natural-pdf 0.1.7__py3-none-any.whl → 0.1.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- natural_pdf/__init__.py +3 -0
- natural_pdf/analyzers/layout/base.py +1 -5
- natural_pdf/analyzers/layout/gemini.py +61 -51
- natural_pdf/analyzers/layout/layout_analyzer.py +40 -11
- natural_pdf/analyzers/layout/layout_manager.py +26 -84
- natural_pdf/analyzers/layout/layout_options.py +7 -0
- natural_pdf/analyzers/layout/pdfplumber_table_finder.py +142 -0
- natural_pdf/analyzers/layout/surya.py +46 -123
- natural_pdf/analyzers/layout/tatr.py +51 -4
- natural_pdf/analyzers/text_structure.py +3 -5
- natural_pdf/analyzers/utils.py +3 -3
- natural_pdf/classification/manager.py +422 -0
- natural_pdf/classification/mixin.py +163 -0
- natural_pdf/classification/results.py +80 -0
- natural_pdf/collections/mixins.py +111 -0
- natural_pdf/collections/pdf_collection.py +434 -15
- natural_pdf/core/element_manager.py +83 -0
- natural_pdf/core/highlighting_service.py +13 -22
- natural_pdf/core/page.py +578 -93
- natural_pdf/core/pdf.py +912 -460
- natural_pdf/elements/base.py +134 -40
- natural_pdf/elements/collections.py +712 -109
- natural_pdf/elements/region.py +722 -69
- natural_pdf/elements/text.py +4 -1
- natural_pdf/export/mixin.py +137 -0
- natural_pdf/exporters/base.py +3 -3
- natural_pdf/exporters/paddleocr.py +5 -4
- natural_pdf/extraction/manager.py +135 -0
- natural_pdf/extraction/mixin.py +279 -0
- natural_pdf/extraction/result.py +23 -0
- natural_pdf/ocr/__init__.py +5 -5
- natural_pdf/ocr/engine_doctr.py +346 -0
- natural_pdf/ocr/engine_easyocr.py +6 -3
- natural_pdf/ocr/ocr_factory.py +24 -4
- natural_pdf/ocr/ocr_manager.py +122 -26
- natural_pdf/ocr/ocr_options.py +94 -11
- natural_pdf/ocr/utils.py +19 -6
- natural_pdf/qa/document_qa.py +0 -4
- natural_pdf/search/__init__.py +20 -34
- natural_pdf/search/haystack_search_service.py +309 -265
- natural_pdf/search/haystack_utils.py +99 -75
- natural_pdf/search/search_service_protocol.py +11 -12
- natural_pdf/selectors/parser.py +431 -230
- natural_pdf/utils/debug.py +3 -3
- natural_pdf/utils/identifiers.py +1 -1
- natural_pdf/utils/locks.py +8 -0
- natural_pdf/utils/packaging.py +8 -6
- natural_pdf/utils/text_extraction.py +60 -1
- natural_pdf/utils/tqdm_utils.py +51 -0
- natural_pdf/utils/visualization.py +18 -0
- natural_pdf/widgets/viewer.py +4 -25
- {natural_pdf-0.1.7.dist-info → natural_pdf-0.1.9.dist-info}/METADATA +17 -3
- natural_pdf-0.1.9.dist-info/RECORD +80 -0
- {natural_pdf-0.1.7.dist-info → natural_pdf-0.1.9.dist-info}/WHEEL +1 -1
- {natural_pdf-0.1.7.dist-info → natural_pdf-0.1.9.dist-info}/top_level.txt +0 -2
- docs/api/index.md +0 -386
- docs/assets/favicon.png +0 -3
- docs/assets/favicon.svg +0 -3
- docs/assets/javascripts/custom.js +0 -17
- docs/assets/logo.svg +0 -3
- docs/assets/sample-screen.png +0 -0
- docs/assets/social-preview.png +0 -17
- docs/assets/social-preview.svg +0 -17
- docs/assets/stylesheets/custom.css +0 -65
- docs/document-qa/index.ipynb +0 -435
- docs/document-qa/index.md +0 -79
- docs/element-selection/index.ipynb +0 -915
- docs/element-selection/index.md +0 -229
- docs/finetuning/index.md +0 -176
- docs/index.md +0 -170
- docs/installation/index.md +0 -69
- docs/interactive-widget/index.ipynb +0 -962
- docs/interactive-widget/index.md +0 -12
- docs/layout-analysis/index.ipynb +0 -818
- docs/layout-analysis/index.md +0 -185
- docs/ocr/index.md +0 -209
- docs/pdf-navigation/index.ipynb +0 -314
- docs/pdf-navigation/index.md +0 -97
- docs/regions/index.ipynb +0 -816
- docs/regions/index.md +0 -294
- docs/tables/index.ipynb +0 -658
- docs/tables/index.md +0 -144
- docs/text-analysis/index.ipynb +0 -370
- docs/text-analysis/index.md +0 -105
- docs/text-extraction/index.ipynb +0 -1478
- docs/text-extraction/index.md +0 -292
- docs/tutorials/01-loading-and-extraction.ipynb +0 -194
- docs/tutorials/01-loading-and-extraction.md +0 -95
- docs/tutorials/02-finding-elements.ipynb +0 -340
- docs/tutorials/02-finding-elements.md +0 -149
- docs/tutorials/03-extracting-blocks.ipynb +0 -147
- docs/tutorials/03-extracting-blocks.md +0 -48
- docs/tutorials/04-table-extraction.ipynb +0 -114
- docs/tutorials/04-table-extraction.md +0 -50
- docs/tutorials/05-excluding-content.ipynb +0 -270
- docs/tutorials/05-excluding-content.md +0 -109
- docs/tutorials/06-document-qa.ipynb +0 -332
- docs/tutorials/06-document-qa.md +0 -91
- docs/tutorials/07-layout-analysis.ipynb +0 -288
- docs/tutorials/07-layout-analysis.md +0 -66
- docs/tutorials/07-working-with-regions.ipynb +0 -413
- docs/tutorials/07-working-with-regions.md +0 -151
- docs/tutorials/08-spatial-navigation.ipynb +0 -508
- docs/tutorials/08-spatial-navigation.md +0 -190
- docs/tutorials/09-section-extraction.ipynb +0 -2434
- docs/tutorials/09-section-extraction.md +0 -256
- docs/tutorials/10-form-field-extraction.ipynb +0 -512
- docs/tutorials/10-form-field-extraction.md +0 -201
- docs/tutorials/11-enhanced-table-processing.ipynb +0 -54
- docs/tutorials/11-enhanced-table-processing.md +0 -9
- docs/tutorials/12-ocr-integration.ipynb +0 -604
- docs/tutorials/12-ocr-integration.md +0 -175
- docs/tutorials/13-semantic-search.ipynb +0 -1328
- docs/tutorials/13-semantic-search.md +0 -77
- docs/visual-debugging/index.ipynb +0 -2970
- docs/visual-debugging/index.md +0 -157
- docs/visual-debugging/region.png +0 -0
- natural_pdf/templates/finetune/fine_tune_paddleocr.md +0 -415
- natural_pdf/templates/spa/css/style.css +0 -334
- natural_pdf/templates/spa/index.html +0 -31
- natural_pdf/templates/spa/js/app.js +0 -472
- natural_pdf/templates/spa/words.txt +0 -235976
- natural_pdf/widgets/frontend/viewer.js +0 -88
- natural_pdf-0.1.7.dist-info/RECORD +0 -145
- notebooks/Examples.ipynb +0 -1293
- pdfs/.gitkeep +0 -0
- pdfs/01-practice.pdf +0 -543
- pdfs/0500000US42001.pdf +0 -0
- pdfs/0500000US42007.pdf +0 -0
- pdfs/2014 Statistics.pdf +0 -0
- pdfs/2019 Statistics.pdf +0 -0
- pdfs/Atlanta_Public_Schools_GA_sample.pdf +0 -0
- pdfs/needs-ocr.pdf +0 -0
- {natural_pdf-0.1.7.dist-info → natural_pdf-0.1.9.dist-info}/licenses/LICENSE +0 -0
docs/element-selection/index.md
DELETED
@@ -1,229 +0,0 @@
|
|
1
|
-
# Finding Elements with Selectors
|
2
|
-
|
3
|
-
Natural PDF uses CSS-like selectors to find elements (text, lines, images, etc.) within a PDF page or document. This guide demonstrates how to use these selectors effectively.
|
4
|
-
|
5
|
-
## Setup
|
6
|
-
|
7
|
-
Let's load a sample PDF to work with. We'll use `01-practice.pdf` which has various elements.
|
8
|
-
|
9
|
-
```python
|
10
|
-
from natural_pdf import PDF
|
11
|
-
|
12
|
-
# Load the PDF
|
13
|
-
pdf = PDF("https://github.com/jsoma/natural-pdf/raw/refs/heads/main/pdfs/01-practice.pdf")
|
14
|
-
|
15
|
-
# Select the first page
|
16
|
-
page = pdf.pages[0]
|
17
|
-
|
18
|
-
# Display the page
|
19
|
-
page.show()
|
20
|
-
```
|
21
|
-
|
22
|
-
## Basic Element Finding
|
23
|
-
|
24
|
-
The core methods are `find()` (returns the first match) and `find_all()` (returns all matches as an `ElementCollection`).
|
25
|
-
|
26
|
-
The basic selector structure is `element_type[attribute_filter]:pseudo_class`.
|
27
|
-
|
28
|
-
### Finding Text by Content
|
29
|
-
|
30
|
-
```python
|
31
|
-
# Find the first text element containing "Summary"
|
32
|
-
summary_text = page.find('text:contains("Summary")')
|
33
|
-
summary_text
|
34
|
-
```
|
35
|
-
|
36
|
-
```python
|
37
|
-
# Find all text elements containing "Inadequate"
|
38
|
-
contains_inadequate = page.find_all('text:contains("Inadequate")')
|
39
|
-
len(contains_inadequate)
|
40
|
-
```
|
41
|
-
|
42
|
-
```python
|
43
|
-
summary_text.highlight(label='summary')
|
44
|
-
contains_inadequate.highlight(label="inadequate")
|
45
|
-
page.to_image(width=700)
|
46
|
-
```
|
47
|
-
|
48
|
-
## Selecting by Element Type
|
49
|
-
|
50
|
-
You can select specific types of elements found in PDFs.
|
51
|
-
|
52
|
-
```python
|
53
|
-
# Find all text elements
|
54
|
-
all_text = page.find_all('text')
|
55
|
-
len(all_text)
|
56
|
-
```
|
57
|
-
|
58
|
-
```python
|
59
|
-
# Find all rectangle elements
|
60
|
-
all_rects = page.find_all('rect')
|
61
|
-
len(all_rects)
|
62
|
-
```
|
63
|
-
|
64
|
-
```python
|
65
|
-
# Find all line elements
|
66
|
-
all_lines = page.find_all('line')
|
67
|
-
len(all_lines)
|
68
|
-
```
|
69
|
-
|
70
|
-
```python
|
71
|
-
page.find_all('line').show()
|
72
|
-
```
|
73
|
-
|
74
|
-
## Filtering by Attributes
|
75
|
-
|
76
|
-
Use square brackets `[]` to filter elements by their properties (attributes).
|
77
|
-
|
78
|
-
### Common Attributes & Operators
|
79
|
-
|
80
|
-
| Attribute | Example Usage | Operators | Notes |
|
81
|
-
|---------------|------------------------|-----------|-------|
|
82
|
-
| `size` (text) | `text[size>=12]` | `>`, `<`, `>=`, `<=` | Font size in points |
|
83
|
-
| `fontname` | `text[fontname*=Bold]` | `=`, `*=` | `*=` for contains substring |
|
84
|
-
| `color` (text)| `text[color~=red]` | `~=` | Approx. match (name, rgb, hex) |
|
85
|
-
| `width` (line)| `line[width>1]` | `>`, `<`, `>=`, `<=` | Line thickness |
|
86
|
-
| `source` | `text[source=ocr]` | `=` | `pdf`, `ocr`, `detected` |
|
87
|
-
| `type` (region)| `region[type=table]` | `=` | Layout analysis region type |
|
88
|
-
|
89
|
-
```python
|
90
|
-
# Find large text (size >= 11 points)
|
91
|
-
page.find_all('text[size>=11]')
|
92
|
-
```
|
93
|
-
|
94
|
-
```python
|
95
|
-
# Find text with 'Helvetica' in the font name
|
96
|
-
page.find_all('text[fontname*=Helvetica]')
|
97
|
-
```
|
98
|
-
|
99
|
-
```python
|
100
|
-
# Find red text (using approximate color match)
|
101
|
-
# This PDF has text with color (0.8, 0.0, 0.0)
|
102
|
-
red_text = page.find_all('text[color~=red]')
|
103
|
-
```
|
104
|
-
|
105
|
-
```python
|
106
|
-
# Highlight the red text (ignoring existing highlights)
|
107
|
-
red_text.show()
|
108
|
-
```
|
109
|
-
|
110
|
-
```python
|
111
|
-
# Find thick lines (width >= 2)
|
112
|
-
page.find_all('line[width>=2]')
|
113
|
-
```
|
114
|
-
|
115
|
-
## Using Pseudo-Classes
|
116
|
-
|
117
|
-
Use colons `:` for special conditions (pseudo-classes).
|
118
|
-
|
119
|
-
### Common Pseudo-Classes
|
120
|
-
|
121
|
-
| Pseudo-Class | Example Usage | Notes |
|
122
|
-
|-----------------------|-----------------------------------------|-------|
|
123
|
-
| `:contains('text')` | `text:contains('Report')` | Finds elements containing specific text |
|
124
|
-
| `:bold` | `text:bold` | Finds text heuristically identified as bold |
|
125
|
-
| `:italic` | `text:italic` | Finds text heuristically identified as italic |
|
126
|
-
| `:below(selector)` | `text:below('line[width>=2]')` | Finds elements physically below the reference element |
|
127
|
-
| `:above(selector)` | `text:above('text:contains("Summary")')`| Finds elements physically above the reference element |
|
128
|
-
| `:left-of(selector)` | `line:left-of('rect')` | Finds elements physically left of the reference element |
|
129
|
-
| `:right-of(selector)` | `text:right-of('rect')` | Finds elements physically right of the reference element |
|
130
|
-
| `:near(selector)` | `text:near('image')` | Finds elements physically near the reference element |
|
131
|
-
|
132
|
-
*Note: Spatial pseudo-classes like `:below`, `:above` identify elements based on bounding box positions relative to the **first** element matched by the inner selector.*
|
133
|
-
|
134
|
-
```python
|
135
|
-
# Find bold text
|
136
|
-
page.find_all('text:bold').show()
|
137
|
-
```
|
138
|
-
|
139
|
-
```python
|
140
|
-
# Combine attribute and pseudo-class: bold text size >= 11
|
141
|
-
page.find_all('text[size>=11]:bold')
|
142
|
-
```
|
143
|
-
|
144
|
-
### Spatial Pseudo-Classes Examples
|
145
|
-
|
146
|
-
```python
|
147
|
-
# Find the thick horizontal line first
|
148
|
-
ref_line = page.find('line[width>=2]')
|
149
|
-
|
150
|
-
# Find text elements strictly above that line
|
151
|
-
text_above_line = page.find_all('text:above("line[width>=2]")')
|
152
|
-
text_above_line
|
153
|
-
```
|
154
|
-
|
155
|
-
## Advanced Text Searching Options
|
156
|
-
|
157
|
-
Pass options to `find()` or `find_all()` for more control over text matching.
|
158
|
-
|
159
|
-
```python
|
160
|
-
# Case-insensitive search for "summary"
|
161
|
-
page.find_all('text:contains("summary")', case=False)
|
162
|
-
```
|
163
|
-
|
164
|
-
```python
|
165
|
-
# Regular expression search for the inspection ID (e.g., INS-XXX...)
|
166
|
-
# The ID is in the red text we found earlier
|
167
|
-
page.find_all('text:contains("INS-\\w+")', regex=True)
|
168
|
-
```
|
169
|
-
|
170
|
-
```python
|
171
|
-
# Combine regex and case-insensitivity
|
172
|
-
page.find_all('text:contains("jungle health")', regex=True, case=False)
|
173
|
-
```
|
174
|
-
|
175
|
-
## Working with ElementCollections
|
176
|
-
|
177
|
-
`find_all()` returns an `ElementCollection`, which is like a list but with extra PDF-specific methods.
|
178
|
-
|
179
|
-
```python
|
180
|
-
# Get all headings (using a selector for large, bold text)
|
181
|
-
headings = page.find_all('text[size>=11]:bold')
|
182
|
-
headings
|
183
|
-
```
|
184
|
-
|
185
|
-
```python
|
186
|
-
# Get the first and last heading in reading order
|
187
|
-
first = headings.first
|
188
|
-
last = headings.last
|
189
|
-
(first, last)
|
190
|
-
```
|
191
|
-
|
192
|
-
```python
|
193
|
-
# Get the physically highest/lowest element in the collection
|
194
|
-
highest = headings.highest()
|
195
|
-
lowest = headings.lowest()
|
196
|
-
(highest, lowest)
|
197
|
-
```
|
198
|
-
|
199
|
-
```python
|
200
|
-
# Filter the collection further: headings containing "Service"
|
201
|
-
service_headings = headings.find_all('text:contains("Service")')
|
202
|
-
service_headings
|
203
|
-
```
|
204
|
-
|
205
|
-
```python
|
206
|
-
# Extract text from all elements in the collection
|
207
|
-
headings.extract_text()
|
208
|
-
```
|
209
|
-
|
210
|
-
*Remember: `.highest()`, `.lowest()`, `.leftmost()`, `.rightmost()` raise errors if the collection spans multiple pages.*
|
211
|
-
|
212
|
-
## Font Variants
|
213
|
-
|
214
|
-
Sometimes PDFs use font variants (prefixes like `AAAAAB+`) which can be useful for selection.
|
215
|
-
|
216
|
-
```python
|
217
|
-
# Find text elements with a specific font variant prefix (if any exist)
|
218
|
-
# This example PDF doesn't use variants, but the selector works like this:
|
219
|
-
page.find_all('text[font-variant=AAAAAB]')
|
220
|
-
```
|
221
|
-
|
222
|
-
## Next Steps
|
223
|
-
|
224
|
-
Now that you can find elements, explore:
|
225
|
-
|
226
|
-
- [Text Extraction](../text-extraction/index.ipynb): Get text content from found elements.
|
227
|
-
- [Spatial Navigation](../pdf-navigation/index.ipynb): Use found elements as anchors to navigate (`.above()`, `.below()`, etc.).
|
228
|
-
- [Working with Regions](../regions/index.ipynb): Define areas based on found elements.
|
229
|
-
- [Visual Debugging](../visual-debugging/index.ipynb): Techniques for highlighting and visualizing elements.
|
docs/finetuning/index.md
DELETED
@@ -1,176 +0,0 @@
|
|
1
|
-
# OCR Fine-tuning
|
2
|
-
|
3
|
-
While the built-in OCR engines (EasyOCR, PaddleOCR, Surya) offer good general performance, you might encounter situations where their accuracy isn't sufficient for your specific needs. This is often the case with:
|
4
|
-
|
5
|
-
* **Unique Fonts:** Documents using unusual or stylized fonts.
|
6
|
-
* **Specific Languages:** Languages or scripts not perfectly covered by the default models.
|
7
|
-
* **Low Quality Scans:** Noisy or degraded document images.
|
8
|
-
* **Specialized Layouts:** Text within complex tables, forms, or unusual arrangements.
|
9
|
-
|
10
|
-
Fine-tuning allows you to adapt a pre-trained OCR recognition model to your specific data, significantly improving its accuracy on documents similar to those used for training.
|
11
|
-
|
12
|
-
## Why Fine-tune?
|
13
|
-
|
14
|
-
- **Higher Accuracy:** Achieve better text extraction results on your specific document types.
|
15
|
-
- **Adaptability:** Train the model to recognize domain-specific terms, symbols, or layouts.
|
16
|
-
- **Reduced Errors:** Minimize downstream errors in data extraction and processing pipelines.
|
17
|
-
|
18
|
-
## Strategy: Detect + LLM Correct + Export
|
19
|
-
|
20
|
-
Training an OCR model requires accurate ground truth: images of text snippets paired with their correct transcriptions. Manually creating this data is tedious. A powerful alternative leverages the strengths of different models:
|
21
|
-
|
22
|
-
1. **Detect Text Regions:** Use a robust local OCR engine (like Surya or PaddleOCR) primarily for its *detection* capabilities (`detect_only=True`). This identifies the *locations* of text on the page, even if the initial *recognition* isn't perfect. You can combine this with layout analysis or region selections (`.region()`, `.below()`, `.add_exclusion()`) to focus on the specific areas you care about.
|
23
|
-
2. **Correct with LLM:** For each detected text region, send the image snippet to a powerful Large Language Model (LLM) with multimodal capabilities (like GPT-4o, Claude 3.5 Sonnet/Haiku) using the `direct_ocr_llm` utility. The LLM performs high-accuracy OCR on the snippet, providing a "ground truth" transcription.
|
24
|
-
3. **Export for Fine-tuning:** Use the `PaddleOCRRecognitionExporter` to package the original image snippets (from step 1) along with their corresponding LLM-generated text labels (from step 2) into the specific format required by PaddleOCR for fine-tuning its *recognition* model.
|
25
|
-
|
26
|
-
This approach combines the efficient spatial detection of local models with the superior text recognition of large generative models to create a high-quality fine-tuning dataset with minimal manual effort.
|
27
|
-
|
28
|
-
## Example: Fine-tuning for Greek Spreadsheet Text
|
29
|
-
|
30
|
-
Let's walk through an example of preparing data to fine-tune PaddleOCR for text from a scanned Greek spreadsheet, adapting the process described above.
|
31
|
-
|
32
|
-
```python
|
33
|
-
# --- 1. Setup and Load PDF ---
|
34
|
-
from natural_pdf import PDF
|
35
|
-
from natural_pdf.ocr.utils import direct_ocr_llm
|
36
|
-
from natural_pdf.exporters import PaddleOCRRecognitionExporter
|
37
|
-
import openai # Or your preferred LLM client library
|
38
|
-
import os
|
39
|
-
|
40
|
-
# Ensure your LLM API key is set (using environment variables is recommended)
|
41
|
-
# os.environ["OPENAI_API_KEY"] = "sk-..."
|
42
|
-
# os.environ["ANTHROPIC_API_KEY"] = "sk-..."
|
43
|
-
|
44
|
-
# pdf_path = "path/to/your/document.pdf"
|
45
|
-
pdf_path = "pdfs/hidden/the-bad-one.pdf" # Replace with your PDF path
|
46
|
-
pdf = PDF(pdf_path)
|
47
|
-
|
48
|
-
# --- 2. (Optional) Exclude Irrelevant Areas ---
|
49
|
-
# If the document has consistent headers, footers, or margins you want to ignore
|
50
|
-
# Use exclusions *before* detection
|
51
|
-
pdf.add_exclusion(lambda page: page.region(right=45)) # Exclude left margin/line numbers
|
52
|
-
pdf.add_exclusion(lambda page: page.region(left=500)) # Exclude right margin
|
53
|
-
|
54
|
-
# --- 3. Detect Text Regions ---
|
55
|
-
# Use a good detection engine. Surya is often robust for line detection.
|
56
|
-
# We only want the bounding boxes, not the initial (potentially inaccurate) OCR text.
|
57
|
-
print("Detecting text regions...")
|
58
|
-
# Process only a subset of pages for demonstration if needed
|
59
|
-
for page in pdf.pages[:10]:
|
60
|
-
# Use a moderate resolution for detection; higher res used for LLM correction later
|
61
|
-
page.apply_ocr(engine='surya', resolution=120, detect_only=True)
|
62
|
-
print(f"Detection complete for {num_pages_to_process} pages.")
|
63
|
-
|
64
|
-
# (Optional) Visualize detected boxes on a sample page
|
65
|
-
# pdf.pages[9].find_all('text[source=ocr]').show()
|
66
|
-
|
67
|
-
# --- 4. Correct with LLM ---
|
68
|
-
# Configure your LLM client (example using OpenAI client, adaptable for others)
|
69
|
-
# For Anthropic: client = openai.OpenAI(base_url="https://api.anthropic.com/v1/", api_key=os.environ.get("ANTHROPIC_API_KEY"))
|
70
|
-
client = openai.OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
|
71
|
-
|
72
|
-
# Craft a clear prompt for the LLM
|
73
|
-
# Be as specific as possible! If it's in a specific language, what kinds
|
74
|
-
# of characters, etc.
|
75
|
-
prompt = """OCR this image patch. Return only the exact text content visible in the image.
|
76
|
-
Preserve original spelling, capitalization, punctuation, and symbols.
|
77
|
-
Do not add any explanatory text, translations, comments, or quotation marks around the result.
|
78
|
-
The text is likely from a Greek document, potentially a spreadsheet, containing Modern Greek words or numbers."""
|
79
|
-
|
80
|
-
# Define the correction function using direct_ocr_llm
|
81
|
-
def correct_text_region(region):
|
82
|
-
# Use a high resolution for the LLM call for best accuracy
|
83
|
-
return direct_ocr_llm(
|
84
|
-
region,
|
85
|
-
client,
|
86
|
-
prompt=prompt,
|
87
|
-
resolution=300,
|
88
|
-
# model="claude-3-5-sonnet-20240620" # Example Anthropic model
|
89
|
-
model="gpt-4o-mini" # Example OpenAI model
|
90
|
-
)
|
91
|
-
|
92
|
-
# Apply the correction function to the detected text regions
|
93
|
-
print("Applying LLM correction to detected regions...")
|
94
|
-
for page in pdf.pages[:num_pages_to_process]:
|
95
|
-
# This finds elements added by apply_ocr and passes their regions to 'correct_text_region'
|
96
|
-
# The returned text from the LLM replaces the original OCR text for these elements
|
97
|
-
# The source attribute is updated (e.g., to 'ocr-llm-corrected')
|
98
|
-
page.correct_ocr(correct_text_region)
|
99
|
-
print("LLM correction complete.")
|
100
|
-
|
101
|
-
# --- 5. Export for PaddleOCR Fine-tuning ---
|
102
|
-
print("Configuring exporter...")
|
103
|
-
exporter = PaddleOCRRecognitionExporter(
|
104
|
-
# Select all of the non-blank OCR text
|
105
|
-
# Hopefully it's all been LLM-corrected!
|
106
|
-
selector="text[source^=ocr][text!='']",
|
107
|
-
resolution=300, # Resolution for the exported image crops
|
108
|
-
padding=2, # Add slight padding around text boxes
|
109
|
-
split_ratio=0.9, # 90% for training, 10% for validation
|
110
|
-
random_seed=42, # For reproducible train/val split
|
111
|
-
include_guide=True # Include the Colab fine-tuning notebook
|
112
|
-
)
|
113
|
-
|
114
|
-
# Define the output directory
|
115
|
-
output_directory = "./my_paddleocr_finetune_data"
|
116
|
-
print(f"Exporting data to {output_directory}...")
|
117
|
-
|
118
|
-
# Run the export process
|
119
|
-
exporter.export(pdf, output_directory)
|
120
|
-
|
121
|
-
print("Export complete.")
|
122
|
-
print(f"Dataset ready for fine-tuning in: {output_directory}")
|
123
|
-
print(f"Next step: Upload '{os.path.join(output_directory, 'fine_tune_paddleocr.ipynb')}' and the rest of the contents to Google Colab.")
|
124
|
-
|
125
|
-
# --- Cleanup ---
|
126
|
-
pdf.close()
|
127
|
-
```
|
128
|
-
|
129
|
-
## Running the Fine-tuning
|
130
|
-
|
131
|
-
The `PaddleOCRRecognitionExporter` automatically includes a Jupyter Notebook (`fine_tune_paddleocr.ipynb`) in the output directory. This notebook is pre-configured to guide you through the fine-tuning process on Google Colab (which offers free GPU access):
|
132
|
-
|
133
|
-
1. **Upload:** Upload the entire output directory (e.g., `my_paddleocr_finetune_data`) to your Google Drive or directly to your Colab instance.
|
134
|
-
2. **Open Notebook:** Open the `fine_tune_paddleocr.ipynb` notebook in Google Colab.
|
135
|
-
3. **Set Runtime:** Ensure the Colab runtime is set to use a GPU (Runtime -> Change runtime type -> GPU).
|
136
|
-
4. **Run Cells:** Execute the cells in the notebook sequentially. It will:
|
137
|
-
* Install necessary libraries (PaddlePaddle, PaddleOCR).
|
138
|
-
* Point the training configuration to your uploaded dataset (`images/`, `train.txt`, `val.txt`, `dict.txt`).
|
139
|
-
* Download a pre-trained PaddleOCR model (usually a multilingual one).
|
140
|
-
* Start the fine-tuning process using your data.
|
141
|
-
* Save the fine-tuned model checkpoints.
|
142
|
-
* Export the best model into an "inference format" suitable for use with `natural-pdf`.
|
143
|
-
5. **Download Model:** Download the resulting `inference_model` directory from Colab.
|
144
|
-
|
145
|
-
## Using the Fine-tuned Model
|
146
|
-
|
147
|
-
Once you have the `inference_model` directory, you can instruct `natural-pdf` to use it for OCR:
|
148
|
-
|
149
|
-
```python
|
150
|
-
from natural_pdf import PDF
|
151
|
-
from natural_pdf.ocr import PaddleOCROptions
|
152
|
-
|
153
|
-
# Path to the directory you downloaded from Colab
|
154
|
-
finetuned_model_dir = "/path/to/your/downloaded/inference_model"
|
155
|
-
|
156
|
-
# Specify the path in PaddleOCROptions
|
157
|
-
paddle_opts = PaddleOCROptions(
|
158
|
-
rec_model_dir=finetuned_model_dir,
|
159
|
-
rec_char_dict_path=os.path.join(finetuned_model_dir, 'your_dict.txt') # Or wherever your dict is
|
160
|
-
use_gpu=True # If using GPU locally
|
161
|
-
)
|
162
|
-
|
163
|
-
pdf = PDF("another-similar-document.pdf")
|
164
|
-
page = pdf.pages[0]
|
165
|
-
|
166
|
-
# Apply OCR using your fine-tuned model
|
167
|
-
ocr_elements = page.apply_ocr(engine='paddle', options=paddle_opts)
|
168
|
-
|
169
|
-
# Extract text using the improved results
|
170
|
-
text = page.extract_text()
|
171
|
-
print(text)
|
172
|
-
|
173
|
-
pdf.close()
|
174
|
-
```
|
175
|
-
|
176
|
-
By following this process, you can significantly enhance OCR performance on your specific documents using the power of fine-tuning.
|
docs/index.md
DELETED
@@ -1,170 +0,0 @@
|
|
1
|
-
# Natural PDF
|
2
|
-
|
3
|
-
A friendly library for working with PDFs, built on top of [pdfplumber](https://github.com/jsvine/pdfplumber).
|
4
|
-
|
5
|
-
Natural PDF lets you find and extract content from PDFs using simple code that makes sense.
|
6
|
-
|
7
|
-
- [Live demo here](https://colab.research.google.com/github/jsoma/natural-pdf/blob/main/notebooks/Examples.ipynb)
|
8
|
-
|
9
|
-
<div style="max-width: 400px; margin: auto"><a href="assets/sample-screen.png"><img src="assets/sample-screen.png"></a></div>
|
10
|
-
|
11
|
-
## Installation
|
12
|
-
|
13
|
-
```
|
14
|
-
pip install natural_pdf
|
15
|
-
# All the extras
|
16
|
-
pip install "natural_pdf[all]"
|
17
|
-
```
|
18
|
-
|
19
|
-
## Quick Example
|
20
|
-
|
21
|
-
```python
|
22
|
-
from natural_pdf import PDF
|
23
|
-
|
24
|
-
pdf = PDF('document.pdf')
|
25
|
-
page = pdf.pages[0]
|
26
|
-
|
27
|
-
# Find the title and get content below it
|
28
|
-
title = page.find('text:contains("Summary"):bold')
|
29
|
-
content = title.below().extract_text()
|
30
|
-
|
31
|
-
# Exclude everything above 'CONFIDENTIAL' and below last line on page
|
32
|
-
page.add_exclusion(page.find('text:contains("CONFIDENTIAL")').above())
|
33
|
-
page.add_exclusion(page.find_all('line')[-1].below())
|
34
|
-
|
35
|
-
# Get the clean text without header/footer
|
36
|
-
clean_text = page.extract_text()
|
37
|
-
```
|
38
|
-
|
39
|
-
## Key Features
|
40
|
-
|
41
|
-
Here are a few highlights of what you can do:
|
42
|
-
|
43
|
-
### Find Elements with Selectors
|
44
|
-
|
45
|
-
Use CSS-like selectors to find text, shapes, and more.
|
46
|
-
|
47
|
-
```python
|
48
|
-
# Find bold text containing "Revenue"
|
49
|
-
page.find('text:contains("Revenue"):bold').extract_text()
|
50
|
-
|
51
|
-
# Find all large text
|
52
|
-
page.find_all('text[size>=12]').extract_text()
|
53
|
-
```
|
54
|
-
|
55
|
-
[Learn more about selectors →](element-selection/index.ipynb)
|
56
|
-
|
57
|
-
### Navigate Spatially
|
58
|
-
|
59
|
-
Move around the page relative to elements, not just coordinates.
|
60
|
-
|
61
|
-
```python
|
62
|
-
# Extract text below a specific heading
|
63
|
-
intro_text = page.find('text:contains("Introduction")').below().extract_text()
|
64
|
-
|
65
|
-
# Extract text from one heading to the next
|
66
|
-
methods_text = page.find('text:contains("Methods")').below(
|
67
|
-
until='text:contains("Results")'
|
68
|
-
).extract_text()
|
69
|
-
```
|
70
|
-
|
71
|
-
[Explore more navigation methods →](pdf-navigation/index.ipynb)
|
72
|
-
|
73
|
-
### Extract Clean Text
|
74
|
-
|
75
|
-
Easily extract text content, automatically handling common page elements like headers and footers (if exclusions are set).
|
76
|
-
|
77
|
-
```python
|
78
|
-
# Extract all text from the page (respecting exclusions)
|
79
|
-
page_text = page.extract_text()
|
80
|
-
|
81
|
-
# Extract text from a specific region
|
82
|
-
some_region = page.find(...)
|
83
|
-
region_text = some_region.extract_text()
|
84
|
-
```
|
85
|
-
|
86
|
-
[Learn about text extraction →](text-extraction/index.ipynb)
|
87
|
-
[Learn about exclusion zones →](regions/index.ipynb#exclusion-zones)
|
88
|
-
|
89
|
-
### Apply OCR
|
90
|
-
|
91
|
-
Extract text from scanned documents using various OCR engines.
|
92
|
-
|
93
|
-
```python
|
94
|
-
# Apply OCR using the default engine
|
95
|
-
ocr_elements = page.apply_ocr()
|
96
|
-
|
97
|
-
# Extract text (will use OCR results if available)
|
98
|
-
text = page.extract_text()
|
99
|
-
```
|
100
|
-
|
101
|
-
[Explore OCR options →](ocr/index.md)
|
102
|
-
|
103
|
-
### Analyze Document Layout
|
104
|
-
|
105
|
-
Use AI models to detect document structures like titles, paragraphs, and tables.
|
106
|
-
|
107
|
-
```python
|
108
|
-
# Detect document structure
|
109
|
-
page.analyze_layout()
|
110
|
-
|
111
|
-
# Highlight titles and tables
|
112
|
-
page.find_all('region[type=title]').highlight(color="purple")
|
113
|
-
page.find_all('region[type=table]').highlight(color="blue")
|
114
|
-
|
115
|
-
# Extract data from the first table
|
116
|
-
table_data = page.find('region[type=table]').extract_table()
|
117
|
-
```
|
118
|
-
|
119
|
-
[Learn about layout models →](layout-analysis/index.ipynb)
|
120
|
-
[Working with tables? →](tables/index.ipynb)
|
121
|
-
|
122
|
-
### Document Question Answering
|
123
|
-
|
124
|
-
Ask natural language questions directly to your documents.
|
125
|
-
|
126
|
-
```python
|
127
|
-
# Ask a question
|
128
|
-
result = pdf.ask("What was the company's revenue in 2022?")
|
129
|
-
if result.get("found", False):
|
130
|
-
print(f"Answer: {result['answer']}")
|
131
|
-
```
|
132
|
-
|
133
|
-
[Learn about Document QA →](document-qa/index.ipynb)
|
134
|
-
|
135
|
-
### Visualize Your Work
|
136
|
-
|
137
|
-
Debug and understand your extractions visually.
|
138
|
-
|
139
|
-
```python
|
140
|
-
# Highlight headings
|
141
|
-
page.find_all('text[size>=14]').highlight(color="red", label="Headings")
|
142
|
-
|
143
|
-
# Launch the interactive viewer (Jupyter)
|
144
|
-
# Requires: pip install natural-pdf[interactive]
|
145
|
-
page.viewer()
|
146
|
-
|
147
|
-
# Or save an image
|
148
|
-
# page.save_image("highlighted.png")
|
149
|
-
```
|
150
|
-
|
151
|
-
[See more visualization options →](visual-debugging/index.ipynb)
|
152
|
-
|
153
|
-
## Documentation Topics
|
154
|
-
|
155
|
-
Choose what you want to learn about:
|
156
|
-
|
157
|
-
### Task-based Guides
|
158
|
-
- [Getting Started](installation/index.md): Install the library and run your first extraction
|
159
|
-
- [PDF Navigation](pdf-navigation/index.ipynb): Open PDFs and work with pages
|
160
|
-
- [Element Selection](element-selection/index.ipynb): Find text and other elements using selectors
|
161
|
-
- [Text Extraction](text-extraction/index.ipynb): Extract clean text from documents
|
162
|
-
- [Regions](regions/index.ipynb): Work with specific areas of a page
|
163
|
-
- [Visual Debugging](visual-debugging/index.ipynb): See what you're extracting
|
164
|
-
- [OCR](ocr/index.md): Extract text from scanned documents
|
165
|
-
- [Layout Analysis](layout-analysis/index.ipynb): Detect document structure
|
166
|
-
- [Tables](tables/index.ipynb): Extract tabular data
|
167
|
-
- [Document QA](document-qa/index.ipynb): Ask questions to your documents
|
168
|
-
|
169
|
-
### Reference
|
170
|
-
- [API Reference](api/index.md): Complete library reference
|
docs/installation/index.md
DELETED
@@ -1,69 +0,0 @@
|
|
1
|
-
# Getting Started with Natural PDF
|
2
|
-
|
3
|
-
Let's get Natural PDF installed and run your first extraction.
|
4
|
-
|
5
|
-
## Installation
|
6
|
-
|
7
|
-
The base installation includes the core library and necessary AI dependencies (like PyTorch and Transformers):
|
8
|
-
|
9
|
-
```bash
|
10
|
-
pip install natural-pdf
|
11
|
-
```
|
12
|
-
|
13
|
-
### Optional Dependencies
|
14
|
-
|
15
|
-
Natural PDF has modular dependencies for different features. Install them based on your needs:
|
16
|
-
|
17
|
-
```bash
|
18
|
-
# --- OCR Engines ---
|
19
|
-
# Install support for EasyOCR
|
20
|
-
pip install natural-pdf[easyocr]
|
21
|
-
|
22
|
-
# Install support for PaddleOCR (requires paddlepaddle)
|
23
|
-
pip install natural-pdf[paddle]
|
24
|
-
|
25
|
-
# Install support for Surya OCR
|
26
|
-
pip install natural-pdf[surya]
|
27
|
-
|
28
|
-
# --- Layout Detection ---
|
29
|
-
# Install support for YOLO layout model
|
30
|
-
pip install natural-pdf[layout_yolo]
|
31
|
-
|
32
|
-
# --- Interactive Widget ---
|
33
|
-
# Install support for the interactive .viewer() widget in Jupyter
|
34
|
-
pip install natural-pdf[interactive]
|
35
|
-
|
36
|
-
# --- All Features ---
|
37
|
-
# Install all optional dependencies
|
38
|
-
pip install natural-pdf[all]
|
39
|
-
```
|
40
|
-
|
41
|
-
## Your First PDF Extraction
|
42
|
-
|
43
|
-
Here's a quick example to make sure everything is working:
|
44
|
-
|
45
|
-
```python
|
46
|
-
from natural_pdf import PDF
|
47
|
-
|
48
|
-
# Open a PDF
|
49
|
-
pdf = PDF('your_document.pdf')
|
50
|
-
|
51
|
-
# Get the first page
|
52
|
-
page = pdf.pages[0]
|
53
|
-
|
54
|
-
# Extract all text
|
55
|
-
text = page.extract_text()
|
56
|
-
print(text)
|
57
|
-
|
58
|
-
# Find something specific
|
59
|
-
title = page.find('text:bold')
|
60
|
-
print(f"Found title: {title.text}")
|
61
|
-
```
|
62
|
-
|
63
|
-
## What's Next?
|
64
|
-
|
65
|
-
Now that you have Natural PDF installed, you can:
|
66
|
-
|
67
|
-
- Learn to [navigate PDFs](../pdf-navigation/index.ipynb)
|
68
|
-
- Explore how to [select elements](../element-selection/index.ipynb)
|
69
|
-
- See how to [extract text](../text-extraction/index.ipynb)
|