统计信息字典
|
|
200
|
+
"""
|
|
201
|
+
# 分块计算短时响度
|
|
202
|
+
block_size = int(0.4 * self.sr) # 400ms块
|
|
203
|
+
hop_size = int(0.1 * self.sr) # 100ms跳跃
|
|
204
|
+
|
|
205
|
+
blocks = []
|
|
206
|
+
for i in range(0, len(audio) - block_size, hop_size):
|
|
207
|
+
block = audio[i:i + block_size]
|
|
208
|
+
# 简化的响度计算(使用RMS近似)
|
|
209
|
+
rms = np.sqrt(np.mean(block ** 2))
|
|
210
|
+
if rms > 0:
|
|
211
|
+
loudness = 20 * np.log10(rms)
|
|
212
|
+
if loudness > gate_threshold:
|
|
213
|
+
blocks.append(loudness)
|
|
214
|
+
|
|
215
|
+
if len(blocks) == 0:
|
|
216
|
+
return {'integrated_loudness': -float('inf'), 'loudness_range': 0, 'max_loudness': -float('inf')}
|
|
217
|
+
|
|
218
|
+
blocks = np.array(blocks)
|
|
219
|
+
|
|
220
|
+
# 计算统计量
|
|
221
|
+
integrated_loudness = np.mean(blocks)
|
|
222
|
+
loudness_range = np.percentile(blocks, 95) - np.percentile(blocks, 10)
|
|
223
|
+
max_loudness = np.max(blocks)
|
|
224
|
+
|
|
225
|
+
return {
|
|
226
|
+
'integrated_loudness': integrated_loudness,
|
|
227
|
+
'loudness_range': loudness_range,
|
|
228
|
+
'max_loudness': max_loudness
|
|
229
|
+
}
|
|
230
|
+
|
|
231
|
+
def spectral_distortion(self, original: np.ndarray, processed: np.ndarray) -> float:
|
|
232
|
+
"""
|
|
233
|
+
计算谱失真度
|
|
234
|
+
|
|
235
|
+
Args:
|
|
236
|
+
original: 原始音频
|
|
237
|
+
processed: 处理后音频
|
|
238
|
+
|
|
239
|
+
Returns:
|
|
240
|
+
谱失真度(dB)
|
|
241
|
+
"""
|
|
242
|
+
# 确保两个信号长度相同
|
|
243
|
+
min_len = min(len(original), len(processed))
|
|
244
|
+
original = original[:min_len]
|
|
245
|
+
processed = processed[:min_len]
|
|
246
|
+
|
|
247
|
+
# 计算频谱
|
|
248
|
+
orig_spectrum = np.abs(fft(original))
|
|
249
|
+
proc_spectrum = np.abs(fft(processed))
|
|
250
|
+
|
|
251
|
+
# 计算谱失真
|
|
252
|
+
mse = np.mean((orig_spectrum - proc_spectrum) ** 2)
|
|
253
|
+
orig_power = np.mean(orig_spectrum ** 2)
|
|
254
|
+
|
|
255
|
+
if orig_power == 0:
|
|
256
|
+
return float('inf')
|
|
257
|
+
|
|
258
|
+
distortion_db = 10 * np.log10(mse / orig_power)
|
|
259
|
+
return distortion_db
|
|
260
|
+
|
|
261
|
+
|
|
262
|
+
def comprehensive_quality_assessment(audio: np.ndarray, sr: int = 22050,
|
|
263
|
+
reference: Optional[np.ndarray] = None) -> dict:
|
|
264
|
+
"""
|
|
265
|
+
综合质量评估
|
|
266
|
+
|
|
267
|
+
Args:
|
|
268
|
+
audio: 待评估音频
|
|
269
|
+
sr: 采样率
|
|
270
|
+
reference: 参考音频(可选)
|
|
271
|
+
|
|
272
|
+
Returns:
|
|
273
|
+
质量评估结果字典
|
|
274
|
+
"""
|
|
275
|
+
analyzer = QualityAnalyzer(sr=sr)
|
|
276
|
+
|
|
277
|
+
results = {
|
|
278
|
+
'dynamic_range': analyzer.dynamic_range(audio),
|
|
279
|
+
'loudness_stats': analyzer.loudness_range(audio),
|
|
280
|
+
}
|
|
281
|
+
|
|
282
|
+
# 尝试计算THD
|
|
283
|
+
try:
|
|
284
|
+
results['thd'] = analyzer.total_harmonic_distortion(audio)
|
|
285
|
+
except:
|
|
286
|
+
results['thd'] = None
|
|
287
|
+
|
|
288
|
+
# 如果有参考音频, 计算比较指标
|
|
289
|
+
if reference is not None:
|
|
290
|
+
try:
|
|
291
|
+
results['snr'] = analyzer.signal_to_noise_ratio(audio, reference)
|
|
292
|
+
results['spectral_distortion'] = analyzer.spectral_distortion(reference, audio)
|
|
293
|
+
except:
|
|
294
|
+
results['snr'] = None
|
|
295
|
+
results['spectral_distortion'] = None
|
|
296
|
+
|
|
297
|
+
# 频率响应
|
|
298
|
+
try:
|
|
299
|
+
freqs, response = analyzer.frequency_response(audio, reference)
|
|
300
|
+
results['frequency_response'] = {
|
|
301
|
+
'frequencies': freqs,
|
|
302
|
+
'magnitude': response
|
|
303
|
+
}
|
|
304
|
+
except:
|
|
305
|
+
results['frequency_response'] = None
|
|
306
|
+
|
|
307
|
+
return results
|
|
308
|
+
|
|
309
|
+
|
|
310
|
+
def audio_health_check(audio: np.ndarray, sr: int = 22050) -> dict:
|
|
311
|
+
"""
|
|
312
|
+
音频健康检查
|
|
313
|
+
|
|
314
|
+
Args:
|
|
315
|
+
audio: 音频信号
|
|
316
|
+
sr: 采样率
|
|
317
|
+
|
|
318
|
+
Returns:
|
|
319
|
+
健康检查结果
|
|
320
|
+
"""
|
|
321
|
+
health_report = {
|
|
322
|
+
'issues': [],
|
|
323
|
+
'warnings': [],
|
|
324
|
+
'stats': {}
|
|
325
|
+
}
|
|
326
|
+
|
|
327
|
+
# 基础统计
|
|
328
|
+
max_amplitude = np.max(np.abs(audio))
|
|
329
|
+
min_amplitude = np.min(np.abs(audio))
|
|
330
|
+
mean_amplitude = np.mean(np.abs(audio))
|
|
331
|
+
|
|
332
|
+
health_report['stats'] = {
|
|
333
|
+
'max_amplitude': max_amplitude,
|
|
334
|
+
'min_amplitude': min_amplitude,
|
|
335
|
+
'mean_amplitude': mean_amplitude,
|
|
336
|
+
'duration': len(audio) / sr
|
|
337
|
+
}
|
|
338
|
+
|
|
339
|
+
# 检查削波
|
|
340
|
+
if max_amplitude >= 0.99:
|
|
341
|
+
health_report['issues'].append('Potential clipping detected')
|
|
342
|
+
|
|
343
|
+
# 检查过低音量
|
|
344
|
+
if max_amplitude < 0.01:
|
|
345
|
+
health_report['warnings'].append('Very low signal level')
|
|
346
|
+
|
|
347
|
+
# 检查静音
|
|
348
|
+
if mean_amplitude < 1e-6:
|
|
349
|
+
health_report['issues'].append('Signal appears to be silent')
|
|
350
|
+
|
|
351
|
+
# 检查DC偏移
|
|
352
|
+
dc_offset = np.mean(audio)
|
|
353
|
+
if abs(dc_offset) > 0.01:
|
|
354
|
+
health_report['warnings'].append(f'DC offset detected: {dc_offset:.4f}')
|
|
355
|
+
|
|
356
|
+
# 检查动态范围
|
|
357
|
+
analyzer = QualityAnalyzer(sr=sr)
|
|
358
|
+
dynamic_range = analyzer.dynamic_range(audio)
|
|
359
|
+
if dynamic_range < 6:
|
|
360
|
+
health_report['warnings'].append('Low dynamic range')
|
|
361
|
+
elif dynamic_range > 60:
|
|
362
|
+
health_report['warnings'].append('Very high dynamic range - check for noise')
|
|
363
|
+
|
|
364
|
+
return health_report
|
|
@@ -0,0 +1,62 @@
|
|
|
1
|
+
'''
|
|
2
|
+
Author: 凌逆战 | Never
|
|
3
|
+
Date: 2025-03-26 22:13:22
|
|
4
|
+
Description:
|
|
5
|
+
'''
|
|
6
|
+
# -*- coding:utf-8 -*-
|
|
7
|
+
# Author:凌逆战 | Never
|
|
8
|
+
# Date: 2025/3/2
|
|
9
|
+
"""
|
|
10
|
+
统计音频语音段rms值分布
|
|
11
|
+
"""
|
|
12
|
+
import sys
|
|
13
|
+
sys.path.append("../../../")
|
|
14
|
+
import torch
|
|
15
|
+
import soundfile as sf
|
|
16
|
+
from neverlib.utils import get_path_list
|
|
17
|
+
from neverlib.filter import HPFilter
|
|
18
|
+
from neverlib.audio_aug import volume_norm
|
|
19
|
+
from neverlib.dataAnalyze.utils import rms_amplitude
|
|
20
|
+
from joblib import Parallel, delayed
|
|
21
|
+
import matplotlib.pyplot as plt
|
|
22
|
+
import numpy as np
|
|
23
|
+
import librosa
|
|
24
|
+
import os
|
|
25
|
+
from utils.train_utils import from_path_get_vadpoint
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def get_rms_vad(wav_path):
|
|
31
|
+
wav, wav_sr = sf.read(wav_path, always_2d=True) # (xxx,ch)
|
|
32
|
+
assert wav_sr == sr, f"期望采样率为{sr}, 但是为{wav_sr}, 文件名: {wav_path}"
|
|
33
|
+
vadstart, vadend = from_path_get_vadpoint(wav_path)
|
|
34
|
+
rms = rms_amplitude(wav[vadstart:vadend]).mean()
|
|
35
|
+
# if rms < -75:
|
|
36
|
+
# print(wav_path, np.round(rms, 2))
|
|
37
|
+
# if rms > -5:
|
|
38
|
+
# print(wav_path, np.round(rms, 2))
|
|
39
|
+
return rms
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
sr = 16000
|
|
43
|
+
wav_dir_list = [
|
|
44
|
+
"/data/never/Dataset/kws_data/Command_Word/Crowdsourcing/en_kws2/train/RealPerson",
|
|
45
|
+
"/data/never/Dataset/kws_data/Command_Word/Crowdsourcing/en_kws2/val/RealPerson",
|
|
46
|
+
"/data/never/Dataset/kws_data/Command_Word/Crowdsourcing/en_kws2/test/RealPerson",
|
|
47
|
+
]
|
|
48
|
+
wav_path_list = []
|
|
49
|
+
for wav_dir in wav_dir_list:
|
|
50
|
+
wav_path_list.extend(get_path_list(wav_dir, end="*.wav"))
|
|
51
|
+
|
|
52
|
+
rms_list = Parallel(n_jobs=64)(delayed(get_rms_vad)(wav_path) for wav_path in wav_path_list)
|
|
53
|
+
|
|
54
|
+
# 绘制时长分布直方图
|
|
55
|
+
plt.hist(rms_list, bins=100, edgecolor='black')
|
|
56
|
+
plt.title("RMS Distribution")
|
|
57
|
+
plt.xlabel("RMS (dB)")
|
|
58
|
+
plt.ylabel("number")
|
|
59
|
+
plt.grid(True)
|
|
60
|
+
plt.tight_layout()
|
|
61
|
+
plt.savefig("./png_dist/rms_distribution.png")
|
|
62
|
+
|
|
@@ -0,0 +1,218 @@
|
|
|
1
|
+
"""
|
|
2
|
+
频域分析模块
|
|
3
|
+
Spectral Analysis Module
|
|
4
|
+
|
|
5
|
+
提供音频频域特征提取和分析功能
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
import librosa
|
|
10
|
+
import scipy.signal
|
|
11
|
+
from scipy.fft import fft, fftfreq
|
|
12
|
+
from typing import Tuple, Optional, Union
|
|
13
|
+
import warnings
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class SpectralAnalyzer:
|
|
17
|
+
"""频谱分析器类"""
|
|
18
|
+
|
|
19
|
+
def __init__(self, sr: int = 22050, n_fft: int = 2048, hop_length: int = 512):
|
|
20
|
+
"""
|
|
21
|
+
初始化频谱分析器
|
|
22
|
+
|
|
23
|
+
Args:
|
|
24
|
+
sr: 采样率
|
|
25
|
+
n_fft: FFT窗口大小
|
|
26
|
+
hop_length: 跳跃长度
|
|
27
|
+
"""
|
|
28
|
+
self.sr = sr
|
|
29
|
+
self.n_fft = n_fft
|
|
30
|
+
self.hop_length = hop_length
|
|
31
|
+
|
|
32
|
+
def compute_stft(self, audio: np.ndarray) -> np.ndarray:
|
|
33
|
+
"""
|
|
34
|
+
计算短时傅里叶变换
|
|
35
|
+
|
|
36
|
+
Args:
|
|
37
|
+
audio: 音频信号
|
|
38
|
+
|
|
39
|
+
Returns:
|
|
40
|
+
STFT结果
|
|
41
|
+
"""
|
|
42
|
+
return librosa.stft(audio, n_fft=self.n_fft, hop_length=self.hop_length)
|
|
43
|
+
|
|
44
|
+
def compute_magnitude_spectrum(self, audio: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
|
45
|
+
"""
|
|
46
|
+
计算幅度谱
|
|
47
|
+
|
|
48
|
+
Args:
|
|
49
|
+
audio: 音频信号
|
|
50
|
+
|
|
51
|
+
Returns:
|
|
52
|
+
频率轴, 幅度谱
|
|
53
|
+
"""
|
|
54
|
+
spectrum = fft(audio)
|
|
55
|
+
magnitude = np.abs(spectrum)
|
|
56
|
+
freqs = fftfreq(len(audio), 1/self.sr)
|
|
57
|
+
|
|
58
|
+
# 只返回正频率部分
|
|
59
|
+
positive_freq_idx = freqs >= 0
|
|
60
|
+
return freqs[positive_freq_idx], magnitude[positive_freq_idx]
|
|
61
|
+
|
|
62
|
+
def spectral_centroid(self, audio: np.ndarray) -> np.ndarray:
|
|
63
|
+
"""
|
|
64
|
+
计算谱重心
|
|
65
|
+
|
|
66
|
+
Args:
|
|
67
|
+
audio: 音频信号
|
|
68
|
+
|
|
69
|
+
Returns:
|
|
70
|
+
谱重心数组
|
|
71
|
+
"""
|
|
72
|
+
return librosa.feature.spectral_centroid(
|
|
73
|
+
y=audio, sr=self.sr, hop_length=self.hop_length
|
|
74
|
+
)[0]
|
|
75
|
+
|
|
76
|
+
def spectral_rolloff(self, audio: np.ndarray, roll_percent: float = 0.85) -> np.ndarray:
|
|
77
|
+
"""
|
|
78
|
+
计算谱滚降
|
|
79
|
+
|
|
80
|
+
Args:
|
|
81
|
+
audio: 音频信号
|
|
82
|
+
roll_percent: 滚降百分比
|
|
83
|
+
|
|
84
|
+
Returns:
|
|
85
|
+
谱滚降数组
|
|
86
|
+
"""
|
|
87
|
+
return librosa.feature.spectral_rolloff(
|
|
88
|
+
y=audio, sr=self.sr, hop_length=self.hop_length, roll_percent=roll_percent
|
|
89
|
+
)[0]
|
|
90
|
+
|
|
91
|
+
def spectral_flatness(self, audio: np.ndarray) -> np.ndarray:
|
|
92
|
+
"""
|
|
93
|
+
计算谱平坦度
|
|
94
|
+
|
|
95
|
+
Args:
|
|
96
|
+
audio: 音频信号
|
|
97
|
+
|
|
98
|
+
Returns:
|
|
99
|
+
谱平坦度数组
|
|
100
|
+
"""
|
|
101
|
+
return librosa.feature.spectral_flatness(
|
|
102
|
+
y=audio, hop_length=self.hop_length
|
|
103
|
+
)[0]
|
|
104
|
+
|
|
105
|
+
def spectral_contrast(self, audio: np.ndarray, n_bands: int = 6) -> np.ndarray:
|
|
106
|
+
"""
|
|
107
|
+
计算谱对比度
|
|
108
|
+
|
|
109
|
+
Args:
|
|
110
|
+
audio: 音频信号
|
|
111
|
+
n_bands: 频段数量
|
|
112
|
+
|
|
113
|
+
Returns:
|
|
114
|
+
谱对比度矩阵
|
|
115
|
+
"""
|
|
116
|
+
return librosa.feature.spectral_contrast(
|
|
117
|
+
y=audio, sr=self.sr, hop_length=self.hop_length, n_bands=n_bands
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
def mfcc_features(self, audio: np.ndarray, n_mfcc: int = 13) -> np.ndarray:
|
|
121
|
+
"""
|
|
122
|
+
提取MFCC特征
|
|
123
|
+
|
|
124
|
+
Args:
|
|
125
|
+
audio: 音频信号
|
|
126
|
+
n_mfcc: MFCC系数数量
|
|
127
|
+
|
|
128
|
+
Returns:
|
|
129
|
+
MFCC特征矩阵
|
|
130
|
+
"""
|
|
131
|
+
return librosa.feature.mfcc(
|
|
132
|
+
y=audio, sr=self.sr, n_mfcc=n_mfcc, hop_length=self.hop_length
|
|
133
|
+
)
|
|
134
|
+
|
|
135
|
+
def mel_spectrogram(self, audio: np.ndarray, n_mels: int = 128) -> np.ndarray:
|
|
136
|
+
"""
|
|
137
|
+
计算梅尔频谱图
|
|
138
|
+
|
|
139
|
+
Args:
|
|
140
|
+
audio: 音频信号
|
|
141
|
+
n_mels: 梅尔滤波器组数量
|
|
142
|
+
|
|
143
|
+
Returns:
|
|
144
|
+
梅尔频谱图
|
|
145
|
+
"""
|
|
146
|
+
return librosa.feature.melspectrogram(
|
|
147
|
+
y=audio, sr=self.sr, n_mels=n_mels, hop_length=self.hop_length
|
|
148
|
+
)
|
|
149
|
+
|
|
150
|
+
def chroma_features(self, audio: np.ndarray) -> np.ndarray:
|
|
151
|
+
"""
|
|
152
|
+
提取色度特征
|
|
153
|
+
|
|
154
|
+
Args:
|
|
155
|
+
audio: 音频信号
|
|
156
|
+
|
|
157
|
+
Returns:
|
|
158
|
+
色度特征矩阵
|
|
159
|
+
"""
|
|
160
|
+
return librosa.feature.chroma_stft(
|
|
161
|
+
y=audio, sr=self.sr, hop_length=self.hop_length
|
|
162
|
+
)
|
|
163
|
+
|
|
164
|
+
|
|
165
|
+
def compute_spectral_features(audio: np.ndarray, sr: int = 22050) -> dict:
|
|
166
|
+
"""
|
|
167
|
+
计算完整的频域特征集合
|
|
168
|
+
|
|
169
|
+
Args:
|
|
170
|
+
audio: 音频信号
|
|
171
|
+
sr: 采样率
|
|
172
|
+
|
|
173
|
+
Returns:
|
|
174
|
+
包含各种频域特征的字典
|
|
175
|
+
"""
|
|
176
|
+
analyzer = SpectralAnalyzer(sr=sr)
|
|
177
|
+
|
|
178
|
+
features = {
|
|
179
|
+
'spectral_centroid': analyzer.spectral_centroid(audio),
|
|
180
|
+
'spectral_rolloff': analyzer.spectral_rolloff(audio),
|
|
181
|
+
'spectral_flatness': analyzer.spectral_flatness(audio),
|
|
182
|
+
'spectral_contrast': analyzer.spectral_contrast(audio),
|
|
183
|
+
'mfcc': analyzer.mfcc_features(audio),
|
|
184
|
+
'mel_spectrogram': analyzer.mel_spectrogram(audio),
|
|
185
|
+
'chroma': analyzer.chroma_features(audio)
|
|
186
|
+
}
|
|
187
|
+
|
|
188
|
+
return features
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
def frequency_domain_stats(audio: np.ndarray, sr: int = 22050) -> dict:
|
|
192
|
+
"""
|
|
193
|
+
计算频域统计信息
|
|
194
|
+
|
|
195
|
+
Args:
|
|
196
|
+
audio: 音频信号
|
|
197
|
+
sr: 采样率
|
|
198
|
+
|
|
199
|
+
Returns:
|
|
200
|
+
频域统计信息字典
|
|
201
|
+
"""
|
|
202
|
+
analyzer = SpectralAnalyzer(sr=sr)
|
|
203
|
+
freqs, magnitude = analyzer.compute_magnitude_spectrum(audio)
|
|
204
|
+
|
|
205
|
+
# 计算功率谱密度
|
|
206
|
+
power = magnitude ** 2
|
|
207
|
+
|
|
208
|
+
# 计算统计量
|
|
209
|
+
stats = {
|
|
210
|
+
'mean_frequency': np.average(freqs, weights=power),
|
|
211
|
+
'std_frequency': np.sqrt(np.average((freqs - np.average(freqs, weights=power))**2, weights=power)),
|
|
212
|
+
'peak_frequency': freqs[np.argmax(magnitude)],
|
|
213
|
+
'bandwidth': freqs[np.where(power > 0.5 * np.max(power))][-1] - freqs[np.where(power > 0.5 * np.max(power))][0],
|
|
214
|
+
'spectral_energy': np.sum(power),
|
|
215
|
+
'spectral_entropy': -np.sum((power/np.sum(power)) * np.log2(power/np.sum(power) + 1e-10))
|
|
216
|
+
}
|
|
217
|
+
|
|
218
|
+
return stats
|