neuro-sam 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- neuro_sam/__init__.py +1 -0
- neuro_sam/brightest_path_lib/__init__.py +5 -0
- neuro_sam/brightest_path_lib/algorithm/__init__.py +3 -0
- neuro_sam/brightest_path_lib/algorithm/astar.py +586 -0
- neuro_sam/brightest_path_lib/algorithm/waypointastar.py +449 -0
- neuro_sam/brightest_path_lib/algorithm/waypointastar_speedup.py +1007 -0
- neuro_sam/brightest_path_lib/connected_componen.py +329 -0
- neuro_sam/brightest_path_lib/cost/__init__.py +8 -0
- neuro_sam/brightest_path_lib/cost/cost.py +33 -0
- neuro_sam/brightest_path_lib/cost/reciprocal.py +90 -0
- neuro_sam/brightest_path_lib/cost/reciprocal_transonic.py +86 -0
- neuro_sam/brightest_path_lib/heuristic/__init__.py +2 -0
- neuro_sam/brightest_path_lib/heuristic/euclidean.py +101 -0
- neuro_sam/brightest_path_lib/heuristic/heuristic.py +29 -0
- neuro_sam/brightest_path_lib/image/__init__.py +1 -0
- neuro_sam/brightest_path_lib/image/stats.py +197 -0
- neuro_sam/brightest_path_lib/input/__init__.py +1 -0
- neuro_sam/brightest_path_lib/input/inputs.py +14 -0
- neuro_sam/brightest_path_lib/node/__init__.py +2 -0
- neuro_sam/brightest_path_lib/node/bidirectional_node.py +240 -0
- neuro_sam/brightest_path_lib/node/node.py +125 -0
- neuro_sam/brightest_path_lib/visualization/__init__.py +4 -0
- neuro_sam/brightest_path_lib/visualization/flythrough.py +133 -0
- neuro_sam/brightest_path_lib/visualization/flythrough_all.py +394 -0
- neuro_sam/brightest_path_lib/visualization/tube_data.py +385 -0
- neuro_sam/brightest_path_lib/visualization/tube_flythrough.py +227 -0
- neuro_sam/napari_utils/anisotropic_scaling.py +503 -0
- neuro_sam/napari_utils/color_utils.py +135 -0
- neuro_sam/napari_utils/contrasting_color_system.py +169 -0
- neuro_sam/napari_utils/main_widget.py +1016 -0
- neuro_sam/napari_utils/path_tracing_module.py +1016 -0
- neuro_sam/napari_utils/punet_widget.py +424 -0
- neuro_sam/napari_utils/segmentation_model.py +769 -0
- neuro_sam/napari_utils/segmentation_module.py +649 -0
- neuro_sam/napari_utils/visualization_module.py +574 -0
- neuro_sam/plugin.py +260 -0
- neuro_sam/punet/__init__.py +0 -0
- neuro_sam/punet/deepd3_model.py +231 -0
- neuro_sam/punet/prob_unet_deepd3.py +431 -0
- neuro_sam/punet/prob_unet_with_tversky.py +375 -0
- neuro_sam/punet/punet_inference.py +236 -0
- neuro_sam/punet/run_inference.py +145 -0
- neuro_sam/punet/unet_blocks.py +81 -0
- neuro_sam/punet/utils.py +52 -0
- neuro_sam-0.1.0.dist-info/METADATA +269 -0
- neuro_sam-0.1.0.dist-info/RECORD +93 -0
- neuro_sam-0.1.0.dist-info/WHEEL +5 -0
- neuro_sam-0.1.0.dist-info/entry_points.txt +2 -0
- neuro_sam-0.1.0.dist-info/licenses/LICENSE +21 -0
- neuro_sam-0.1.0.dist-info/top_level.txt +2 -0
- sam2/__init__.py +11 -0
- sam2/automatic_mask_generator.py +454 -0
- sam2/benchmark.py +92 -0
- sam2/build_sam.py +174 -0
- sam2/configs/sam2/sam2_hiera_b+.yaml +113 -0
- sam2/configs/sam2/sam2_hiera_l.yaml +117 -0
- sam2/configs/sam2/sam2_hiera_s.yaml +116 -0
- sam2/configs/sam2/sam2_hiera_t.yaml +118 -0
- sam2/configs/sam2.1/sam2.1_hiera_b+.yaml +116 -0
- sam2/configs/sam2.1/sam2.1_hiera_l.yaml +120 -0
- sam2/configs/sam2.1/sam2.1_hiera_s.yaml +119 -0
- sam2/configs/sam2.1/sam2.1_hiera_t.yaml +121 -0
- sam2/configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml +339 -0
- sam2/configs/train.yaml +335 -0
- sam2/modeling/__init__.py +5 -0
- sam2/modeling/backbones/__init__.py +5 -0
- sam2/modeling/backbones/hieradet.py +317 -0
- sam2/modeling/backbones/image_encoder.py +134 -0
- sam2/modeling/backbones/utils.py +93 -0
- sam2/modeling/memory_attention.py +169 -0
- sam2/modeling/memory_encoder.py +181 -0
- sam2/modeling/position_encoding.py +239 -0
- sam2/modeling/sam/__init__.py +5 -0
- sam2/modeling/sam/mask_decoder.py +295 -0
- sam2/modeling/sam/prompt_encoder.py +202 -0
- sam2/modeling/sam/transformer.py +311 -0
- sam2/modeling/sam2_base.py +911 -0
- sam2/modeling/sam2_utils.py +323 -0
- sam2/sam2.1_hiera_b+.yaml +116 -0
- sam2/sam2.1_hiera_l.yaml +120 -0
- sam2/sam2.1_hiera_s.yaml +119 -0
- sam2/sam2.1_hiera_t.yaml +121 -0
- sam2/sam2_hiera_b+.yaml +113 -0
- sam2/sam2_hiera_l.yaml +117 -0
- sam2/sam2_hiera_s.yaml +116 -0
- sam2/sam2_hiera_t.yaml +118 -0
- sam2/sam2_image_predictor.py +475 -0
- sam2/sam2_video_predictor.py +1222 -0
- sam2/sam2_video_predictor_legacy.py +1172 -0
- sam2/utils/__init__.py +5 -0
- sam2/utils/amg.py +348 -0
- sam2/utils/misc.py +349 -0
- sam2/utils/transforms.py +118 -0
|
@@ -0,0 +1,1222 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
# All rights reserved.
|
|
3
|
+
|
|
4
|
+
# This source code is licensed under the license found in the
|
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
|
6
|
+
|
|
7
|
+
import warnings
|
|
8
|
+
from collections import OrderedDict
|
|
9
|
+
|
|
10
|
+
import torch
|
|
11
|
+
import torch.nn.functional as F
|
|
12
|
+
|
|
13
|
+
from tqdm import tqdm
|
|
14
|
+
|
|
15
|
+
from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base
|
|
16
|
+
from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class SAM2VideoPredictor(SAM2Base):
|
|
20
|
+
"""The predictor class to handle user interactions and manage inference states."""
|
|
21
|
+
|
|
22
|
+
def __init__(
|
|
23
|
+
self,
|
|
24
|
+
fill_hole_area=0,
|
|
25
|
+
# whether to apply non-overlapping constraints on the output object masks
|
|
26
|
+
non_overlap_masks=False,
|
|
27
|
+
# whether to clear non-conditioning memory of the surrounding frames (which may contain outdated information) after adding correction clicks;
|
|
28
|
+
# note that this would only apply to *single-object tracking* unless `clear_non_cond_mem_for_multi_obj` is also set to True)
|
|
29
|
+
clear_non_cond_mem_around_input=False,
|
|
30
|
+
# if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click
|
|
31
|
+
# if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames
|
|
32
|
+
add_all_frames_to_correct_as_cond=False,
|
|
33
|
+
**kwargs,
|
|
34
|
+
):
|
|
35
|
+
super().__init__(**kwargs)
|
|
36
|
+
self.fill_hole_area = fill_hole_area
|
|
37
|
+
self.non_overlap_masks = non_overlap_masks
|
|
38
|
+
self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input
|
|
39
|
+
self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond
|
|
40
|
+
|
|
41
|
+
@torch.inference_mode()
|
|
42
|
+
def init_state(
|
|
43
|
+
self,
|
|
44
|
+
video_path,
|
|
45
|
+
offload_video_to_cpu=False,
|
|
46
|
+
offload_state_to_cpu=False,
|
|
47
|
+
async_loading_frames=False,
|
|
48
|
+
):
|
|
49
|
+
"""Initialize an inference state."""
|
|
50
|
+
compute_device = self.device # device of the model
|
|
51
|
+
images, video_height, video_width = load_video_frames(
|
|
52
|
+
video_path=video_path,
|
|
53
|
+
image_size=self.image_size,
|
|
54
|
+
offload_video_to_cpu=offload_video_to_cpu,
|
|
55
|
+
async_loading_frames=async_loading_frames,
|
|
56
|
+
compute_device=compute_device,
|
|
57
|
+
)
|
|
58
|
+
inference_state = {}
|
|
59
|
+
inference_state["images"] = images
|
|
60
|
+
inference_state["num_frames"] = len(images)
|
|
61
|
+
# whether to offload the video frames to CPU memory
|
|
62
|
+
# turning on this option saves the GPU memory with only a very small overhead
|
|
63
|
+
inference_state["offload_video_to_cpu"] = offload_video_to_cpu
|
|
64
|
+
# whether to offload the inference state to CPU memory
|
|
65
|
+
# turning on this option saves the GPU memory at the cost of a lower tracking fps
|
|
66
|
+
# (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object
|
|
67
|
+
# and from 24 to 21 when tracking two objects)
|
|
68
|
+
inference_state["offload_state_to_cpu"] = offload_state_to_cpu
|
|
69
|
+
# the original video height and width, used for resizing final output scores
|
|
70
|
+
inference_state["video_height"] = video_height
|
|
71
|
+
inference_state["video_width"] = video_width
|
|
72
|
+
inference_state["device"] = compute_device
|
|
73
|
+
if offload_state_to_cpu:
|
|
74
|
+
inference_state["storage_device"] = torch.device("cpu")
|
|
75
|
+
else:
|
|
76
|
+
inference_state["storage_device"] = compute_device
|
|
77
|
+
# inputs on each frame
|
|
78
|
+
inference_state["point_inputs_per_obj"] = {}
|
|
79
|
+
inference_state["mask_inputs_per_obj"] = {}
|
|
80
|
+
# visual features on a small number of recently visited frames for quick interactions
|
|
81
|
+
inference_state["cached_features"] = {}
|
|
82
|
+
# values that don't change across frames (so we only need to hold one copy of them)
|
|
83
|
+
inference_state["constants"] = {}
|
|
84
|
+
# mapping between client-side object id and model-side object index
|
|
85
|
+
inference_state["obj_id_to_idx"] = OrderedDict()
|
|
86
|
+
inference_state["obj_idx_to_id"] = OrderedDict()
|
|
87
|
+
inference_state["obj_ids"] = []
|
|
88
|
+
# Slice (view) of each object tracking results, sharing the same memory with "output_dict"
|
|
89
|
+
inference_state["output_dict_per_obj"] = {}
|
|
90
|
+
# A temporary storage to hold new outputs when user interact with a frame
|
|
91
|
+
# to add clicks or mask (it's merged into "output_dict" before propagation starts)
|
|
92
|
+
inference_state["temp_output_dict_per_obj"] = {}
|
|
93
|
+
# Frames that already holds consolidated outputs from click or mask inputs
|
|
94
|
+
# (we directly use their consolidated outputs during tracking)
|
|
95
|
+
# metadata for each tracking frame (e.g. which direction it's tracked)
|
|
96
|
+
inference_state["frames_tracked_per_obj"] = {}
|
|
97
|
+
# Warm up the visual backbone and cache the image feature on frame 0
|
|
98
|
+
self._get_image_feature(inference_state, frame_idx=0, batch_size=1)
|
|
99
|
+
return inference_state
|
|
100
|
+
|
|
101
|
+
@classmethod
|
|
102
|
+
def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2VideoPredictor":
|
|
103
|
+
"""
|
|
104
|
+
Load a pretrained model from the Hugging Face hub.
|
|
105
|
+
|
|
106
|
+
Arguments:
|
|
107
|
+
model_id (str): The Hugging Face repository ID.
|
|
108
|
+
**kwargs: Additional arguments to pass to the model constructor.
|
|
109
|
+
|
|
110
|
+
Returns:
|
|
111
|
+
(SAM2VideoPredictor): The loaded model.
|
|
112
|
+
"""
|
|
113
|
+
from sam2.build_sam import build_sam2_video_predictor_hf
|
|
114
|
+
|
|
115
|
+
sam_model = build_sam2_video_predictor_hf(model_id, **kwargs)
|
|
116
|
+
return sam_model
|
|
117
|
+
|
|
118
|
+
def _obj_id_to_idx(self, inference_state, obj_id):
|
|
119
|
+
"""Map client-side object id to model-side object index."""
|
|
120
|
+
obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None)
|
|
121
|
+
if obj_idx is not None:
|
|
122
|
+
return obj_idx
|
|
123
|
+
|
|
124
|
+
# We always allow adding new objects (including after tracking starts).
|
|
125
|
+
allow_new_object = True
|
|
126
|
+
if allow_new_object:
|
|
127
|
+
# get the next object slot
|
|
128
|
+
obj_idx = len(inference_state["obj_id_to_idx"])
|
|
129
|
+
inference_state["obj_id_to_idx"][obj_id] = obj_idx
|
|
130
|
+
inference_state["obj_idx_to_id"][obj_idx] = obj_id
|
|
131
|
+
inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"])
|
|
132
|
+
# set up input and output structures for this object
|
|
133
|
+
inference_state["point_inputs_per_obj"][obj_idx] = {}
|
|
134
|
+
inference_state["mask_inputs_per_obj"][obj_idx] = {}
|
|
135
|
+
inference_state["output_dict_per_obj"][obj_idx] = {
|
|
136
|
+
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
137
|
+
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
138
|
+
}
|
|
139
|
+
inference_state["temp_output_dict_per_obj"][obj_idx] = {
|
|
140
|
+
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
141
|
+
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
142
|
+
}
|
|
143
|
+
inference_state["frames_tracked_per_obj"][obj_idx] = {}
|
|
144
|
+
return obj_idx
|
|
145
|
+
else:
|
|
146
|
+
raise RuntimeError(
|
|
147
|
+
f"Cannot add new object id {obj_id} after tracking starts. "
|
|
148
|
+
f"All existing object ids: {inference_state['obj_ids']}. "
|
|
149
|
+
f"Please call 'reset_state' to restart from scratch."
|
|
150
|
+
)
|
|
151
|
+
|
|
152
|
+
def _obj_idx_to_id(self, inference_state, obj_idx):
|
|
153
|
+
"""Map model-side object index to client-side object id."""
|
|
154
|
+
return inference_state["obj_idx_to_id"][obj_idx]
|
|
155
|
+
|
|
156
|
+
def _get_obj_num(self, inference_state):
|
|
157
|
+
"""Get the total number of unique object ids received so far in this session."""
|
|
158
|
+
return len(inference_state["obj_idx_to_id"])
|
|
159
|
+
|
|
160
|
+
@torch.inference_mode()
|
|
161
|
+
def add_new_points_or_box(
|
|
162
|
+
self,
|
|
163
|
+
inference_state,
|
|
164
|
+
frame_idx,
|
|
165
|
+
obj_id,
|
|
166
|
+
points=None,
|
|
167
|
+
labels=None,
|
|
168
|
+
clear_old_points=True,
|
|
169
|
+
normalize_coords=True,
|
|
170
|
+
box=None,
|
|
171
|
+
):
|
|
172
|
+
"""Add new points to a frame."""
|
|
173
|
+
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
|
|
174
|
+
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
|
|
175
|
+
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
|
|
176
|
+
|
|
177
|
+
if (points is not None) != (labels is not None):
|
|
178
|
+
raise ValueError("points and labels must be provided together")
|
|
179
|
+
if points is None and box is None:
|
|
180
|
+
raise ValueError("at least one of points or box must be provided as input")
|
|
181
|
+
|
|
182
|
+
if points is None:
|
|
183
|
+
points = torch.zeros(0, 2, dtype=torch.float32)
|
|
184
|
+
elif not isinstance(points, torch.Tensor):
|
|
185
|
+
points = torch.tensor(points, dtype=torch.float32)
|
|
186
|
+
if labels is None:
|
|
187
|
+
labels = torch.zeros(0, dtype=torch.int32)
|
|
188
|
+
elif not isinstance(labels, torch.Tensor):
|
|
189
|
+
labels = torch.tensor(labels, dtype=torch.int32)
|
|
190
|
+
if points.dim() == 2:
|
|
191
|
+
points = points.unsqueeze(0) # add batch dimension
|
|
192
|
+
if labels.dim() == 1:
|
|
193
|
+
labels = labels.unsqueeze(0) # add batch dimension
|
|
194
|
+
|
|
195
|
+
# If `box` is provided, we add it as the first two points with labels 2 and 3
|
|
196
|
+
# along with the user-provided points (consistent with how SAM 2 is trained).
|
|
197
|
+
if box is not None:
|
|
198
|
+
if not clear_old_points:
|
|
199
|
+
raise ValueError(
|
|
200
|
+
"cannot add box without clearing old points, since "
|
|
201
|
+
"box prompt must be provided before any point prompt "
|
|
202
|
+
"(please use clear_old_points=True instead)"
|
|
203
|
+
)
|
|
204
|
+
if not isinstance(box, torch.Tensor):
|
|
205
|
+
box = torch.tensor(box, dtype=torch.float32, device=points.device)
|
|
206
|
+
box_coords = box.reshape(1, 2, 2)
|
|
207
|
+
box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device)
|
|
208
|
+
box_labels = box_labels.reshape(1, 2)
|
|
209
|
+
points = torch.cat([box_coords, points], dim=1)
|
|
210
|
+
labels = torch.cat([box_labels, labels], dim=1)
|
|
211
|
+
|
|
212
|
+
if normalize_coords:
|
|
213
|
+
video_H = inference_state["video_height"]
|
|
214
|
+
video_W = inference_state["video_width"]
|
|
215
|
+
points = points / torch.tensor([video_W, video_H]).to(points.device)
|
|
216
|
+
# scale the (normalized) coordinates by the model's internal image size
|
|
217
|
+
points = points * self.image_size
|
|
218
|
+
points = points.to(inference_state["device"])
|
|
219
|
+
labels = labels.to(inference_state["device"])
|
|
220
|
+
|
|
221
|
+
if not clear_old_points:
|
|
222
|
+
point_inputs = point_inputs_per_frame.get(frame_idx, None)
|
|
223
|
+
else:
|
|
224
|
+
point_inputs = None
|
|
225
|
+
point_inputs = concat_points(point_inputs, points, labels)
|
|
226
|
+
|
|
227
|
+
point_inputs_per_frame[frame_idx] = point_inputs
|
|
228
|
+
mask_inputs_per_frame.pop(frame_idx, None)
|
|
229
|
+
# If this frame hasn't been tracked before, we treat it as an initial conditioning
|
|
230
|
+
# frame, meaning that the inputs points are to generate segments on this frame without
|
|
231
|
+
# using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
|
|
232
|
+
# the input points will be used to correct the already tracked masks.
|
|
233
|
+
obj_frames_tracked = inference_state["frames_tracked_per_obj"][obj_idx]
|
|
234
|
+
is_init_cond_frame = frame_idx not in obj_frames_tracked
|
|
235
|
+
# whether to track in reverse time order
|
|
236
|
+
if is_init_cond_frame:
|
|
237
|
+
reverse = False
|
|
238
|
+
else:
|
|
239
|
+
reverse = obj_frames_tracked[frame_idx]["reverse"]
|
|
240
|
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
241
|
+
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
|
242
|
+
# Add a frame to conditioning output if it's an initial conditioning frame or
|
|
243
|
+
# if the model sees all frames receiving clicks/mask as conditioning frames.
|
|
244
|
+
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
|
|
245
|
+
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
|
246
|
+
|
|
247
|
+
# Get any previously predicted mask logits on this object and feed it along with
|
|
248
|
+
# the new clicks into the SAM mask decoder.
|
|
249
|
+
prev_sam_mask_logits = None
|
|
250
|
+
# lookup temporary output dict first, which contains the most recent output
|
|
251
|
+
# (if not found, then lookup conditioning and non-conditioning frame output)
|
|
252
|
+
prev_out = obj_temp_output_dict[storage_key].get(frame_idx)
|
|
253
|
+
if prev_out is None:
|
|
254
|
+
prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx)
|
|
255
|
+
if prev_out is None:
|
|
256
|
+
prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx)
|
|
257
|
+
|
|
258
|
+
if prev_out is not None and prev_out["pred_masks"] is not None:
|
|
259
|
+
device = inference_state["device"]
|
|
260
|
+
prev_sam_mask_logits = prev_out["pred_masks"].to(device, non_blocking=True)
|
|
261
|
+
# Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues.
|
|
262
|
+
prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0)
|
|
263
|
+
current_out, _ = self._run_single_frame_inference(
|
|
264
|
+
inference_state=inference_state,
|
|
265
|
+
output_dict=obj_output_dict, # run on the slice of a single object
|
|
266
|
+
frame_idx=frame_idx,
|
|
267
|
+
batch_size=1, # run on the slice of a single object
|
|
268
|
+
is_init_cond_frame=is_init_cond_frame,
|
|
269
|
+
point_inputs=point_inputs,
|
|
270
|
+
mask_inputs=None,
|
|
271
|
+
reverse=reverse,
|
|
272
|
+
# Skip the memory encoder when adding clicks or mask. We execute the memory encoder
|
|
273
|
+
# at the beginning of `propagate_in_video` (after user finalize their clicks). This
|
|
274
|
+
# allows us to enforce non-overlapping constraints on all objects before encoding
|
|
275
|
+
# them into memory.
|
|
276
|
+
run_mem_encoder=False,
|
|
277
|
+
prev_sam_mask_logits=prev_sam_mask_logits,
|
|
278
|
+
)
|
|
279
|
+
# Add the output to the output dict (to be used as future memory)
|
|
280
|
+
obj_temp_output_dict[storage_key][frame_idx] = current_out
|
|
281
|
+
|
|
282
|
+
# Resize the output mask to the original video resolution
|
|
283
|
+
obj_ids = inference_state["obj_ids"]
|
|
284
|
+
consolidated_out = self._consolidate_temp_output_across_obj(
|
|
285
|
+
inference_state,
|
|
286
|
+
frame_idx,
|
|
287
|
+
is_cond=is_cond,
|
|
288
|
+
consolidate_at_video_res=True,
|
|
289
|
+
)
|
|
290
|
+
_, video_res_masks = self._get_orig_video_res_output(
|
|
291
|
+
inference_state, consolidated_out["pred_masks_video_res"]
|
|
292
|
+
)
|
|
293
|
+
return frame_idx, obj_ids, video_res_masks
|
|
294
|
+
|
|
295
|
+
def add_new_points(self, *args, **kwargs):
|
|
296
|
+
"""Deprecated method. Please use `add_new_points_or_box` instead."""
|
|
297
|
+
return self.add_new_points_or_box(*args, **kwargs)
|
|
298
|
+
|
|
299
|
+
@torch.inference_mode()
|
|
300
|
+
def add_new_mask(
|
|
301
|
+
self,
|
|
302
|
+
inference_state,
|
|
303
|
+
frame_idx,
|
|
304
|
+
obj_id,
|
|
305
|
+
mask,
|
|
306
|
+
):
|
|
307
|
+
"""Add new mask to a frame."""
|
|
308
|
+
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
|
|
309
|
+
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
|
|
310
|
+
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
|
|
311
|
+
|
|
312
|
+
if not isinstance(mask, torch.Tensor):
|
|
313
|
+
mask = torch.tensor(mask, dtype=torch.bool)
|
|
314
|
+
assert mask.dim() == 2
|
|
315
|
+
mask_H, mask_W = mask.shape
|
|
316
|
+
mask_inputs_orig = mask[None, None] # add batch and channel dimension
|
|
317
|
+
mask_inputs_orig = mask_inputs_orig.float().to(inference_state["device"])
|
|
318
|
+
|
|
319
|
+
# resize the mask if it doesn't match the model's image size
|
|
320
|
+
if mask_H != self.image_size or mask_W != self.image_size:
|
|
321
|
+
mask_inputs = torch.nn.functional.interpolate(
|
|
322
|
+
mask_inputs_orig,
|
|
323
|
+
size=(self.image_size, self.image_size),
|
|
324
|
+
align_corners=False,
|
|
325
|
+
mode="bilinear",
|
|
326
|
+
antialias=True, # use antialias for downsampling
|
|
327
|
+
)
|
|
328
|
+
mask_inputs = (mask_inputs >= 0.5).float()
|
|
329
|
+
else:
|
|
330
|
+
mask_inputs = mask_inputs_orig
|
|
331
|
+
|
|
332
|
+
mask_inputs_per_frame[frame_idx] = mask_inputs
|
|
333
|
+
point_inputs_per_frame.pop(frame_idx, None)
|
|
334
|
+
# If this frame hasn't been tracked before, we treat it as an initial conditioning
|
|
335
|
+
# frame, meaning that the inputs points are to generate segments on this frame without
|
|
336
|
+
# using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
|
|
337
|
+
# the input points will be used to correct the already tracked masks.
|
|
338
|
+
obj_frames_tracked = inference_state["frames_tracked_per_obj"][obj_idx]
|
|
339
|
+
is_init_cond_frame = frame_idx not in obj_frames_tracked
|
|
340
|
+
# whether to track in reverse time order
|
|
341
|
+
if is_init_cond_frame:
|
|
342
|
+
reverse = False
|
|
343
|
+
else:
|
|
344
|
+
reverse = obj_frames_tracked[frame_idx]["reverse"]
|
|
345
|
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
346
|
+
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
|
347
|
+
# Add a frame to conditioning output if it's an initial conditioning frame or
|
|
348
|
+
# if the model sees all frames receiving clicks/mask as conditioning frames.
|
|
349
|
+
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
|
|
350
|
+
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
|
351
|
+
|
|
352
|
+
current_out, _ = self._run_single_frame_inference(
|
|
353
|
+
inference_state=inference_state,
|
|
354
|
+
output_dict=obj_output_dict, # run on the slice of a single object
|
|
355
|
+
frame_idx=frame_idx,
|
|
356
|
+
batch_size=1, # run on the slice of a single object
|
|
357
|
+
is_init_cond_frame=is_init_cond_frame,
|
|
358
|
+
point_inputs=None,
|
|
359
|
+
mask_inputs=mask_inputs,
|
|
360
|
+
reverse=reverse,
|
|
361
|
+
# Skip the memory encoder when adding clicks or mask. We execute the memory encoder
|
|
362
|
+
# at the beginning of `propagate_in_video` (after user finalize their clicks). This
|
|
363
|
+
# allows us to enforce non-overlapping constraints on all objects before encoding
|
|
364
|
+
# them into memory.
|
|
365
|
+
run_mem_encoder=False,
|
|
366
|
+
)
|
|
367
|
+
# Add the output to the output dict (to be used as future memory)
|
|
368
|
+
obj_temp_output_dict[storage_key][frame_idx] = current_out
|
|
369
|
+
|
|
370
|
+
# Resize the output mask to the original video resolution
|
|
371
|
+
obj_ids = inference_state["obj_ids"]
|
|
372
|
+
consolidated_out = self._consolidate_temp_output_across_obj(
|
|
373
|
+
inference_state,
|
|
374
|
+
frame_idx,
|
|
375
|
+
is_cond=is_cond,
|
|
376
|
+
consolidate_at_video_res=True,
|
|
377
|
+
)
|
|
378
|
+
_, video_res_masks = self._get_orig_video_res_output(
|
|
379
|
+
inference_state, consolidated_out["pred_masks_video_res"]
|
|
380
|
+
)
|
|
381
|
+
return frame_idx, obj_ids, video_res_masks
|
|
382
|
+
|
|
383
|
+
def _get_orig_video_res_output(self, inference_state, any_res_masks):
|
|
384
|
+
"""
|
|
385
|
+
Resize the object scores to the original video resolution (video_res_masks)
|
|
386
|
+
and apply non-overlapping constraints for final output.
|
|
387
|
+
"""
|
|
388
|
+
device = inference_state["device"]
|
|
389
|
+
video_H = inference_state["video_height"]
|
|
390
|
+
video_W = inference_state["video_width"]
|
|
391
|
+
any_res_masks = any_res_masks.to(device, non_blocking=True)
|
|
392
|
+
if any_res_masks.shape[-2:] == (video_H, video_W):
|
|
393
|
+
video_res_masks = any_res_masks
|
|
394
|
+
else:
|
|
395
|
+
video_res_masks = torch.nn.functional.interpolate(
|
|
396
|
+
any_res_masks,
|
|
397
|
+
size=(video_H, video_W),
|
|
398
|
+
mode="bilinear",
|
|
399
|
+
align_corners=False,
|
|
400
|
+
)
|
|
401
|
+
if self.non_overlap_masks:
|
|
402
|
+
video_res_masks = self._apply_non_overlapping_constraints(video_res_masks)
|
|
403
|
+
return any_res_masks, video_res_masks
|
|
404
|
+
|
|
405
|
+
def _consolidate_temp_output_across_obj(
|
|
406
|
+
self,
|
|
407
|
+
inference_state,
|
|
408
|
+
frame_idx,
|
|
409
|
+
is_cond,
|
|
410
|
+
consolidate_at_video_res=False,
|
|
411
|
+
):
|
|
412
|
+
"""
|
|
413
|
+
Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on
|
|
414
|
+
a frame into a single output for all objects, including
|
|
415
|
+
1) fill any missing objects either from `output_dict_per_obj` (if they exist in
|
|
416
|
+
`output_dict_per_obj` for this frame) or leave them as placeholder values
|
|
417
|
+
(if they don't exist in `output_dict_per_obj` for this frame);
|
|
418
|
+
2) if specified, rerun memory encoder after apply non-overlapping constraints
|
|
419
|
+
on the object scores.
|
|
420
|
+
"""
|
|
421
|
+
batch_size = self._get_obj_num(inference_state)
|
|
422
|
+
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
|
423
|
+
# Optionally, we allow consolidating the temporary outputs at the original
|
|
424
|
+
# video resolution (to provide a better editing experience for mask prompts).
|
|
425
|
+
if consolidate_at_video_res:
|
|
426
|
+
consolidated_H = inference_state["video_height"]
|
|
427
|
+
consolidated_W = inference_state["video_width"]
|
|
428
|
+
consolidated_mask_key = "pred_masks_video_res"
|
|
429
|
+
else:
|
|
430
|
+
consolidated_H = consolidated_W = self.image_size // 4
|
|
431
|
+
consolidated_mask_key = "pred_masks"
|
|
432
|
+
|
|
433
|
+
# Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc"
|
|
434
|
+
# will be added when rerunning the memory encoder after applying non-overlapping
|
|
435
|
+
# constraints to object scores. Its "pred_masks" are prefilled with a large
|
|
436
|
+
# negative value (NO_OBJ_SCORE) to represent missing objects.
|
|
437
|
+
consolidated_out = {
|
|
438
|
+
consolidated_mask_key: torch.full(
|
|
439
|
+
size=(batch_size, 1, consolidated_H, consolidated_W),
|
|
440
|
+
fill_value=NO_OBJ_SCORE,
|
|
441
|
+
dtype=torch.float32,
|
|
442
|
+
device=inference_state["storage_device"],
|
|
443
|
+
),
|
|
444
|
+
}
|
|
445
|
+
for obj_idx in range(batch_size):
|
|
446
|
+
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
|
447
|
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
448
|
+
out = obj_temp_output_dict[storage_key].get(frame_idx, None)
|
|
449
|
+
# If the object doesn't appear in "temp_output_dict_per_obj" on this frame,
|
|
450
|
+
# we fall back and look up its previous output in "output_dict_per_obj".
|
|
451
|
+
# We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in
|
|
452
|
+
# "output_dict_per_obj" to find a previous output for this object.
|
|
453
|
+
if out is None:
|
|
454
|
+
out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None)
|
|
455
|
+
if out is None:
|
|
456
|
+
out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None)
|
|
457
|
+
# If the object doesn't appear in "output_dict_per_obj" either, we skip it
|
|
458
|
+
# and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE
|
|
459
|
+
# placeholder above) and set its object pointer to be a dummy pointer.
|
|
460
|
+
if out is None:
|
|
461
|
+
continue
|
|
462
|
+
# Add the temporary object output mask to consolidated output mask
|
|
463
|
+
obj_mask = out["pred_masks"]
|
|
464
|
+
consolidated_pred_masks = consolidated_out[consolidated_mask_key]
|
|
465
|
+
if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]:
|
|
466
|
+
consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask
|
|
467
|
+
else:
|
|
468
|
+
# Resize first if temporary object mask has a different resolution
|
|
469
|
+
resized_obj_mask = torch.nn.functional.interpolate(
|
|
470
|
+
obj_mask,
|
|
471
|
+
size=consolidated_pred_masks.shape[-2:],
|
|
472
|
+
mode="bilinear",
|
|
473
|
+
align_corners=False,
|
|
474
|
+
)
|
|
475
|
+
consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask
|
|
476
|
+
|
|
477
|
+
return consolidated_out
|
|
478
|
+
|
|
479
|
+
@torch.inference_mode()
|
|
480
|
+
def propagate_in_video_preflight(self, inference_state):
|
|
481
|
+
"""Prepare inference_state and consolidate temporary outputs before tracking."""
|
|
482
|
+
# Check and make sure that every object has received input points or masks.
|
|
483
|
+
batch_size = self._get_obj_num(inference_state)
|
|
484
|
+
if batch_size == 0:
|
|
485
|
+
raise RuntimeError(
|
|
486
|
+
"No input points or masks are provided for any object; please add inputs first."
|
|
487
|
+
)
|
|
488
|
+
|
|
489
|
+
# Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and
|
|
490
|
+
# add them into "output_dict".
|
|
491
|
+
for obj_idx in range(batch_size):
|
|
492
|
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
493
|
+
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
|
494
|
+
for is_cond in [False, True]:
|
|
495
|
+
# Separately consolidate conditioning and non-conditioning temp outputs
|
|
496
|
+
storage_key = (
|
|
497
|
+
"cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
|
498
|
+
)
|
|
499
|
+
# Find all the frames that contain temporary outputs for any objects
|
|
500
|
+
# (these should be the frames that have just received clicks for mask inputs
|
|
501
|
+
# via `add_new_points_or_box` or `add_new_mask`)
|
|
502
|
+
for frame_idx, out in obj_temp_output_dict[storage_key].items():
|
|
503
|
+
# Run memory encoder on the temporary outputs (if the memory feature is missing)
|
|
504
|
+
if out["maskmem_features"] is None:
|
|
505
|
+
high_res_masks = torch.nn.functional.interpolate(
|
|
506
|
+
out["pred_masks"].to(inference_state["device"]),
|
|
507
|
+
size=(self.image_size, self.image_size),
|
|
508
|
+
mode="bilinear",
|
|
509
|
+
align_corners=False,
|
|
510
|
+
)
|
|
511
|
+
maskmem_features, maskmem_pos_enc = self._run_memory_encoder(
|
|
512
|
+
inference_state=inference_state,
|
|
513
|
+
frame_idx=frame_idx,
|
|
514
|
+
batch_size=1, # run on the slice of a single object
|
|
515
|
+
high_res_masks=high_res_masks,
|
|
516
|
+
object_score_logits=out["object_score_logits"],
|
|
517
|
+
# these frames are what the user interacted with
|
|
518
|
+
is_mask_from_pts=True,
|
|
519
|
+
)
|
|
520
|
+
out["maskmem_features"] = maskmem_features
|
|
521
|
+
out["maskmem_pos_enc"] = maskmem_pos_enc
|
|
522
|
+
|
|
523
|
+
obj_output_dict[storage_key][frame_idx] = out
|
|
524
|
+
if self.clear_non_cond_mem_around_input:
|
|
525
|
+
# clear non-conditioning memory of the surrounding frames
|
|
526
|
+
self._clear_obj_non_cond_mem_around_input(
|
|
527
|
+
inference_state, frame_idx, obj_idx
|
|
528
|
+
)
|
|
529
|
+
|
|
530
|
+
# clear temporary outputs in `temp_output_dict_per_obj`
|
|
531
|
+
obj_temp_output_dict[storage_key].clear()
|
|
532
|
+
|
|
533
|
+
# check and make sure that every object has received input points or masks
|
|
534
|
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
535
|
+
if len(obj_output_dict["cond_frame_outputs"]) == 0:
|
|
536
|
+
obj_id = self._obj_idx_to_id(inference_state, obj_idx)
|
|
537
|
+
raise RuntimeError(
|
|
538
|
+
f"No input points or masks are provided for object id {obj_id}; please add inputs first."
|
|
539
|
+
)
|
|
540
|
+
# edge case: if an output is added to "cond_frame_outputs", we remove any prior
|
|
541
|
+
# output on the same frame in "non_cond_frame_outputs"
|
|
542
|
+
for frame_idx in obj_output_dict["cond_frame_outputs"]:
|
|
543
|
+
obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
|
|
544
|
+
|
|
545
|
+
@torch.inference_mode()
|
|
546
|
+
def propagate_in_video(
|
|
547
|
+
self,
|
|
548
|
+
inference_state,
|
|
549
|
+
start_frame_idx=None,
|
|
550
|
+
max_frame_num_to_track=None,
|
|
551
|
+
reverse=False,
|
|
552
|
+
):
|
|
553
|
+
"""Propagate the input points across frames to track in the entire video."""
|
|
554
|
+
self.propagate_in_video_preflight(inference_state)
|
|
555
|
+
|
|
556
|
+
obj_ids = inference_state["obj_ids"]
|
|
557
|
+
num_frames = inference_state["num_frames"]
|
|
558
|
+
batch_size = self._get_obj_num(inference_state)
|
|
559
|
+
|
|
560
|
+
# set start index, end index, and processing order
|
|
561
|
+
if start_frame_idx is None:
|
|
562
|
+
# default: start from the earliest frame with input points
|
|
563
|
+
start_frame_idx = min(
|
|
564
|
+
t
|
|
565
|
+
for obj_output_dict in inference_state["output_dict_per_obj"].values()
|
|
566
|
+
for t in obj_output_dict["cond_frame_outputs"]
|
|
567
|
+
)
|
|
568
|
+
if max_frame_num_to_track is None:
|
|
569
|
+
# default: track all the frames in the video
|
|
570
|
+
max_frame_num_to_track = num_frames
|
|
571
|
+
if reverse:
|
|
572
|
+
end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0)
|
|
573
|
+
if start_frame_idx > 0:
|
|
574
|
+
processing_order = range(start_frame_idx, end_frame_idx - 1, -1)
|
|
575
|
+
else:
|
|
576
|
+
processing_order = [] # skip reverse tracking if starting from frame 0
|
|
577
|
+
else:
|
|
578
|
+
end_frame_idx = min(
|
|
579
|
+
start_frame_idx + max_frame_num_to_track, num_frames - 1
|
|
580
|
+
)
|
|
581
|
+
processing_order = range(start_frame_idx, end_frame_idx + 1)
|
|
582
|
+
|
|
583
|
+
for frame_idx in tqdm(processing_order, desc="propagate in video"):
|
|
584
|
+
pred_masks_per_obj = [None] * batch_size
|
|
585
|
+
for obj_idx in range(batch_size):
|
|
586
|
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
587
|
+
# We skip those frames already in consolidated outputs (these are frames
|
|
588
|
+
# that received input clicks or mask). Note that we cannot directly run
|
|
589
|
+
# batched forward on them via `_run_single_frame_inference` because the
|
|
590
|
+
# number of clicks on each object might be different.
|
|
591
|
+
if frame_idx in obj_output_dict["cond_frame_outputs"]:
|
|
592
|
+
storage_key = "cond_frame_outputs"
|
|
593
|
+
current_out = obj_output_dict[storage_key][frame_idx]
|
|
594
|
+
pred_masks = current_out["pred_masks"]
|
|
595
|
+
if self.clear_non_cond_mem_around_input:
|
|
596
|
+
# clear non-conditioning memory of the surrounding frames
|
|
597
|
+
self._clear_obj_non_cond_mem_around_input(
|
|
598
|
+
inference_state, frame_idx, obj_idx
|
|
599
|
+
)
|
|
600
|
+
else:
|
|
601
|
+
storage_key = "non_cond_frame_outputs"
|
|
602
|
+
current_out, pred_masks = self._run_single_frame_inference(
|
|
603
|
+
inference_state=inference_state,
|
|
604
|
+
output_dict=obj_output_dict,
|
|
605
|
+
frame_idx=frame_idx,
|
|
606
|
+
batch_size=1, # run on the slice of a single object
|
|
607
|
+
is_init_cond_frame=False,
|
|
608
|
+
point_inputs=None,
|
|
609
|
+
mask_inputs=None,
|
|
610
|
+
reverse=reverse,
|
|
611
|
+
run_mem_encoder=True,
|
|
612
|
+
)
|
|
613
|
+
obj_output_dict[storage_key][frame_idx] = current_out
|
|
614
|
+
|
|
615
|
+
inference_state["frames_tracked_per_obj"][obj_idx][frame_idx] = {
|
|
616
|
+
"reverse": reverse
|
|
617
|
+
}
|
|
618
|
+
pred_masks_per_obj[obj_idx] = pred_masks
|
|
619
|
+
|
|
620
|
+
# Resize the output mask to the original video resolution (we directly use
|
|
621
|
+
# the mask scores on GPU for output to avoid any CPU conversion in between)
|
|
622
|
+
if len(pred_masks_per_obj) > 1:
|
|
623
|
+
all_pred_masks = torch.cat(pred_masks_per_obj, dim=0)
|
|
624
|
+
else:
|
|
625
|
+
all_pred_masks = pred_masks_per_obj[0]
|
|
626
|
+
_, video_res_masks = self._get_orig_video_res_output(
|
|
627
|
+
inference_state, all_pred_masks
|
|
628
|
+
)
|
|
629
|
+
yield frame_idx, obj_ids, video_res_masks
|
|
630
|
+
|
|
631
|
+
@torch.inference_mode()
|
|
632
|
+
def clear_all_prompts_in_frame(
|
|
633
|
+
self, inference_state, frame_idx, obj_id, need_output=True
|
|
634
|
+
):
|
|
635
|
+
"""Remove all input points or mask in a specific frame for a given object."""
|
|
636
|
+
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
|
|
637
|
+
|
|
638
|
+
# Clear the conditioning information on the given frame
|
|
639
|
+
inference_state["point_inputs_per_obj"][obj_idx].pop(frame_idx, None)
|
|
640
|
+
inference_state["mask_inputs_per_obj"][obj_idx].pop(frame_idx, None)
|
|
641
|
+
|
|
642
|
+
temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
|
|
643
|
+
temp_output_dict_per_obj[obj_idx]["cond_frame_outputs"].pop(frame_idx, None)
|
|
644
|
+
temp_output_dict_per_obj[obj_idx]["non_cond_frame_outputs"].pop(frame_idx, None)
|
|
645
|
+
|
|
646
|
+
# Remove the frame's conditioning output (possibly downgrading it to non-conditioning)
|
|
647
|
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
648
|
+
out = obj_output_dict["cond_frame_outputs"].pop(frame_idx, None)
|
|
649
|
+
if out is not None:
|
|
650
|
+
# The frame is not a conditioning frame anymore since it's not receiving inputs,
|
|
651
|
+
# so we "downgrade" its output (if exists) to a non-conditioning frame output.
|
|
652
|
+
obj_output_dict["non_cond_frame_outputs"][frame_idx] = out
|
|
653
|
+
inference_state["frames_tracked_per_obj"][obj_idx].pop(frame_idx, None)
|
|
654
|
+
|
|
655
|
+
if not need_output:
|
|
656
|
+
return
|
|
657
|
+
# Finally, output updated masks per object (after removing the inputs above)
|
|
658
|
+
obj_ids = inference_state["obj_ids"]
|
|
659
|
+
is_cond = any(
|
|
660
|
+
frame_idx in obj_temp_output_dict["cond_frame_outputs"]
|
|
661
|
+
for obj_temp_output_dict in temp_output_dict_per_obj.values()
|
|
662
|
+
)
|
|
663
|
+
consolidated_out = self._consolidate_temp_output_across_obj(
|
|
664
|
+
inference_state,
|
|
665
|
+
frame_idx,
|
|
666
|
+
is_cond=is_cond,
|
|
667
|
+
consolidate_at_video_res=True,
|
|
668
|
+
)
|
|
669
|
+
_, video_res_masks = self._get_orig_video_res_output(
|
|
670
|
+
inference_state, consolidated_out["pred_masks_video_res"]
|
|
671
|
+
)
|
|
672
|
+
return frame_idx, obj_ids, video_res_masks
|
|
673
|
+
|
|
674
|
+
@torch.inference_mode()
|
|
675
|
+
def reset_state(self, inference_state):
|
|
676
|
+
"""Remove all input points or mask in all frames throughout the video."""
|
|
677
|
+
self._reset_tracking_results(inference_state)
|
|
678
|
+
# Remove all object ids
|
|
679
|
+
inference_state["obj_id_to_idx"].clear()
|
|
680
|
+
inference_state["obj_idx_to_id"].clear()
|
|
681
|
+
inference_state["obj_ids"].clear()
|
|
682
|
+
inference_state["point_inputs_per_obj"].clear()
|
|
683
|
+
inference_state["mask_inputs_per_obj"].clear()
|
|
684
|
+
inference_state["output_dict_per_obj"].clear()
|
|
685
|
+
inference_state["temp_output_dict_per_obj"].clear()
|
|
686
|
+
inference_state["frames_tracked_per_obj"].clear()
|
|
687
|
+
|
|
688
|
+
def _reset_tracking_results(self, inference_state):
|
|
689
|
+
"""Reset all tracking inputs and results across the videos."""
|
|
690
|
+
for v in inference_state["point_inputs_per_obj"].values():
|
|
691
|
+
v.clear()
|
|
692
|
+
for v in inference_state["mask_inputs_per_obj"].values():
|
|
693
|
+
v.clear()
|
|
694
|
+
for v in inference_state["output_dict_per_obj"].values():
|
|
695
|
+
v["cond_frame_outputs"].clear()
|
|
696
|
+
v["non_cond_frame_outputs"].clear()
|
|
697
|
+
for v in inference_state["temp_output_dict_per_obj"].values():
|
|
698
|
+
v["cond_frame_outputs"].clear()
|
|
699
|
+
v["non_cond_frame_outputs"].clear()
|
|
700
|
+
for v in inference_state["frames_tracked_per_obj"].values():
|
|
701
|
+
v.clear()
|
|
702
|
+
|
|
703
|
+
def _get_image_feature(self, inference_state, frame_idx, batch_size):
|
|
704
|
+
"""Compute the image features on a given frame."""
|
|
705
|
+
# Look up in the cache first
|
|
706
|
+
image, backbone_out = inference_state["cached_features"].get(
|
|
707
|
+
frame_idx, (None, None)
|
|
708
|
+
)
|
|
709
|
+
if backbone_out is None:
|
|
710
|
+
# Cache miss -- we will run inference on a single image
|
|
711
|
+
device = inference_state["device"]
|
|
712
|
+
image = inference_state["images"][frame_idx].to(device).float().unsqueeze(0)
|
|
713
|
+
backbone_out = self.forward_image(image)
|
|
714
|
+
# Cache the most recent frame's feature (for repeated interactions with
|
|
715
|
+
# a frame; we can use an LRU cache for more frames in the future).
|
|
716
|
+
inference_state["cached_features"] = {frame_idx: (image, backbone_out)}
|
|
717
|
+
|
|
718
|
+
# expand the features to have the same dimension as the number of objects
|
|
719
|
+
expanded_image = image.expand(batch_size, -1, -1, -1)
|
|
720
|
+
expanded_backbone_out = {
|
|
721
|
+
"backbone_fpn": backbone_out["backbone_fpn"].copy(),
|
|
722
|
+
"vision_pos_enc": backbone_out["vision_pos_enc"].copy(),
|
|
723
|
+
}
|
|
724
|
+
for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]):
|
|
725
|
+
expanded_backbone_out["backbone_fpn"][i] = feat.expand(
|
|
726
|
+
batch_size, -1, -1, -1
|
|
727
|
+
)
|
|
728
|
+
for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]):
|
|
729
|
+
pos = pos.expand(batch_size, -1, -1, -1)
|
|
730
|
+
expanded_backbone_out["vision_pos_enc"][i] = pos
|
|
731
|
+
|
|
732
|
+
features = self._prepare_backbone_features(expanded_backbone_out)
|
|
733
|
+
features = (expanded_image,) + features
|
|
734
|
+
return features
|
|
735
|
+
|
|
736
|
+
def _run_single_frame_inference(
|
|
737
|
+
self,
|
|
738
|
+
inference_state,
|
|
739
|
+
output_dict,
|
|
740
|
+
frame_idx,
|
|
741
|
+
batch_size,
|
|
742
|
+
is_init_cond_frame,
|
|
743
|
+
point_inputs,
|
|
744
|
+
mask_inputs,
|
|
745
|
+
reverse,
|
|
746
|
+
run_mem_encoder,
|
|
747
|
+
prev_sam_mask_logits=None,
|
|
748
|
+
):
|
|
749
|
+
"""Run tracking on a single frame based on current inputs and previous memory."""
|
|
750
|
+
# Retrieve correct image features
|
|
751
|
+
(
|
|
752
|
+
_,
|
|
753
|
+
_,
|
|
754
|
+
current_vision_feats,
|
|
755
|
+
current_vision_pos_embeds,
|
|
756
|
+
feat_sizes,
|
|
757
|
+
) = self._get_image_feature(inference_state, frame_idx, batch_size)
|
|
758
|
+
|
|
759
|
+
# point and mask should not appear as input simultaneously on the same frame
|
|
760
|
+
assert point_inputs is None or mask_inputs is None
|
|
761
|
+
current_out = self.track_step(
|
|
762
|
+
frame_idx=frame_idx,
|
|
763
|
+
is_init_cond_frame=is_init_cond_frame,
|
|
764
|
+
current_vision_feats=current_vision_feats,
|
|
765
|
+
current_vision_pos_embeds=current_vision_pos_embeds,
|
|
766
|
+
feat_sizes=feat_sizes,
|
|
767
|
+
point_inputs=point_inputs,
|
|
768
|
+
mask_inputs=mask_inputs,
|
|
769
|
+
output_dict=output_dict,
|
|
770
|
+
num_frames=inference_state["num_frames"],
|
|
771
|
+
track_in_reverse=reverse,
|
|
772
|
+
run_mem_encoder=run_mem_encoder,
|
|
773
|
+
prev_sam_mask_logits=prev_sam_mask_logits,
|
|
774
|
+
)
|
|
775
|
+
|
|
776
|
+
# optionally offload the output to CPU memory to save GPU space
|
|
777
|
+
storage_device = inference_state["storage_device"]
|
|
778
|
+
maskmem_features = current_out["maskmem_features"]
|
|
779
|
+
if maskmem_features is not None:
|
|
780
|
+
maskmem_features = maskmem_features.to(torch.bfloat16)
|
|
781
|
+
maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
|
|
782
|
+
pred_masks_gpu = current_out["pred_masks"]
|
|
783
|
+
# potentially fill holes in the predicted masks
|
|
784
|
+
if self.fill_hole_area > 0:
|
|
785
|
+
pred_masks_gpu = fill_holes_in_mask_scores(
|
|
786
|
+
pred_masks_gpu, self.fill_hole_area
|
|
787
|
+
)
|
|
788
|
+
pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True)
|
|
789
|
+
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
|
|
790
|
+
maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out)
|
|
791
|
+
# object pointer is a small tensor, so we always keep it on GPU memory for fast access
|
|
792
|
+
obj_ptr = current_out["obj_ptr"]
|
|
793
|
+
object_score_logits = current_out["object_score_logits"]
|
|
794
|
+
# make a compact version of this frame's output to reduce the state size
|
|
795
|
+
compact_current_out = {
|
|
796
|
+
"maskmem_features": maskmem_features,
|
|
797
|
+
"maskmem_pos_enc": maskmem_pos_enc,
|
|
798
|
+
"pred_masks": pred_masks,
|
|
799
|
+
"obj_ptr": obj_ptr,
|
|
800
|
+
"object_score_logits": object_score_logits,
|
|
801
|
+
}
|
|
802
|
+
return compact_current_out, pred_masks_gpu
|
|
803
|
+
|
|
804
|
+
def _run_memory_encoder(
|
|
805
|
+
self,
|
|
806
|
+
inference_state,
|
|
807
|
+
frame_idx,
|
|
808
|
+
batch_size,
|
|
809
|
+
high_res_masks,
|
|
810
|
+
object_score_logits,
|
|
811
|
+
is_mask_from_pts,
|
|
812
|
+
):
|
|
813
|
+
"""
|
|
814
|
+
Run the memory encoder on `high_res_masks`. This is usually after applying
|
|
815
|
+
non-overlapping constraints to object scores. Since their scores changed, their
|
|
816
|
+
memory also need to be computed again with the memory encoder.
|
|
817
|
+
"""
|
|
818
|
+
# Retrieve correct image features
|
|
819
|
+
_, _, current_vision_feats, _, feat_sizes = self._get_image_feature(
|
|
820
|
+
inference_state, frame_idx, batch_size
|
|
821
|
+
)
|
|
822
|
+
maskmem_features, maskmem_pos_enc = self._encode_new_memory(
|
|
823
|
+
current_vision_feats=current_vision_feats,
|
|
824
|
+
feat_sizes=feat_sizes,
|
|
825
|
+
pred_masks_high_res=high_res_masks,
|
|
826
|
+
object_score_logits=object_score_logits,
|
|
827
|
+
is_mask_from_pts=is_mask_from_pts,
|
|
828
|
+
)
|
|
829
|
+
|
|
830
|
+
# optionally offload the output to CPU memory to save GPU space
|
|
831
|
+
storage_device = inference_state["storage_device"]
|
|
832
|
+
maskmem_features = maskmem_features.to(torch.bfloat16)
|
|
833
|
+
maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
|
|
834
|
+
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
|
|
835
|
+
maskmem_pos_enc = self._get_maskmem_pos_enc(
|
|
836
|
+
inference_state, {"maskmem_pos_enc": maskmem_pos_enc}
|
|
837
|
+
)
|
|
838
|
+
return maskmem_features, maskmem_pos_enc
|
|
839
|
+
|
|
840
|
+
def _get_maskmem_pos_enc(self, inference_state, current_out):
|
|
841
|
+
"""
|
|
842
|
+
`maskmem_pos_enc` is the same across frames and objects, so we cache it as
|
|
843
|
+
a constant in the inference session to reduce session storage size.
|
|
844
|
+
"""
|
|
845
|
+
model_constants = inference_state["constants"]
|
|
846
|
+
# "out_maskmem_pos_enc" should be either a list of tensors or None
|
|
847
|
+
out_maskmem_pos_enc = current_out["maskmem_pos_enc"]
|
|
848
|
+
if out_maskmem_pos_enc is not None:
|
|
849
|
+
if "maskmem_pos_enc" not in model_constants:
|
|
850
|
+
assert isinstance(out_maskmem_pos_enc, list)
|
|
851
|
+
# only take the slice for one object, since it's same across objects
|
|
852
|
+
maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc]
|
|
853
|
+
model_constants["maskmem_pos_enc"] = maskmem_pos_enc
|
|
854
|
+
else:
|
|
855
|
+
maskmem_pos_enc = model_constants["maskmem_pos_enc"]
|
|
856
|
+
# expand the cached maskmem_pos_enc to the actual batch size
|
|
857
|
+
batch_size = out_maskmem_pos_enc[0].size(0)
|
|
858
|
+
expanded_maskmem_pos_enc = [
|
|
859
|
+
x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc
|
|
860
|
+
]
|
|
861
|
+
else:
|
|
862
|
+
expanded_maskmem_pos_enc = None
|
|
863
|
+
return expanded_maskmem_pos_enc
|
|
864
|
+
|
|
865
|
+
@torch.inference_mode()
|
|
866
|
+
def remove_object(self, inference_state, obj_id, strict=False, need_output=True):
|
|
867
|
+
"""
|
|
868
|
+
Remove an object id from the tracking state. If strict is True, we check whether
|
|
869
|
+
the object id actually exists and raise an error if it doesn't exist.
|
|
870
|
+
"""
|
|
871
|
+
old_obj_idx_to_rm = inference_state["obj_id_to_idx"].get(obj_id, None)
|
|
872
|
+
updated_frames = []
|
|
873
|
+
# Check whether this object_id to remove actually exists and possibly raise an error.
|
|
874
|
+
if old_obj_idx_to_rm is None:
|
|
875
|
+
if not strict:
|
|
876
|
+
return inference_state["obj_ids"], updated_frames
|
|
877
|
+
raise RuntimeError(
|
|
878
|
+
f"Cannot remove object id {obj_id} as it doesn't exist. "
|
|
879
|
+
f"All existing object ids: {inference_state['obj_ids']}."
|
|
880
|
+
)
|
|
881
|
+
|
|
882
|
+
# If this is the only remaining object id, we simply reset the state.
|
|
883
|
+
if len(inference_state["obj_id_to_idx"]) == 1:
|
|
884
|
+
self.reset_state(inference_state)
|
|
885
|
+
return inference_state["obj_ids"], updated_frames
|
|
886
|
+
|
|
887
|
+
# There are still remaining objects after removing this object id. In this case,
|
|
888
|
+
# we need to delete the object storage from inference state tensors.
|
|
889
|
+
# Step 0: clear the input on those frames where this object id has point or mask input
|
|
890
|
+
# (note that this step is required as it might downgrade conditioning frames to
|
|
891
|
+
# non-conditioning ones)
|
|
892
|
+
obj_input_frames_inds = set()
|
|
893
|
+
obj_input_frames_inds.update(
|
|
894
|
+
inference_state["point_inputs_per_obj"][old_obj_idx_to_rm]
|
|
895
|
+
)
|
|
896
|
+
obj_input_frames_inds.update(
|
|
897
|
+
inference_state["mask_inputs_per_obj"][old_obj_idx_to_rm]
|
|
898
|
+
)
|
|
899
|
+
for frame_idx in obj_input_frames_inds:
|
|
900
|
+
self.clear_all_prompts_in_frame(
|
|
901
|
+
inference_state, frame_idx, obj_id, need_output=False
|
|
902
|
+
)
|
|
903
|
+
|
|
904
|
+
# Step 1: Update the object id mapping (note that it must be done after Step 0,
|
|
905
|
+
# since Step 0 still requires the old object id mappings in inference_state)
|
|
906
|
+
old_obj_ids = inference_state["obj_ids"]
|
|
907
|
+
old_obj_inds = list(range(len(old_obj_ids)))
|
|
908
|
+
remain_old_obj_inds = old_obj_inds.copy()
|
|
909
|
+
remain_old_obj_inds.remove(old_obj_idx_to_rm)
|
|
910
|
+
new_obj_ids = [old_obj_ids[old_idx] for old_idx in remain_old_obj_inds]
|
|
911
|
+
new_obj_inds = list(range(len(new_obj_ids)))
|
|
912
|
+
# build new mappings
|
|
913
|
+
old_idx_to_new_idx = dict(zip(remain_old_obj_inds, new_obj_inds))
|
|
914
|
+
inference_state["obj_id_to_idx"] = dict(zip(new_obj_ids, new_obj_inds))
|
|
915
|
+
inference_state["obj_idx_to_id"] = dict(zip(new_obj_inds, new_obj_ids))
|
|
916
|
+
inference_state["obj_ids"] = new_obj_ids
|
|
917
|
+
|
|
918
|
+
# Step 2: For per-object tensor storage, we shift their obj_idx in the dict keys.
|
|
919
|
+
def _map_keys(container):
|
|
920
|
+
new_kvs = []
|
|
921
|
+
for k in old_obj_inds:
|
|
922
|
+
v = container.pop(k)
|
|
923
|
+
if k in old_idx_to_new_idx:
|
|
924
|
+
new_kvs.append((old_idx_to_new_idx[k], v))
|
|
925
|
+
container.update(new_kvs)
|
|
926
|
+
|
|
927
|
+
_map_keys(inference_state["point_inputs_per_obj"])
|
|
928
|
+
_map_keys(inference_state["mask_inputs_per_obj"])
|
|
929
|
+
_map_keys(inference_state["output_dict_per_obj"])
|
|
930
|
+
_map_keys(inference_state["temp_output_dict_per_obj"])
|
|
931
|
+
_map_keys(inference_state["frames_tracked_per_obj"])
|
|
932
|
+
|
|
933
|
+
# Step 3: Further collect the outputs on those frames in `obj_input_frames_inds`, which
|
|
934
|
+
# could show an updated mask for objects previously occluded by the object being removed
|
|
935
|
+
if need_output:
|
|
936
|
+
temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
|
|
937
|
+
for frame_idx in obj_input_frames_inds:
|
|
938
|
+
is_cond = any(
|
|
939
|
+
frame_idx in obj_temp_output_dict["cond_frame_outputs"]
|
|
940
|
+
for obj_temp_output_dict in temp_output_dict_per_obj.values()
|
|
941
|
+
)
|
|
942
|
+
consolidated_out = self._consolidate_temp_output_across_obj(
|
|
943
|
+
inference_state,
|
|
944
|
+
frame_idx,
|
|
945
|
+
is_cond=is_cond,
|
|
946
|
+
consolidate_at_video_res=True,
|
|
947
|
+
)
|
|
948
|
+
_, video_res_masks = self._get_orig_video_res_output(
|
|
949
|
+
inference_state, consolidated_out["pred_masks_video_res"]
|
|
950
|
+
)
|
|
951
|
+
updated_frames.append((frame_idx, video_res_masks))
|
|
952
|
+
|
|
953
|
+
return inference_state["obj_ids"], updated_frames
|
|
954
|
+
|
|
955
|
+
def _clear_non_cond_mem_around_input(self, inference_state, frame_idx):
|
|
956
|
+
"""
|
|
957
|
+
Remove the non-conditioning memory around the input frame. When users provide
|
|
958
|
+
correction clicks, the surrounding frames' non-conditioning memories can still
|
|
959
|
+
contain outdated object appearance information and could confuse the model.
|
|
960
|
+
|
|
961
|
+
This method clears those non-conditioning memories surrounding the interacted
|
|
962
|
+
frame to avoid giving the model both old and new information about the object.
|
|
963
|
+
"""
|
|
964
|
+
r = self.memory_temporal_stride_for_eval
|
|
965
|
+
frame_idx_begin = frame_idx - r * self.num_maskmem
|
|
966
|
+
frame_idx_end = frame_idx + r * self.num_maskmem
|
|
967
|
+
batch_size = self._get_obj_num(inference_state)
|
|
968
|
+
for obj_idx in range(batch_size):
|
|
969
|
+
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
970
|
+
non_cond_frame_outputs = obj_output_dict["non_cond_frame_outputs"]
|
|
971
|
+
for t in range(frame_idx_begin, frame_idx_end + 1):
|
|
972
|
+
non_cond_frame_outputs.pop(t, None)
|
|
973
|
+
|
|
974
|
+
|
|
975
|
+
class SAM2VideoPredictorVOS(SAM2VideoPredictor):
|
|
976
|
+
"""Optimized for the VOS setting"""
|
|
977
|
+
|
|
978
|
+
def __init__(self, *args, **kwargs):
|
|
979
|
+
super().__init__(*args, **kwargs)
|
|
980
|
+
self._compile_all_components()
|
|
981
|
+
|
|
982
|
+
def _compile_all_components(self):
|
|
983
|
+
print("Compiling all components for VOS setting. First time may be very slow.")
|
|
984
|
+
self.memory_encoder.forward = torch.compile(
|
|
985
|
+
self.memory_encoder.forward,
|
|
986
|
+
mode="max-autotune",
|
|
987
|
+
fullgraph=True,
|
|
988
|
+
dynamic=False,
|
|
989
|
+
)
|
|
990
|
+
|
|
991
|
+
self.memory_attention.forward = torch.compile(
|
|
992
|
+
self.memory_attention.forward,
|
|
993
|
+
mode="max-autotune",
|
|
994
|
+
fullgraph=True,
|
|
995
|
+
dynamic=True, # Num. of memories varies
|
|
996
|
+
)
|
|
997
|
+
|
|
998
|
+
self.sam_prompt_encoder.forward = torch.compile(
|
|
999
|
+
self.sam_prompt_encoder.forward,
|
|
1000
|
+
mode="max-autotune",
|
|
1001
|
+
fullgraph=True,
|
|
1002
|
+
dynamic=False, # Accuracy regression on True
|
|
1003
|
+
)
|
|
1004
|
+
|
|
1005
|
+
self.sam_mask_decoder.forward = torch.compile(
|
|
1006
|
+
self.sam_mask_decoder.forward,
|
|
1007
|
+
mode="max-autotune",
|
|
1008
|
+
fullgraph=True,
|
|
1009
|
+
dynamic=False, # Accuracy regression on True
|
|
1010
|
+
)
|
|
1011
|
+
|
|
1012
|
+
def forward_image(self, img_batch: torch.Tensor):
|
|
1013
|
+
"""
|
|
1014
|
+
Identical to the corresponding method in the parent (SAM2VideoPredictor), but
|
|
1015
|
+
cloning the backbone features and pos encoding to enable compilation.
|
|
1016
|
+
"""
|
|
1017
|
+
backbone_out = self.image_encoder(img_batch)
|
|
1018
|
+
if self.use_high_res_features_in_sam:
|
|
1019
|
+
# precompute projected level 0 and level 1 features in SAM decoder
|
|
1020
|
+
# to avoid running it again on every SAM click
|
|
1021
|
+
backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0(
|
|
1022
|
+
backbone_out["backbone_fpn"][0]
|
|
1023
|
+
)
|
|
1024
|
+
backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1(
|
|
1025
|
+
backbone_out["backbone_fpn"][1]
|
|
1026
|
+
)
|
|
1027
|
+
# Clone to help torch.compile
|
|
1028
|
+
for i in range(len(backbone_out["backbone_fpn"])):
|
|
1029
|
+
backbone_out["backbone_fpn"][i] = backbone_out["backbone_fpn"][i].clone()
|
|
1030
|
+
backbone_out["vision_pos_enc"][i] = backbone_out["vision_pos_enc"][
|
|
1031
|
+
i
|
|
1032
|
+
].clone()
|
|
1033
|
+
return backbone_out
|
|
1034
|
+
|
|
1035
|
+
def _forward_sam_heads(
|
|
1036
|
+
self,
|
|
1037
|
+
backbone_features,
|
|
1038
|
+
point_inputs=None,
|
|
1039
|
+
mask_inputs=None,
|
|
1040
|
+
high_res_features=None,
|
|
1041
|
+
multimask_output=False,
|
|
1042
|
+
):
|
|
1043
|
+
"""
|
|
1044
|
+
Identical to the corresponding method in the parent (SAM2VideoPredictor), but
|
|
1045
|
+
cloning the outputs of prompt_encoder and mask_decoder to enable compilation.
|
|
1046
|
+
"""
|
|
1047
|
+
B = backbone_features.size(0)
|
|
1048
|
+
device = backbone_features.device
|
|
1049
|
+
assert backbone_features.size(1) == self.sam_prompt_embed_dim
|
|
1050
|
+
assert backbone_features.size(2) == self.sam_image_embedding_size
|
|
1051
|
+
assert backbone_features.size(3) == self.sam_image_embedding_size
|
|
1052
|
+
|
|
1053
|
+
# a) Handle point prompts
|
|
1054
|
+
if point_inputs is not None:
|
|
1055
|
+
sam_point_coords = point_inputs["point_coords"]
|
|
1056
|
+
sam_point_labels = point_inputs["point_labels"]
|
|
1057
|
+
assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
|
|
1058
|
+
else:
|
|
1059
|
+
# If no points are provide, pad with an empty point (with label -1)
|
|
1060
|
+
sam_point_coords = torch.zeros(B, 1, 2, device=device)
|
|
1061
|
+
sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)
|
|
1062
|
+
|
|
1063
|
+
# b) Handle mask prompts
|
|
1064
|
+
if mask_inputs is not None:
|
|
1065
|
+
# If mask_inputs is provided, downsize it into low-res mask input if needed
|
|
1066
|
+
# and feed it as a dense mask prompt into the SAM mask encoder
|
|
1067
|
+
assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
|
|
1068
|
+
if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
|
|
1069
|
+
sam_mask_prompt = F.interpolate(
|
|
1070
|
+
mask_inputs.float(),
|
|
1071
|
+
size=self.sam_prompt_encoder.mask_input_size,
|
|
1072
|
+
align_corners=False,
|
|
1073
|
+
mode="bilinear",
|
|
1074
|
+
antialias=True, # use antialias for downsampling
|
|
1075
|
+
)
|
|
1076
|
+
else:
|
|
1077
|
+
sam_mask_prompt = mask_inputs
|
|
1078
|
+
else:
|
|
1079
|
+
# Otherwise, simply feed None (and SAM's prompt encoder will add
|
|
1080
|
+
# a learned `no_mask_embed` to indicate no mask input in this case).
|
|
1081
|
+
sam_mask_prompt = None
|
|
1082
|
+
|
|
1083
|
+
sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
|
|
1084
|
+
points=(sam_point_coords, sam_point_labels),
|
|
1085
|
+
boxes=None,
|
|
1086
|
+
masks=sam_mask_prompt,
|
|
1087
|
+
)
|
|
1088
|
+
# Clone image_pe and the outputs of sam_prompt_encoder
|
|
1089
|
+
# to enable compilation
|
|
1090
|
+
sparse_embeddings = sparse_embeddings.clone()
|
|
1091
|
+
dense_embeddings = dense_embeddings.clone()
|
|
1092
|
+
image_pe = self.sam_prompt_encoder.get_dense_pe().clone()
|
|
1093
|
+
(
|
|
1094
|
+
low_res_multimasks,
|
|
1095
|
+
ious,
|
|
1096
|
+
sam_output_tokens,
|
|
1097
|
+
object_score_logits,
|
|
1098
|
+
) = self.sam_mask_decoder(
|
|
1099
|
+
image_embeddings=backbone_features,
|
|
1100
|
+
image_pe=image_pe,
|
|
1101
|
+
sparse_prompt_embeddings=sparse_embeddings,
|
|
1102
|
+
dense_prompt_embeddings=dense_embeddings,
|
|
1103
|
+
multimask_output=multimask_output,
|
|
1104
|
+
repeat_image=False, # the image is already batched
|
|
1105
|
+
high_res_features=high_res_features,
|
|
1106
|
+
)
|
|
1107
|
+
# Clone the output of sam_mask_decoder
|
|
1108
|
+
# to enable compilation
|
|
1109
|
+
low_res_multimasks = low_res_multimasks.clone()
|
|
1110
|
+
ious = ious.clone()
|
|
1111
|
+
sam_output_tokens = sam_output_tokens.clone()
|
|
1112
|
+
object_score_logits = object_score_logits.clone()
|
|
1113
|
+
|
|
1114
|
+
if self.pred_obj_scores:
|
|
1115
|
+
is_obj_appearing = object_score_logits > 0
|
|
1116
|
+
|
|
1117
|
+
# Mask used for spatial memories is always a *hard* choice between obj and no obj,
|
|
1118
|
+
# consistent with the actual mask prediction
|
|
1119
|
+
low_res_multimasks = torch.where(
|
|
1120
|
+
is_obj_appearing[:, None, None],
|
|
1121
|
+
low_res_multimasks,
|
|
1122
|
+
NO_OBJ_SCORE,
|
|
1123
|
+
)
|
|
1124
|
+
|
|
1125
|
+
# convert masks from possibly bfloat16 (or float16) to float32
|
|
1126
|
+
# (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
|
|
1127
|
+
low_res_multimasks = low_res_multimasks.float()
|
|
1128
|
+
high_res_multimasks = F.interpolate(
|
|
1129
|
+
low_res_multimasks,
|
|
1130
|
+
size=(self.image_size, self.image_size),
|
|
1131
|
+
mode="bilinear",
|
|
1132
|
+
align_corners=False,
|
|
1133
|
+
)
|
|
1134
|
+
|
|
1135
|
+
sam_output_token = sam_output_tokens[:, 0]
|
|
1136
|
+
if multimask_output:
|
|
1137
|
+
# take the best mask prediction (with the highest IoU estimation)
|
|
1138
|
+
best_iou_inds = torch.argmax(ious, dim=-1)
|
|
1139
|
+
batch_inds = torch.arange(B, device=device)
|
|
1140
|
+
low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
|
|
1141
|
+
high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
|
|
1142
|
+
if sam_output_tokens.size(1) > 1:
|
|
1143
|
+
sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
|
|
1144
|
+
else:
|
|
1145
|
+
low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks
|
|
1146
|
+
|
|
1147
|
+
# Extract object pointer from the SAM output token (with occlusion handling)
|
|
1148
|
+
obj_ptr = self.obj_ptr_proj(sam_output_token)
|
|
1149
|
+
if self.pred_obj_scores:
|
|
1150
|
+
# Allow *soft* no obj ptr, unlike for masks
|
|
1151
|
+
if self.soft_no_obj_ptr:
|
|
1152
|
+
lambda_is_obj_appearing = object_score_logits.sigmoid()
|
|
1153
|
+
else:
|
|
1154
|
+
lambda_is_obj_appearing = is_obj_appearing.float()
|
|
1155
|
+
|
|
1156
|
+
if self.fixed_no_obj_ptr:
|
|
1157
|
+
obj_ptr = lambda_is_obj_appearing * obj_ptr
|
|
1158
|
+
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
|
|
1159
|
+
|
|
1160
|
+
return (
|
|
1161
|
+
low_res_multimasks,
|
|
1162
|
+
high_res_multimasks,
|
|
1163
|
+
ious,
|
|
1164
|
+
low_res_masks,
|
|
1165
|
+
high_res_masks,
|
|
1166
|
+
obj_ptr,
|
|
1167
|
+
object_score_logits,
|
|
1168
|
+
)
|
|
1169
|
+
|
|
1170
|
+
def _encode_new_memory(
|
|
1171
|
+
self,
|
|
1172
|
+
current_vision_feats,
|
|
1173
|
+
feat_sizes,
|
|
1174
|
+
pred_masks_high_res,
|
|
1175
|
+
object_score_logits,
|
|
1176
|
+
is_mask_from_pts,
|
|
1177
|
+
):
|
|
1178
|
+
"""
|
|
1179
|
+
Identical to the corresponding method in the parent (SAM2VideoPredictor), but
|
|
1180
|
+
cloning the memories and their pos enc to enable compilation.
|
|
1181
|
+
"""
|
|
1182
|
+
B = current_vision_feats[-1].size(1) # batch size on this frame
|
|
1183
|
+
C = self.hidden_dim
|
|
1184
|
+
H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
|
|
1185
|
+
# top-level feature, (HW)BC => BCHW
|
|
1186
|
+
pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
|
|
1187
|
+
if self.non_overlap_masks_for_mem_enc and not self.training:
|
|
1188
|
+
# optionally, apply non-overlapping constraints to the masks (it's applied
|
|
1189
|
+
# in the batch dimension and should only be used during eval, where all
|
|
1190
|
+
# the objects come from the same video under batch size 1).
|
|
1191
|
+
pred_masks_high_res = self._apply_non_overlapping_constraints(
|
|
1192
|
+
pred_masks_high_res
|
|
1193
|
+
)
|
|
1194
|
+
# scale the raw mask logits with a temperature before applying sigmoid
|
|
1195
|
+
binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts
|
|
1196
|
+
if binarize and not self.training:
|
|
1197
|
+
mask_for_mem = (pred_masks_high_res > 0).float()
|
|
1198
|
+
else:
|
|
1199
|
+
# apply sigmoid on the raw mask logits to turn them into range (0, 1)
|
|
1200
|
+
mask_for_mem = torch.sigmoid(pred_masks_high_res)
|
|
1201
|
+
# apply scale and bias terms to the sigmoid probabilities
|
|
1202
|
+
if self.sigmoid_scale_for_mem_enc != 1.0:
|
|
1203
|
+
mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
|
|
1204
|
+
if self.sigmoid_bias_for_mem_enc != 0.0:
|
|
1205
|
+
mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
|
|
1206
|
+
maskmem_out = self.memory_encoder(
|
|
1207
|
+
pix_feat, mask_for_mem, skip_mask_sigmoid=True # sigmoid already applied
|
|
1208
|
+
)
|
|
1209
|
+
# Clone the feats and pos_enc to enable compilation
|
|
1210
|
+
maskmem_features = maskmem_out["vision_features"].clone()
|
|
1211
|
+
maskmem_pos_enc = [m.clone() for m in maskmem_out["vision_pos_enc"]]
|
|
1212
|
+
# add a no-object embedding to the spatial memory to indicate that the frame
|
|
1213
|
+
# is predicted to be occluded (i.e. no object is appearing in the frame)
|
|
1214
|
+
if self.no_obj_embed_spatial is not None:
|
|
1215
|
+
is_obj_appearing = (object_score_logits > 0).float()
|
|
1216
|
+
maskmem_features += (
|
|
1217
|
+
1 - is_obj_appearing[..., None, None]
|
|
1218
|
+
) * self.no_obj_embed_spatial[..., None, None].expand(
|
|
1219
|
+
*maskmem_features.shape
|
|
1220
|
+
)
|
|
1221
|
+
|
|
1222
|
+
return maskmem_features, maskmem_pos_enc
|