nettracer3d 1.1.1__py3-none-any.whl → 1.2.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nettracer3d might be problematic. Click here for more details.
- nettracer3d/branch_stitcher.py +420 -0
- nettracer3d/filaments.py +1068 -0
- nettracer3d/morphology.py +9 -4
- nettracer3d/neighborhoods.py +99 -67
- nettracer3d/nettracer.py +398 -52
- nettracer3d/nettracer_gui.py +1746 -483
- nettracer3d/network_draw.py +9 -3
- nettracer3d/node_draw.py +41 -58
- nettracer3d/proximity.py +123 -2
- nettracer3d/smart_dilate.py +36 -0
- nettracer3d/tutorial.py +2874 -0
- {nettracer3d-1.1.1.dist-info → nettracer3d-1.2.4.dist-info}/METADATA +6 -6
- nettracer3d-1.2.4.dist-info/RECORD +29 -0
- nettracer3d-1.1.1.dist-info/RECORD +0 -26
- {nettracer3d-1.1.1.dist-info → nettracer3d-1.2.4.dist-info}/WHEEL +0 -0
- {nettracer3d-1.1.1.dist-info → nettracer3d-1.2.4.dist-info}/entry_points.txt +0 -0
- {nettracer3d-1.1.1.dist-info → nettracer3d-1.2.4.dist-info}/licenses/LICENSE +0 -0
- {nettracer3d-1.1.1.dist-info → nettracer3d-1.2.4.dist-info}/top_level.txt +0 -0
nettracer3d/morphology.py
CHANGED
|
@@ -205,15 +205,20 @@ def quantify_edge_node(nodes, edges, search = 0, xy_scale = 1, z_scale = 1, core
|
|
|
205
205
|
|
|
206
206
|
# Helper methods for counting the lens of skeletons:
|
|
207
207
|
|
|
208
|
-
def calculate_skeleton_lengths(skeleton_binary, xy_scale=1.0, z_scale=1.0):
|
|
208
|
+
def calculate_skeleton_lengths(skeleton_binary, xy_scale=1.0, z_scale=1.0, skeleton_coords = None):
|
|
209
209
|
"""
|
|
210
210
|
Calculate total length of all skeletons in a 3D binary image.
|
|
211
211
|
|
|
212
212
|
skeleton_binary: 3D boolean array where True = skeleton voxel
|
|
213
213
|
xy_scale, z_scale: physical units per voxel
|
|
214
214
|
"""
|
|
215
|
-
|
|
216
|
-
skeleton_coords
|
|
215
|
+
|
|
216
|
+
if skeleton_coords is None:
|
|
217
|
+
# Find all skeleton voxels
|
|
218
|
+
skeleton_coords = np.argwhere(skeleton_binary)
|
|
219
|
+
shape = skeleton_binary.shape
|
|
220
|
+
else:
|
|
221
|
+
shape = skeleton_binary #Very professional stuff
|
|
217
222
|
|
|
218
223
|
if len(skeleton_coords) == 0:
|
|
219
224
|
return 0.0
|
|
@@ -222,7 +227,7 @@ def calculate_skeleton_lengths(skeleton_binary, xy_scale=1.0, z_scale=1.0):
|
|
|
222
227
|
coord_to_idx = {tuple(coord): idx for idx, coord in enumerate(skeleton_coords)}
|
|
223
228
|
|
|
224
229
|
# Build adjacency graph
|
|
225
|
-
adjacency_list = build_adjacency_graph(skeleton_coords, coord_to_idx,
|
|
230
|
+
adjacency_list = build_adjacency_graph(skeleton_coords, coord_to_idx, shape)
|
|
226
231
|
|
|
227
232
|
# Calculate lengths using scaled distances
|
|
228
233
|
total_length = calculate_graph_length(skeleton_coords, adjacency_list, xy_scale, z_scale)
|
nettracer3d/neighborhoods.py
CHANGED
|
@@ -200,10 +200,14 @@ def plot_dict_heatmap(unsorted_data_dict, id_set, figsize=(12, 8), title="Neighb
|
|
|
200
200
|
|
|
201
201
|
data_dict = {k: unsorted_data_dict[k] for k in sorted(unsorted_data_dict.keys())}
|
|
202
202
|
# Convert dict to 2D array for heatmap
|
|
203
|
-
# Each row represents one key from the dict
|
|
204
203
|
keys = list(data_dict.keys())
|
|
205
204
|
data_matrix = np.array([data_dict[key] for key in keys])
|
|
206
|
-
|
|
205
|
+
|
|
206
|
+
# Move key 0 to the bottom if it exists as the first key
|
|
207
|
+
if keys and keys[0] == 0:
|
|
208
|
+
keys.append(keys.pop(0))
|
|
209
|
+
data_matrix = np.vstack([data_matrix[1:], data_matrix[0:1]])
|
|
210
|
+
|
|
207
211
|
# Create the plot
|
|
208
212
|
fig, ax = plt.subplots(figsize=figsize)
|
|
209
213
|
|
|
@@ -276,8 +280,13 @@ def plot_dict_heatmap(unsorted_data_dict, id_set, figsize=(12, 8), title="Neighb
|
|
|
276
280
|
ax.set_xticks(np.arange(len(id_set)))
|
|
277
281
|
ax.set_yticks(np.arange(len(keys)))
|
|
278
282
|
ax.set_xticklabels(id_set)
|
|
279
|
-
|
|
280
|
-
|
|
283
|
+
labels = list(keys)
|
|
284
|
+
if labels and labels[-1] == 0:
|
|
285
|
+
labels[-1] = 'Excluded (0)'
|
|
286
|
+
ax.set_yticklabels(labels)
|
|
287
|
+
|
|
288
|
+
|
|
289
|
+
|
|
281
290
|
# Rotate x-axis labels for better readability
|
|
282
291
|
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
|
|
283
292
|
|
|
@@ -1128,7 +1137,7 @@ def create_node_heatmap(node_intensity, node_centroids, shape=None, is_3d=True,
|
|
|
1128
1137
|
|
|
1129
1138
|
def create_violin_plots(data_dict, graph_title="Violin Plots"):
|
|
1130
1139
|
"""
|
|
1131
|
-
Create violin plots from dictionary data with distinct colors.
|
|
1140
|
+
Create violin plots from dictionary data with distinct colors and IQR lines.
|
|
1132
1141
|
|
|
1133
1142
|
Parameters:
|
|
1134
1143
|
data_dict (dict): Dictionary where keys are column headers (strings) and
|
|
@@ -1140,110 +1149,133 @@ def create_violin_plots(data_dict, graph_title="Violin Plots"):
|
|
|
1140
1149
|
return
|
|
1141
1150
|
|
|
1142
1151
|
# Prepare data
|
|
1152
|
+
data_dict = dict(sorted(data_dict.items()))
|
|
1143
1153
|
labels = list(data_dict.keys())
|
|
1144
1154
|
data_lists = list(data_dict.values())
|
|
1145
1155
|
|
|
1146
|
-
# Generate colors
|
|
1156
|
+
# Generate colors
|
|
1147
1157
|
try:
|
|
1148
|
-
|
|
1149
|
-
mock_community_dict = {i: i+1 for i in range(len(labels))} # No outliers for simplicity
|
|
1150
|
-
|
|
1151
|
-
# Get distinct colors
|
|
1152
|
-
n_colors = len(labels)
|
|
1153
|
-
colors_rgb = community_extractor.generate_distinct_colors(n_colors)
|
|
1154
|
-
|
|
1155
|
-
# Sort by data size for consistent color assignment (like community sizes)
|
|
1156
|
-
data_sizes = [(i, len(data_lists[i])) for i in range(len(data_lists))]
|
|
1157
|
-
sorted_indices = sorted(data_sizes, key=lambda x: (-x[1], x[0]))
|
|
1158
|
-
|
|
1159
|
-
# Create color mapping
|
|
1160
|
-
colors = []
|
|
1161
|
-
for i, _ in sorted_indices:
|
|
1162
|
-
color_idx = sorted_indices.index((i, _))
|
|
1163
|
-
if color_idx < len(colors_rgb):
|
|
1164
|
-
# Convert RGB (0-255) to matplotlib format (0-1)
|
|
1165
|
-
rgb_normalized = tuple(c/255.0 for c in colors_rgb[color_idx])
|
|
1166
|
-
colors.append(rgb_normalized)
|
|
1167
|
-
else:
|
|
1168
|
-
colors.append('gray') # Fallback color
|
|
1169
|
-
|
|
1170
|
-
# Reorder colors to match original label order
|
|
1171
|
-
final_colors = ['gray'] * len(labels)
|
|
1172
|
-
for idx, (original_idx, _) in enumerate(sorted_indices):
|
|
1173
|
-
final_colors[original_idx] = colors[idx]
|
|
1174
|
-
|
|
1158
|
+
final_colors = generate_distinct_colors(len(labels))
|
|
1175
1159
|
except Exception as e:
|
|
1176
1160
|
print(f"Color generation failed, using default colors: {e}")
|
|
1177
|
-
# Fallback to default matplotlib colors
|
|
1178
1161
|
final_colors = plt.cm.Set3(np.linspace(0, 1, len(labels)))
|
|
1179
1162
|
|
|
1180
|
-
# Create the plot
|
|
1181
1163
|
fig, ax = plt.subplots(figsize=(max(8, len(labels) * 1.5), 6))
|
|
1182
1164
|
|
|
1183
1165
|
# Create violin plots
|
|
1184
|
-
violin_parts = ax.violinplot(
|
|
1185
|
-
|
|
1166
|
+
violin_parts = ax.violinplot(
|
|
1167
|
+
data_lists, positions=range(len(labels)),
|
|
1168
|
+
showmeans=False, showmedians=True, showextrema=True
|
|
1169
|
+
)
|
|
1186
1170
|
|
|
1187
|
-
# Color
|
|
1171
|
+
# Color violins
|
|
1188
1172
|
for i, pc in enumerate(violin_parts['bodies']):
|
|
1189
1173
|
if i < len(final_colors):
|
|
1190
1174
|
pc.set_facecolor(final_colors[i])
|
|
1191
1175
|
pc.set_alpha(0.7)
|
|
1192
1176
|
|
|
1193
|
-
# Color
|
|
1177
|
+
# Color other violin parts
|
|
1194
1178
|
for partname in ('cbars', 'cmins', 'cmaxes', 'cmedians'):
|
|
1195
1179
|
if partname in violin_parts:
|
|
1196
1180
|
violin_parts[partname].set_edgecolor('black')
|
|
1197
1181
|
violin_parts[partname].set_linewidth(1)
|
|
1198
|
-
|
|
1199
|
-
# Add data points as scatter plot overlay with much lower transparency
|
|
1200
|
-
"""
|
|
1201
|
-
for i, data in enumerate(data_lists):
|
|
1202
|
-
y = data
|
|
1203
|
-
# Add some jitter to x positions for better visibility
|
|
1204
|
-
x = np.random.normal(i, 0.04, size=len(y))
|
|
1205
|
-
ax.scatter(x, y, alpha=0.2, s=15, color='black', edgecolors='none', zorder=3) # No borders, more transparent
|
|
1206
|
-
"""
|
|
1207
1182
|
|
|
1208
|
-
#
|
|
1183
|
+
# Set y-limits using percentiles to reduce extreme outlier influence
|
|
1209
1184
|
all_data = [val for sublist in data_lists for val in sublist]
|
|
1210
1185
|
if all_data:
|
|
1211
|
-
|
|
1212
|
-
|
|
1213
|
-
y_max = np.percentile(all_data, 95) # 95th percentile
|
|
1214
|
-
|
|
1215
|
-
# Add some padding
|
|
1186
|
+
y_min = np.percentile(all_data, 5)
|
|
1187
|
+
y_max = np.percentile(all_data, 95)
|
|
1216
1188
|
y_range = y_max - y_min
|
|
1217
1189
|
y_padding = y_range * 0.15
|
|
1218
1190
|
ax.set_ylim(y_min - y_padding, y_max + y_padding)
|
|
1219
1191
|
|
|
1220
|
-
# Add IQR and median text annotations
|
|
1192
|
+
# Add IQR and median text annotations and dotted IQR lines
|
|
1221
1193
|
for i, data in enumerate(data_lists):
|
|
1222
1194
|
if len(data) > 0:
|
|
1223
1195
|
q1, median, q3 = np.percentile(data, [25, 50, 75])
|
|
1224
1196
|
iqr = q3 - q1
|
|
1197
|
+
|
|
1198
|
+
# Add dotted green lines for IQR
|
|
1199
|
+
ax.hlines(
|
|
1200
|
+
[q1, q3],
|
|
1201
|
+
i - 0.25, i + 0.25,
|
|
1202
|
+
colors='green',
|
|
1203
|
+
linestyles='dotted',
|
|
1204
|
+
linewidth=1.5,
|
|
1205
|
+
zorder=3,
|
|
1206
|
+
label='IQR (25th–75th)' if i == 0 else None # Add label once
|
|
1207
|
+
)
|
|
1225
1208
|
|
|
1226
|
-
#
|
|
1209
|
+
# Text annotation below the violins
|
|
1227
1210
|
y_min_current = ax.get_ylim()[0]
|
|
1228
1211
|
y_text = y_min_current - (ax.get_ylim()[1] - ax.get_ylim()[0]) * 0.15
|
|
1229
|
-
|
|
1230
|
-
|
|
1231
|
-
|
|
1232
|
-
|
|
1212
|
+
ax.text(
|
|
1213
|
+
i, y_text, f'Median: {median:.2f}\nIQR: {iqr:.2f}',
|
|
1214
|
+
ha='center', fontsize=8,
|
|
1215
|
+
bbox=dict(boxstyle='round,pad=0.3', facecolor='white', alpha=0.8)
|
|
1216
|
+
)
|
|
1233
1217
|
|
|
1234
|
-
# Customize
|
|
1218
|
+
# Customize appearance
|
|
1235
1219
|
ax.set_xticks(range(len(labels)))
|
|
1236
1220
|
ax.set_xticklabels(labels, rotation=45, ha='right')
|
|
1237
1221
|
ax.set_title(graph_title, fontsize=14, fontweight='bold')
|
|
1238
1222
|
ax.set_ylabel('Normalized Values (Z-score-like)', fontsize=12)
|
|
1239
1223
|
ax.grid(True, alpha=0.3)
|
|
1240
1224
|
|
|
1241
|
-
# Add
|
|
1242
|
-
ax.axhline(y=0, color='red', linestyle='--', alpha=0.5, linewidth=1,
|
|
1243
|
-
label='Identity Centerpoint')
|
|
1225
|
+
# Add baseline
|
|
1226
|
+
ax.axhline(y=0, color='red', linestyle='--', alpha=0.5, linewidth=1, label='Identity Basepoint')
|
|
1244
1227
|
ax.legend(loc='upper right')
|
|
1245
1228
|
|
|
1246
|
-
|
|
1247
|
-
plt.subplots_adjust(bottom=0.2) # Extra space for bottom text
|
|
1229
|
+
plt.subplots_adjust(bottom=0.2)
|
|
1248
1230
|
plt.tight_layout()
|
|
1249
|
-
plt.show()
|
|
1231
|
+
plt.show()
|
|
1232
|
+
|
|
1233
|
+
# --- Outlier Detection ---
|
|
1234
|
+
outliers_info = []
|
|
1235
|
+
non_outlier_data = []
|
|
1236
|
+
|
|
1237
|
+
for i, data in enumerate(data_lists):
|
|
1238
|
+
if len(data) > 0:
|
|
1239
|
+
q1, median, q3 = np.percentile(data, [25, 50, 75])
|
|
1240
|
+
iqr = q3 - q1
|
|
1241
|
+
lower_bound = q1 - 1.5 * iqr
|
|
1242
|
+
upper_bound = q3 + 1.5 * iqr
|
|
1243
|
+
|
|
1244
|
+
outliers = [val for val in data if val < lower_bound or val > upper_bound]
|
|
1245
|
+
non_outliers = [val for val in data if lower_bound <= val <= upper_bound]
|
|
1246
|
+
|
|
1247
|
+
outliers_info.append({
|
|
1248
|
+
'label': labels[i],
|
|
1249
|
+
'outliers': outliers,
|
|
1250
|
+
'lower_bound': lower_bound,
|
|
1251
|
+
'upper_bound': upper_bound,
|
|
1252
|
+
'total_count': len(data)
|
|
1253
|
+
})
|
|
1254
|
+
non_outlier_data.append(non_outliers)
|
|
1255
|
+
else:
|
|
1256
|
+
outliers_info.append({
|
|
1257
|
+
'label': labels[i],
|
|
1258
|
+
'outliers': [],
|
|
1259
|
+
'lower_bound': None,
|
|
1260
|
+
'upper_bound': None,
|
|
1261
|
+
'total_count': 0
|
|
1262
|
+
})
|
|
1263
|
+
non_outlier_data.append([])
|
|
1264
|
+
|
|
1265
|
+
print("\n" + "="*60)
|
|
1266
|
+
print("OUTLIER DETECTION SUMMARY")
|
|
1267
|
+
print("="*60)
|
|
1268
|
+
total_outliers = 0
|
|
1269
|
+
for info in outliers_info:
|
|
1270
|
+
n_outliers = len(info['outliers'])
|
|
1271
|
+
total_outliers += n_outliers
|
|
1272
|
+
if n_outliers > 0:
|
|
1273
|
+
print(f"{info['label']}: {n_outliers} outliers out of {info['total_count']} points "
|
|
1274
|
+
f"({n_outliers/info['total_count']*100:.1f}%)")
|
|
1275
|
+
print(f" Outlier Removed Range: [{info['lower_bound']:.2f}, {info['upper_bound']:.2f}]")
|
|
1276
|
+
if total_outliers == 0:
|
|
1277
|
+
print("No outliers detected in any dataset.")
|
|
1278
|
+
else:
|
|
1279
|
+
print(f"\nTotal outliers across all datasets: {total_outliers}")
|
|
1280
|
+
print("="*60 + "\n")
|
|
1281
|
+
|