napari-tmidas 0.2.1__py3-none-any.whl → 0.2.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (56) hide show
  1. napari_tmidas/__init__.py +35 -5
  2. napari_tmidas/_crop_anything.py +1458 -499
  3. napari_tmidas/_env_manager.py +76 -0
  4. napari_tmidas/_file_conversion.py +1646 -1131
  5. napari_tmidas/_file_selector.py +1464 -223
  6. napari_tmidas/_label_inspection.py +83 -8
  7. napari_tmidas/_processing_worker.py +309 -0
  8. napari_tmidas/_reader.py +6 -10
  9. napari_tmidas/_registry.py +15 -14
  10. napari_tmidas/_roi_colocalization.py +1221 -84
  11. napari_tmidas/_tests/test_crop_anything.py +123 -0
  12. napari_tmidas/_tests/test_env_manager.py +89 -0
  13. napari_tmidas/_tests/test_file_selector.py +90 -0
  14. napari_tmidas/_tests/test_grid_view_overlay.py +193 -0
  15. napari_tmidas/_tests/test_init.py +98 -0
  16. napari_tmidas/_tests/test_intensity_label_filter.py +222 -0
  17. napari_tmidas/_tests/test_label_inspection.py +86 -0
  18. napari_tmidas/_tests/test_processing_basic.py +500 -0
  19. napari_tmidas/_tests/test_processing_worker.py +142 -0
  20. napari_tmidas/_tests/test_regionprops_analysis.py +547 -0
  21. napari_tmidas/_tests/test_registry.py +135 -0
  22. napari_tmidas/_tests/test_scipy_filters.py +168 -0
  23. napari_tmidas/_tests/test_skimage_filters.py +259 -0
  24. napari_tmidas/_tests/test_split_channels.py +217 -0
  25. napari_tmidas/_tests/test_spotiflow.py +87 -0
  26. napari_tmidas/_tests/test_tyx_display_fix.py +142 -0
  27. napari_tmidas/_tests/test_ui_utils.py +68 -0
  28. napari_tmidas/_tests/test_widget.py +30 -0
  29. napari_tmidas/_tests/test_windows_basic.py +66 -0
  30. napari_tmidas/_ui_utils.py +57 -0
  31. napari_tmidas/_version.py +16 -3
  32. napari_tmidas/_widget.py +41 -4
  33. napari_tmidas/processing_functions/basic.py +557 -20
  34. napari_tmidas/processing_functions/careamics_env_manager.py +72 -99
  35. napari_tmidas/processing_functions/cellpose_env_manager.py +415 -112
  36. napari_tmidas/processing_functions/cellpose_segmentation.py +132 -191
  37. napari_tmidas/processing_functions/colocalization.py +513 -56
  38. napari_tmidas/processing_functions/grid_view_overlay.py +703 -0
  39. napari_tmidas/processing_functions/intensity_label_filter.py +422 -0
  40. napari_tmidas/processing_functions/regionprops_analysis.py +1280 -0
  41. napari_tmidas/processing_functions/sam2_env_manager.py +53 -69
  42. napari_tmidas/processing_functions/sam2_mp4.py +274 -195
  43. napari_tmidas/processing_functions/scipy_filters.py +403 -8
  44. napari_tmidas/processing_functions/skimage_filters.py +424 -212
  45. napari_tmidas/processing_functions/spotiflow_detection.py +949 -0
  46. napari_tmidas/processing_functions/spotiflow_env_manager.py +591 -0
  47. napari_tmidas/processing_functions/timepoint_merger.py +334 -86
  48. napari_tmidas/processing_functions/trackastra_tracking.py +24 -5
  49. {napari_tmidas-0.2.1.dist-info → napari_tmidas-0.2.4.dist-info}/METADATA +92 -39
  50. napari_tmidas-0.2.4.dist-info/RECORD +63 -0
  51. napari_tmidas/_tests/__init__.py +0 -0
  52. napari_tmidas-0.2.1.dist-info/RECORD +0 -38
  53. {napari_tmidas-0.2.1.dist-info → napari_tmidas-0.2.4.dist-info}/WHEEL +0 -0
  54. {napari_tmidas-0.2.1.dist-info → napari_tmidas-0.2.4.dist-info}/entry_points.txt +0 -0
  55. {napari_tmidas-0.2.1.dist-info → napari_tmidas-0.2.4.dist-info}/licenses/LICENSE +0 -0
  56. {napari_tmidas-0.2.1.dist-info → napari_tmidas-0.2.4.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: napari-tmidas
3
- Version: 0.2.1
3
+ Version: 0.2.4
4
4
  Summary: A plugin for batch processing of confocal and whole-slide microscopy images of biological tissues
5
5
  Author: Marco Meer
6
6
  Author-email: marco.meer@pm.me
@@ -41,38 +41,53 @@ Classifier: Development Status :: 2 - Pre-Alpha
41
41
  Classifier: Framework :: napari
42
42
  Classifier: Intended Audience :: Developers
43
43
  Classifier: License :: OSI Approved :: BSD License
44
- Classifier: Operating System :: OS Independent
44
+ Classifier: Operating System :: MacOS
45
+ Classifier: Operating System :: POSIX :: Linux
45
46
  Classifier: Programming Language :: Python
46
47
  Classifier: Programming Language :: Python :: 3
47
48
  Classifier: Programming Language :: Python :: 3 :: Only
48
- Classifier: Programming Language :: Python :: 3.9
49
49
  Classifier: Programming Language :: Python :: 3.10
50
50
  Classifier: Programming Language :: Python :: 3.11
51
- Classifier: Programming Language :: Python :: 3.12
52
51
  Classifier: Topic :: Scientific/Engineering :: Image Processing
53
- Requires-Python: >=3.9
52
+ Requires-Python: >=3.10
54
53
  Description-Content-Type: text/markdown
55
54
  License-File: LICENSE
56
- Requires-Dist: numpy
55
+ Requires-Dist: numpy<2.0,>=1.23.0
57
56
  Requires-Dist: magicgui
57
+ Requires-Dist: tqdm
58
58
  Requires-Dist: qtpy
59
- Requires-Dist: scikit-image
59
+ Requires-Dist: scikit-image>=0.19.0
60
+ Requires-Dist: scikit-learn-extra>=0.3.0
60
61
  Requires-Dist: pyqt5
61
- Requires-Dist: tqdm
62
- Requires-Dist: scikit-image
62
+ Requires-Dist: zarr
63
63
  Requires-Dist: ome-zarr
64
64
  Requires-Dist: napari-ome-zarr
65
- Requires-Dist: torch
66
- Requires-Dist: torchvision
67
- Requires-Dist: timm
68
- Requires-Dist: opencv-python
65
+ Requires-Dist: nd2
66
+ Requires-Dist: pylibCZIrw
67
+ Requires-Dist: readlif
68
+ Requires-Dist: tiffslide
69
+ Requires-Dist: acquifer-napari
69
70
  Provides-Extra: testing
70
71
  Requires-Dist: tox; extra == "testing"
71
- Requires-Dist: pytest; extra == "testing"
72
+ Requires-Dist: pytest>=7.0.0; extra == "testing"
72
73
  Requires-Dist: pytest-cov; extra == "testing"
73
74
  Requires-Dist: pytest-qt; extra == "testing"
75
+ Requires-Dist: pytest-timeout; extra == "testing"
74
76
  Requires-Dist: napari; extra == "testing"
75
77
  Requires-Dist: pyqt5; extra == "testing"
78
+ Requires-Dist: psygnal>=0.8.0; extra == "testing"
79
+ Provides-Extra: clustering
80
+ Requires-Dist: scikit-learn-extra>=0.3.0; extra == "clustering"
81
+ Provides-Extra: deep-learning
82
+ Requires-Dist: torch>=1.12.0; extra == "deep-learning"
83
+ Requires-Dist: torchvision>=0.13.0; extra == "deep-learning"
84
+ Requires-Dist: timm; extra == "deep-learning"
85
+ Requires-Dist: opencv-python; extra == "deep-learning"
86
+ Requires-Dist: cmake; extra == "deep-learning"
87
+ Requires-Dist: hydra-core; extra == "deep-learning"
88
+ Requires-Dist: eva-decord; extra == "deep-learning"
89
+ Provides-Extra: all
90
+ Requires-Dist: napari-tmidas[clustering,deep-learning,testing]; extra == "all"
76
91
  Dynamic: license-file
77
92
 
78
93
  # napari-tmidas
@@ -80,19 +95,21 @@ Dynamic: license-file
80
95
  [![License BSD-3](https://img.shields.io/pypi/l/napari-tmidas.svg?color=green)](https://github.com/macromeer/napari-tmidas/raw/main/LICENSE)
81
96
  [![PyPI](https://img.shields.io/pypi/v/napari-tmidas.svg?color=green)](https://pypi.org/project/napari-tmidas)
82
97
  [![Python Version](https://img.shields.io/pypi/pyversions/napari-tmidas.svg?color=green)](https://python.org)
98
+ [![Downloads](https://static.pepy.tech/badge/napari-tmidas)](https://pepy.tech/project/napari-tmidas)
83
99
  [![tests](https://github.com/macromeer/napari-tmidas/workflows/tests/badge.svg)](https://github.com/macromeer/napari-tmidas/actions)
84
- [![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/napari-tmidas)](https://napari-hub.org/plugins/napari-tmidas)
85
- <!-- [![codecov](https://codecov.io/gh/macromeer/napari-tmidas/branch/main/graph/badge.svg)](https://codecov.io/gh/macromeer/napari-tmidas) -->
86
- The `napari-tmidas` plugin consists of a growing collection of pipelines for fast batch processing of confocal and whole slide microscopy images of biological tissues. This is a WIP and based on the CLI version of [T-MIDAS](https://github.com/MercaderLabAnatomy/T-MIDAS).
100
+
101
+ This napari plugin consists of a growing collection of pipelines for fast batch processing of confocal and whole slide microscopy images of biological tissues. This is a WIP and based on the [T-MIDAS terminal](https://github.com/MercaderLabAnatomy/T-MIDAS).
87
102
 
88
103
  ## Features
89
- Currently, napari-tmidas provides pipelines as widgets for batch image conversion / cropping / processing, ROI colocalization and label inspection (cf. [Usage](#usage) below).
104
+ Currently, **napari-tmidas** provides pipelines as widgets for batch image conversion and processing, object cropping, label image inspection and ROI colocalization (cf. [usage](#usage) below). You can request new batch image processing features in [issues](https://github.com/MercaderLabAnatomy/napari-tmidas/issues).
90
105
 
91
106
  ## Installation
92
107
 
108
+ (Video installation guides: https://www.youtube.com/@macromeer/videos)
109
+
93
110
  First, install Napari in a virtual environment:
94
111
 
95
- mamba create -y -n napari-tmidas -c conda-forge python=3.11 tqdm
112
+ mamba create -y -n napari-tmidas -c conda-forge python=3.11
96
113
  mamba activate napari-tmidas
97
114
  python -m pip install "napari[all]"
98
115
 
@@ -100,34 +117,36 @@ Now you can install `napari-tmidas` via [pip]:
100
117
 
101
118
  pip install napari-tmidas
102
119
 
103
- It is recommended to install the latest development version. Please also regularly execute this command in the activated environment:
120
+ **For deep learning features** (Batch Crop Anything with SAM2, Spotiflow, Careamics, Trackastra), also install:
104
121
 
105
- pip install git+https://github.com/macromeer/napari-tmidas.git
122
+ pip install 'napari-tmidas[deep-learning]'
106
123
 
107
- ### Dependencies
124
+ Or install everything at once:
108
125
 
109
- To use the Batch Microscopy Image Conversion pipeline, we need some libraries to read microscopy formats:
126
+ pip install 'napari-tmidas[all]'
110
127
 
111
- # mamba activate napari-tmidas
112
- pip install nd2 readlif tiffslide pylibCZIrw acquifer-napari
128
+ It is recommended though to install the **latest development version**. Please also execute this command from time to time in the activated environment to benefit from newly added features:
113
129
 
114
- If you want to batch compress images using [Zstandard](https://github.com/facebook/zstd), use the package manager of your operating system to install it:
130
+ pip install git+https://github.com/MercaderLabAnatomy/napari-tmidas.git
115
131
 
116
- sudo apt-get install zstd # for Linux
117
- brew install zstd # for macOS
118
- choco install zstandard # for Windows
132
+ ### Additional Setup for Batch Crop Anything
119
133
 
120
- To use the Batch Crop Anything pipeline, we need to install SAM2 in the napari-tmidas environment:
134
+ To use the Batch Crop Anything pipeline with SAM2, you need to install SAM2 separately:
121
135
 
122
- # mamba activate napari-tmidas
123
- cd /opt
136
+ cd /opt # if the folder does not exist: mkdir /opt && cd /opt
124
137
  git clone https://github.com/facebookresearch/sam2.git && cd sam2
125
138
  pip install -e .
126
- wget https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_large.pt -P checkpoints/
127
- pip install decord
139
+ curl -L https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_large.pt -o checkpoints/sam2.1_hiera_large.pt
140
+ mamba install -c conda-forge ffmpeg # we also need ffmpeg
141
+
142
+ If you want to batch compress image data using [Zstandard](https://github.com/facebook/zstd), use the package manager of your operating system to install it:
128
143
 
144
+ ~~sudo apt-get install zstd~~ # Pre-installed on Linux :man_shrugging:
129
145
 
146
+ brew install zstd # for macOS (requires Homebrew)
147
+ pip install zstandard # Windows with Python >= 3.7
130
148
 
149
+ And you are done!
131
150
 
132
151
  ## Usage
133
152
 
@@ -139,19 +158,22 @@ You can then find the installed plugin in the Plugins tab.
139
158
 
140
159
  ### Microscopy Image Conversion
141
160
 
142
- You can start this pipeline via `Plugins > T-MIDAS > Batch Microscopy Image Conversion`. Currently, this pipeline supports the conversion of `.nd2, .lif, .ndpi, .czi` and acquifer data. After scanning a folder of your choice for microscopy image data, select a file in the first column of the table and preview and export any image data it contains.
161
+ Converts `.lif, .nd2, .czi, .ndpi` and Acquifer data to TIF or OME-Zarr formats. Scan a folder, select files, and export with preserved spatial metadata.
143
162
 
163
+ **Supported Formats:**
164
+ - **TIF** - Standard format for compatibility
165
+ - **OME-Zarr** - Recommended for large datasets, [spec v0.5](https://ngff.openmicroscopy.org/latest/) compliant with automatic physical metadata extraction (voxel sizes, spacing)
144
166
 
145
167
  <img src="https://github.com/user-attachments/assets/e377ca71-2f30-447d-825e-d2feebf7061b" alt="Microscopy Image Conversion Widget" style="width:75%; height:auto;">
146
168
 
147
169
 
148
170
  ### Image Processing
149
171
 
150
- 1. After opening `Plugins > T-MIDAS > Batch Image Processing`, enter the path to the folder containing the images to be processed (currently supports TIF, later also ZARR). You can also filter for filename suffix.
172
+ 1. You start with entering the path to the folder containing the images to be processed (currently supports TIF, later also ZARR) and optionally a filter for filename suffix
151
173
 
152
174
  ![image](https://github.com/user-attachments/assets/41ecb689-9abe-4371-83b5-9c5eb37069f9)
153
175
 
154
- 2. As a result, a table appears with the found images. You can click on them to inspect them in the viewer.
176
+ 2. After indexing the files, a table appears with the found images. You can click on them to inspect them in the viewer.
155
177
 
156
178
  ![image](https://github.com/user-attachments/assets/8360942a-be8f-49ec-bc25-385ee43bd601)
157
179
 
@@ -166,19 +188,50 @@ You can start this pipeline via `Plugins > T-MIDAS > Batch Microscopy Image Conv
166
188
 
167
189
  Note that whenever you click on an `Original File` or `Processed File` in the table, it will replace the one that is currently shown in the viewer. So naturally, you'd first select the original image, and then the processed image to correctly see the image pair that you want to inspect.
168
190
 
191
+
192
+ #### Processing Function Credits
193
+
194
+ The image processing capabilities are powered by several excellent open-source tools:
195
+ - [Cellpose 4](https://github.com/MouseLand/cellpose): Advanced cell segmentation
196
+ - [Trackastra](https://github.com/weigertlab/trackastra): Cell tracking and analysis
197
+ - [VisCy](https://github.com/mehta-lab/VisCy): Virtual staining using deep learning
198
+ - [CAREamics](https://github.com/CAREamics/careamics): Content-aware image restoration and enhancement
199
+ - [Spotiflow](https://github.com/weigertlab/spotiflow): Accurate and efficient spot detection for fluorescence microscopy
200
+
201
+ #### Processing Function Documentation
202
+
203
+ Detailed documentation for specific processing functions:
204
+
205
+ **Core Processing**
206
+ - [Basic Processing Functions](docs/basic_processing.md) - Label and intensity operations, channel splitting/merging, time series
207
+ - [Cellpose Segmentation](docs/cellpose_segmentation.md) - Deep learning cell/nucleus segmentation
208
+ - [TrackAstra Tracking](docs/trackastra_tracking.md) - Cell tracking across time-lapse data
209
+ - [VisCy Virtual Staining](docs/viscy_virtual_staining.md) - Virtual staining of phase/DIC images using deep learning
210
+
211
+ **Analysis and Quality Control**
212
+ - [Grid View: Intensity + Labels Overlay](docs/grid_view_overlay.md) - Visual QC for segmentation results
213
+ - [Intensity-Based Label Filtering](docs/intensity_label_filter.md) - Filter labels by signal intensity
214
+ - [Regionprops Analysis](docs/regionprops_analysis.md) - Extract quantitative properties from labels
215
+
216
+ **Advanced Processing**
217
+ - [Advanced Processing Functions](docs/advanced_processing.md) - Denoising (CAREamics), spot detection (Spotiflow), SciPy/scikit-image filters, compression, colocalization
218
+
169
219
  ### Batch Label Inspection
170
220
  If you have already segmented a folder full of images and now you want to maybe inspect and edit each label image, you can use the `Plugins > T-MIDAS > Batch Label Inspection`, which automatically saves your changes to the existing label image once you click the `Save Changes and Continue` button (bottom right).
171
221
 
172
222
  <img src="https://github.com/user-attachments/assets/0bf8c6ae-4212-449d-8183-e91b23ba740e" alt="Batch Label Inspection Widget" style="width:75%; height:auto;">
173
223
 
174
-
175
224
  ### Crop Anything
176
- This pipeline combines the Segment Anything Model (SAM) for automatic object detection with an interactive interface for selecting and cropping multiple objects from images. To launch the widget, open `Plugins > T-MIDAS > Batch Crop Anything`. Click the image below to see a video demo.
225
+
226
+ This pipeline combines the Segment Anything Model (SAM2; supports YX, ZYX and TYX data) for automatic object detection with an interactive interface for selecting and cropping multiple objects from images. To launch the widget, open `Plugins > T-MIDAS > Batch Crop Anything`. Cropping works like this: Enter 2D view and go to the first z slice where the object to be cropped is appearing. Activate/select the points layer and click on the object. Terminal shows progress. You can then proceed to select another object (always do this in 2D mode)
177
227
 
178
228
  <img src="https://github.com/user-attachments/assets/6d72c2a2-1064-4a27-b398-a9b86fcbc443" alt="Crop Anything Widget" style="width:75%; height:auto;">
179
229
 
180
230
 
231
+
232
+
181
233
  ### ROI Colocalization
234
+
182
235
  This pipeline quantifies colocalization between labeled regions of interest (ROIs) across multiple image channels. It determines the extent of overlap between ROIs in a reference channel and those in one or two other channels. The output is a table of colocalization counts. Optionally, the size of reference channel ROIs, as well as the total or median size of colocalizing ROIs in the other channels, can be included. Colocalization is determined using Boolean masking. The number of colocalizing instances is determined by counting unique label IDs within the overlapping regions. Typically, the reference channel contains larger structures, while other channels contain smaller, potentially nested, structures. For example, the reference channel might contain cell bodies, with the second and third channels containing nuclei and sub-nuclear objects, respectively.
183
236
 
184
237
  <img src="https://github.com/user-attachments/assets/2f9022a0-7b88-4588-a448-250f07a634d7" alt="ROI Colocalization Widget" style="width:75%; height:auto;">
@@ -0,0 +1,63 @@
1
+ napari_tmidas/__init__.py,sha256=48HQJ_uxFKXuVl-ZU0AspiS9E6L0ONo5Tullsu3n-x4,1216
2
+ napari_tmidas/_crop_anything.py,sha256=aNrwZiIu9RIyo1wq_R0V24nCEgCFLFPLj0rvwqB6TZw,140754
3
+ napari_tmidas/_env_manager.py,sha256=q318BZXA337a2bCs2-ZDTy10VWMuncj9TJHQtWgs2q4,2463
4
+ napari_tmidas/_file_conversion.py,sha256=lSgPJdLU0nTyIUKaOF4h6exceSGWsAa06pwWdBsz53o,90816
5
+ napari_tmidas/_file_selector.py,sha256=XPrgiz3F5EsZwoemIAmys5MAzeMxdotFqs7BWl8ZMVQ,93448
6
+ napari_tmidas/_label_inspection.py,sha256=tAw9HwcMNG6yWnoyAMRvLBvCcOf5YVA9zDm8LHYom9E,11377
7
+ napari_tmidas/_processing_worker.py,sha256=vkaxjte4YJxlSCTCAtKJe85EeftVaBW7ym9OUQVZ_xU,10654
8
+ napari_tmidas/_reader.py,sha256=RvFjAW0bdQWbUQ3wXxDAIH0GnLrh6cw2m3gkEvkEhOc,2225
9
+ napari_tmidas/_registry.py,sha256=yunbEoDe1JZREMab4BeP7wka17IwK1toV5g1imju30c,2148
10
+ napari_tmidas/_roi_colocalization.py,sha256=0ZSs7JlJKPhGibnETf6Rj746T3YV4AUgynWmZbmNjHw,92257
11
+ napari_tmidas/_sample_data.py,sha256=khuv1jemz_fCjqNwEKMFf83Ju0EN4S89IKydsUMmUxw,645
12
+ napari_tmidas/_ui_utils.py,sha256=wBmaR-3wdgizb234atsjUU2DElsM5-tf4TIsxGLaHzI,1499
13
+ napari_tmidas/_version.py,sha256=NRw4Jle4n9v_DD2wtplRqflGCvX8OU5eAjycYY0vY3Y,704
14
+ napari_tmidas/_widget.py,sha256=Uab5WuJK2fgdlGga6iNnHsiZjRMUq2KM3u0N5JJW8DA,5495
15
+ napari_tmidas/_writer.py,sha256=wbVfHFjjHdybSg37VR4lVmL-kdCkDZsUPDJ66AVLaFQ,1941
16
+ napari_tmidas/napari.yaml,sha256=1Am1dA0-ZtCXk6veIT6jrMz3zwQ7dF8_p9tZTFx_vTg,2641
17
+ napari_tmidas/_tests/test_crop_anything.py,sha256=vUgO8ue-BtWvQvIoHjeD5-UUnlnJYV0478GQRgsGtAY,4763
18
+ napari_tmidas/_tests/test_env_manager.py,sha256=IQDhdGBRV_YJrYAK6U8cXbDZyvmG9YNWA8prjCWCdsM,2927
19
+ napari_tmidas/_tests/test_file_selector.py,sha256=Sbu0BCXTaQAeUJLtOVjIC87AUARbi8J0bXBlMJe53ew,2687
20
+ napari_tmidas/_tests/test_grid_view_overlay.py,sha256=11-l7qqA6Tfi5Pf1VKRTPDg3dG61zrZPxG2SV3mM0Rg,6367
21
+ napari_tmidas/_tests/test_init.py,sha256=xGic9AQn-VtEOloUWIrH1P6_KvJp61nILk35Y09FHTA,3424
22
+ napari_tmidas/_tests/test_intensity_label_filter.py,sha256=PB2aWx48A4qpJ52uR0wIdE9LaFwRKdNwpOVfkiguB0s,7694
23
+ napari_tmidas/_tests/test_label_inspection.py,sha256=oUW4aJoM3ePEckZmPZNEwfDfob8brUsPGbfrHRnSL8c,2891
24
+ napari_tmidas/_tests/test_processing_basic.py,sha256=Ua_7VSQ--D_cIT6ptupRsW6rN37BTyipT5mp4GX3BYI,19652
25
+ napari_tmidas/_tests/test_processing_worker.py,sha256=X6F3Z2LH-7jd442wj1eerL8U1NS-BORV6SHTib7NsD4,4534
26
+ napari_tmidas/_tests/test_reader.py,sha256=gN_2StATLZYUL56X27ImJTVru_qSoFiY4vtgajcx3H0,975
27
+ napari_tmidas/_tests/test_regionprops_analysis.py,sha256=IGAEtdg83R9aH8wsINR8VCvNBgpYk6g3lH0S1IyBMLk,17030
28
+ napari_tmidas/_tests/test_registry.py,sha256=Kf2G-8Y0mMRECDR-V_qpj-OMgQReBkFWyTHkGx6CRGQ,4504
29
+ napari_tmidas/_tests/test_sample_data.py,sha256=D1HU_C3hWpO3mlSW_7Z94xaYHDtxz0XUrMjQoYop9Ag,104
30
+ napari_tmidas/_tests/test_scipy_filters.py,sha256=SUcgyFh2IY4YVJvVO6_J1JdgkCsYdW36RgpHLkkp2vg,6268
31
+ napari_tmidas/_tests/test_skimage_filters.py,sha256=TgvwcE_1kpdRzg5Hex9z9IoJc5Mt7IJjbpsdmZFiOGc,9869
32
+ napari_tmidas/_tests/test_split_channels.py,sha256=aMvjppoHlPAuwWLGYa1UcfBM_fvu0zM7Elam5JWaAQw,7448
33
+ napari_tmidas/_tests/test_spotiflow.py,sha256=BLSaD8z8r2zbkYEGmfQ3JkSgw5OkvEORnSzpbkIIz4Y,2578
34
+ napari_tmidas/_tests/test_tyx_display_fix.py,sha256=rhKbmM1rkPAAUeV3x3VuJkzXwEoqgi3Gtrxi1PP4ijs,4804
35
+ napari_tmidas/_tests/test_ui_utils.py,sha256=jRHma8i_kWkZD8uvu98Z8Fw5NorocRvA_gjap93nb48,2464
36
+ napari_tmidas/_tests/test_widget.py,sha256=0qKDzyfqGnKKY6smqYiruZEWBQjW5fU98ZHeSE5Ei2Q,3263
37
+ napari_tmidas/_tests/test_windows_basic.py,sha256=nELpwQErf5m1mStIns5jZ4l5BD-_J9XG8IP_CrhSGWw,2311
38
+ napari_tmidas/_tests/test_writer.py,sha256=4_MlZM9a5So74J16_4tIOJc6pwTOw9R0-oAE_YioIx4,122
39
+ napari_tmidas/processing_functions/__init__.py,sha256=osXY9jSgDsrwFaS6ShPHP0wGRxMuX1mHRN9EDa9l41g,1891
40
+ napari_tmidas/processing_functions/basic.py,sha256=3kA7GwCJDkkPyIRMZL5hFDSbz-8jjehMlWsQtjdOlro,44500
41
+ napari_tmidas/processing_functions/careamics_denoising.py,sha256=DFE_6lefeqckAvx-1EqwzJSU3iR3g3ujBGRnF_fnpoM,11638
42
+ napari_tmidas/processing_functions/careamics_env_manager.py,sha256=ca3e4a8s5mMZdgbYLtk21sXDyhIAulgvH1x5k__wDjw,10342
43
+ napari_tmidas/processing_functions/cellpose_env_manager.py,sha256=0HFlHZVbXs2nEead6-VUrHjPhkFkcujP-a0-5Ys_mvA,16718
44
+ napari_tmidas/processing_functions/cellpose_segmentation.py,sha256=qChVwyvGL5nqXjeS0pD0XOxgkyojdiHVXghvdMzdpWI,12280
45
+ napari_tmidas/processing_functions/colocalization.py,sha256=_QZu1rI_Mt4lnME0YhaAg0RP9Wjof0smpbJoqXoGXR8,25518
46
+ napari_tmidas/processing_functions/file_compression.py,sha256=mxR-yqBdc-T1XI3StIXpW8h5xGdCOtLQjt8uoRFpDSY,6859
47
+ napari_tmidas/processing_functions/grid_view_overlay.py,sha256=pZ-5CsHx2tvvW_3QCz5d1-UpleHPES9pj40ZhAf4rrQ,22991
48
+ napari_tmidas/processing_functions/intensity_label_filter.py,sha256=BymvHtFmiqh_eSuix6RtsfjJV7s0fD54OJuIt82sf8Q,13722
49
+ napari_tmidas/processing_functions/regionprops_analysis.py,sha256=ySmzlY_F8uXWQIoSXJFge30jkWFg6G8HhjDVbk4v2rU,45828
50
+ napari_tmidas/processing_functions/sam2_env_manager.py,sha256=w-X493XdHWAE8UhyHhEEVJ3uvLi2VdS-UFU7yPqnagg,2569
51
+ napari_tmidas/processing_functions/sam2_mp4.py,sha256=lEdrqQP36_kw2g3soyu81CCRXCkI5DdSExfq5Bc5kig,11523
52
+ napari_tmidas/processing_functions/scipy_filters.py,sha256=1Y69F5Pe-MEJPwQEs_6Ci3ncFuTKiRAuKRvDxmOQUPw,17871
53
+ napari_tmidas/processing_functions/skimage_filters.py,sha256=Nhv6E8_YcRZ2s1FMkzDJNHr64fpMbUSHpUIY7nuvMHs,25192
54
+ napari_tmidas/processing_functions/spotiflow_detection.py,sha256=2FLnDNXLc0eNj8vhp_XBv_bukX5pJOEhuiyXbUzzcyU,32811
55
+ napari_tmidas/processing_functions/spotiflow_env_manager.py,sha256=07J_tYADMvIVIr_afniSNt8uEduecqpNblSWEj9aH7Q,20323
56
+ napari_tmidas/processing_functions/timepoint_merger.py,sha256=7pXyfcI2rXZz6_TP3v_WejmMFivNVyUzkzBmifMiFKA,27424
57
+ napari_tmidas/processing_functions/trackastra_tracking.py,sha256=IkFk5HoEZmKdcu5jXri4WMhHN1KTADDMxSpeYfPgSbo,9976
58
+ napari_tmidas-0.2.4.dist-info/licenses/LICENSE,sha256=tSjiOqj57exmEIfP2YVPCEeQf0cH49S6HheQR8IiY3g,1485
59
+ napari_tmidas-0.2.4.dist-info/METADATA,sha256=NBJTIL9QGfMkrLPVq4G-Xr-HNeZ7G2zWOlbAAM0F0uo,14856
60
+ napari_tmidas-0.2.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
61
+ napari_tmidas-0.2.4.dist-info/entry_points.txt,sha256=fbVjzbJTm4aDMIBtel1Lyqvq-CwXY7wmCOo_zJ-jtRY,60
62
+ napari_tmidas-0.2.4.dist-info/top_level.txt,sha256=63ybdxCZ4SeT13f_Ou4TsivGV_2Gtm_pJOXToAt30_E,14
63
+ napari_tmidas-0.2.4.dist-info/RECORD,,
File without changes
@@ -1,38 +0,0 @@
1
- napari_tmidas/__init__.py,sha256=YNBLESwk8jr_TlDdkSC1CwH0tf0CKHF1i2_efzLjdpk,589
2
- napari_tmidas/_crop_anything.py,sha256=KgGZhNEHaGbk6npDHXGi7FrgahsfivlVwvdNAAYdME0,101452
3
- napari_tmidas/_file_conversion.py,sha256=V6evJmggUwOFzJO203Y5ltboHXEWNJQckZPedGRkrLI,72203
4
- napari_tmidas/_file_selector.py,sha256=JQ8t_nVzJXqlVUwIBjGE2jJDeyhuDKCXHJP_cPbzzBw,43091
5
- napari_tmidas/_label_inspection.py,sha256=74V36y5EnGs0vWK1FC7Kui4CPLBW_SIg885PSKeZsJ4,9184
6
- napari_tmidas/_reader.py,sha256=A9_hdDxtVkVGmbOsbqgnARCSvpEh7GGPo7ylzmbnu8o,2485
7
- napari_tmidas/_registry.py,sha256=Oz9HFJh41MKRLeKxRuc7x7yzc-OrmoTdRFnfngFU_XE,2007
8
- napari_tmidas/_roi_colocalization.py,sha256=OVjdHvtFN07DgrtTX8uqbrxZL6jVwl2L3klorgW2C9k,43196
9
- napari_tmidas/_sample_data.py,sha256=khuv1jemz_fCjqNwEKMFf83Ju0EN4S89IKydsUMmUxw,645
10
- napari_tmidas/_version.py,sha256=UoNvMtd4wCG76RwoSpNCUtaFyTwakGcZolfjXzNVSMY,511
11
- napari_tmidas/_widget.py,sha256=u9uf9WILAwZg_InhFyjWInY4ej1TV1a59dR8Fe3vNF8,4794
12
- napari_tmidas/_writer.py,sha256=wbVfHFjjHdybSg37VR4lVmL-kdCkDZsUPDJ66AVLaFQ,1941
13
- napari_tmidas/napari.yaml,sha256=1Am1dA0-ZtCXk6veIT6jrMz3zwQ7dF8_p9tZTFx_vTg,2641
14
- napari_tmidas/_tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
- napari_tmidas/_tests/test_reader.py,sha256=gN_2StATLZYUL56X27ImJTVru_qSoFiY4vtgajcx3H0,975
16
- napari_tmidas/_tests/test_sample_data.py,sha256=D1HU_C3hWpO3mlSW_7Z94xaYHDtxz0XUrMjQoYop9Ag,104
17
- napari_tmidas/_tests/test_widget.py,sha256=I_d-Cra_CTcS0QdMItg_HMphvhj0XCx81JnFyCHk9lg,2204
18
- napari_tmidas/_tests/test_writer.py,sha256=4_MlZM9a5So74J16_4tIOJc6pwTOw9R0-oAE_YioIx4,122
19
- napari_tmidas/processing_functions/__init__.py,sha256=osXY9jSgDsrwFaS6ShPHP0wGRxMuX1mHRN9EDa9l41g,1891
20
- napari_tmidas/processing_functions/basic.py,sha256=NJj7pjVPGZwH2H8lnDtxxK-p3JLpcayAqfmTduuPFDw,26777
21
- napari_tmidas/processing_functions/careamics_denoising.py,sha256=DFE_6lefeqckAvx-1EqwzJSU3iR3g3ujBGRnF_fnpoM,11638
22
- napari_tmidas/processing_functions/careamics_env_manager.py,sha256=QfmhY5CaeFboUGTxeDlQDPi9WSfeBWp56Zz_qc2luew,11219
23
- napari_tmidas/processing_functions/cellpose_env_manager.py,sha256=EWNuHuY0PPw8_mL61ElZ58M0-DTduPKuWUdvsrmKV8I,6191
24
- napari_tmidas/processing_functions/cellpose_segmentation.py,sha256=miRPIsrkv0jL1jNdUFwlTkmr6-m9g7U7k9ijyeatUY0,13410
25
- napari_tmidas/processing_functions/colocalization.py,sha256=AiTTVAcVhKuuHZhrj5IHwbzns7-GE6ewvFqhYy1L-do,7657
26
- napari_tmidas/processing_functions/file_compression.py,sha256=mxR-yqBdc-T1XI3StIXpW8h5xGdCOtLQjt8uoRFpDSY,6859
27
- napari_tmidas/processing_functions/sam2_env_manager.py,sha256=WzKOLFeu1KZRRBryKdWkDm6QJolhs3rCj-KD6Q-z9dE,2897
28
- napari_tmidas/processing_functions/sam2_mp4.py,sha256=NF0dWar2uyP_yQWxC8e08J6198C2qxEIzQccSI_5g40,10352
29
- napari_tmidas/processing_functions/scipy_filters.py,sha256=kKpDAlQQ0ZNbkt77QUWi-Bwolk6MMDvtG_bZJV3MjOo,1612
30
- napari_tmidas/processing_functions/skimage_filters.py,sha256=tSBx0nal88ixxVbu5o7ojTn90HgsUTt-aA_T6XLvmyY,16320
31
- napari_tmidas/processing_functions/timepoint_merger.py,sha256=DwL5vZBSplXt9dBBrKtMm9aH_NvT3mY7cdbeGg2OU_Y,16567
32
- napari_tmidas/processing_functions/trackastra_tracking.py,sha256=4kswVZCRHJ68oY95ezZmSrXMNrhjjEeN5x8a7GIjh4E,9084
33
- napari_tmidas-0.2.1.dist-info/licenses/LICENSE,sha256=tSjiOqj57exmEIfP2YVPCEeQf0cH49S6HheQR8IiY3g,1485
34
- napari_tmidas-0.2.1.dist-info/METADATA,sha256=AYL6vxMkpxPlXBrYZdBOvH1_AuNAQ83X68hue3KfA_k,11874
35
- napari_tmidas-0.2.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
36
- napari_tmidas-0.2.1.dist-info/entry_points.txt,sha256=fbVjzbJTm4aDMIBtel1Lyqvq-CwXY7wmCOo_zJ-jtRY,60
37
- napari_tmidas-0.2.1.dist-info/top_level.txt,sha256=63ybdxCZ4SeT13f_Ou4TsivGV_2Gtm_pJOXToAt30_E,14
38
- napari_tmidas-0.2.1.dist-info/RECORD,,