napari-tmidas 0.1.9__py3-none-any.whl → 0.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- napari_tmidas/_crop_anything.py +1895 -608
- napari_tmidas/_file_selector.py +87 -6
- napari_tmidas/_label_inspection.py +94 -47
- napari_tmidas/_version.py +2 -2
- napari_tmidas/processing_functions/basic.py +554 -23
- napari_tmidas/processing_functions/careamics_denoising.py +324 -0
- napari_tmidas/processing_functions/careamics_env_manager.py +339 -0
- napari_tmidas/processing_functions/cellpose_env_manager.py +55 -20
- napari_tmidas/processing_functions/cellpose_segmentation.py +105 -218
- napari_tmidas/processing_functions/sam2_env_manager.py +111 -0
- napari_tmidas/processing_functions/sam2_mp4.py +283 -0
- napari_tmidas/processing_functions/skimage_filters.py +323 -0
- napari_tmidas/processing_functions/timepoint_merger.py +490 -0
- napari_tmidas/processing_functions/trackastra_tracking.py +303 -0
- {napari_tmidas-0.1.9.dist-info → napari_tmidas-0.2.1.dist-info}/METADATA +15 -8
- {napari_tmidas-0.1.9.dist-info → napari_tmidas-0.2.1.dist-info}/RECORD +20 -14
- {napari_tmidas-0.1.9.dist-info → napari_tmidas-0.2.1.dist-info}/WHEEL +1 -1
- {napari_tmidas-0.1.9.dist-info → napari_tmidas-0.2.1.dist-info}/entry_points.txt +0 -0
- {napari_tmidas-0.1.9.dist-info → napari_tmidas-0.2.1.dist-info}/licenses/LICENSE +0 -0
- {napari_tmidas-0.1.9.dist-info → napari_tmidas-0.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,303 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
"""
|
|
3
|
+
TrackAstra Cell Tracking Module for napari-tmidas
|
|
4
|
+
|
|
5
|
+
This module integrates TrackAstra deep learning-based cell tracking into the
|
|
6
|
+
napari-tmidas batch processing framework. It uses a dedicated conda environment
|
|
7
|
+
to manage TrackAstra dependencies separately from the main environment.
|
|
8
|
+
"""
|
|
9
|
+
|
|
10
|
+
import os
|
|
11
|
+
import shutil
|
|
12
|
+
import subprocess
|
|
13
|
+
from pathlib import Path
|
|
14
|
+
|
|
15
|
+
import numpy as np
|
|
16
|
+
from skimage.io import imread
|
|
17
|
+
|
|
18
|
+
# Add the registry import
|
|
19
|
+
from napari_tmidas._registry import BatchProcessingRegistry
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class TrackAstraEnvManager:
|
|
23
|
+
"""Manages the TrackAstra conda environment."""
|
|
24
|
+
|
|
25
|
+
@staticmethod
|
|
26
|
+
def get_conda_cmd():
|
|
27
|
+
"""Get the conda/mamba command available on the system."""
|
|
28
|
+
# Try mamba first (faster)
|
|
29
|
+
if shutil.which("mamba"):
|
|
30
|
+
return "mamba"
|
|
31
|
+
elif shutil.which("conda"):
|
|
32
|
+
return "conda"
|
|
33
|
+
else:
|
|
34
|
+
raise RuntimeError(
|
|
35
|
+
"Neither conda nor mamba found. Please install Anaconda/Miniconda/Miniforge."
|
|
36
|
+
)
|
|
37
|
+
|
|
38
|
+
@staticmethod
|
|
39
|
+
def check_env_exists():
|
|
40
|
+
conda_cmd = TrackAstraEnvManager.get_conda_cmd()
|
|
41
|
+
try:
|
|
42
|
+
# Try running python --version in the env
|
|
43
|
+
result = subprocess.run(
|
|
44
|
+
[conda_cmd, "run", "-n", "trackastra", "python", "--version"],
|
|
45
|
+
capture_output=True,
|
|
46
|
+
text=True,
|
|
47
|
+
timeout=10,
|
|
48
|
+
)
|
|
49
|
+
return result.returncode == 0
|
|
50
|
+
except (subprocess.TimeoutExpired, subprocess.CalledProcessError):
|
|
51
|
+
return False
|
|
52
|
+
|
|
53
|
+
@staticmethod
|
|
54
|
+
def create_env():
|
|
55
|
+
"""Create the TrackAstra conda environment if it doesn't exist."""
|
|
56
|
+
if TrackAstraEnvManager.check_env_exists():
|
|
57
|
+
print("TrackAstra environment already exists.")
|
|
58
|
+
return True
|
|
59
|
+
|
|
60
|
+
print("Creating TrackAstra conda environment...")
|
|
61
|
+
conda_cmd = TrackAstraEnvManager.get_conda_cmd()
|
|
62
|
+
|
|
63
|
+
# Create environment with Python 3.10 (required for TrackAstra)
|
|
64
|
+
env_create_cmd = [
|
|
65
|
+
conda_cmd,
|
|
66
|
+
"create",
|
|
67
|
+
"-n",
|
|
68
|
+
"trackastra",
|
|
69
|
+
"python=3.10",
|
|
70
|
+
"--no-default-packages",
|
|
71
|
+
"-y",
|
|
72
|
+
]
|
|
73
|
+
|
|
74
|
+
try:
|
|
75
|
+
subprocess.run(env_create_cmd, check=True)
|
|
76
|
+
|
|
77
|
+
# Install ilpy first from conda-forge
|
|
78
|
+
ilpy_cmd = [
|
|
79
|
+
conda_cmd,
|
|
80
|
+
"install",
|
|
81
|
+
"-n",
|
|
82
|
+
"trackastra",
|
|
83
|
+
"-c",
|
|
84
|
+
"conda-forge",
|
|
85
|
+
"-c",
|
|
86
|
+
"gurobi",
|
|
87
|
+
"-c",
|
|
88
|
+
"funkelab",
|
|
89
|
+
"ilpy",
|
|
90
|
+
"-y",
|
|
91
|
+
]
|
|
92
|
+
subprocess.run(ilpy_cmd, check=True)
|
|
93
|
+
|
|
94
|
+
# Install TrackAstra and other dependencies via pip
|
|
95
|
+
pip_packages = [
|
|
96
|
+
"trackastra[napari]",
|
|
97
|
+
"scikit-image",
|
|
98
|
+
"tifffile",
|
|
99
|
+
"torch",
|
|
100
|
+
"torchvision",
|
|
101
|
+
]
|
|
102
|
+
|
|
103
|
+
pip_cmd = [
|
|
104
|
+
conda_cmd,
|
|
105
|
+
"run",
|
|
106
|
+
"-n",
|
|
107
|
+
"trackastra",
|
|
108
|
+
"pip",
|
|
109
|
+
"install",
|
|
110
|
+
] + pip_packages
|
|
111
|
+
|
|
112
|
+
subprocess.run(pip_cmd, check=True)
|
|
113
|
+
|
|
114
|
+
print("TrackAstra environment created successfully!")
|
|
115
|
+
return True
|
|
116
|
+
|
|
117
|
+
except subprocess.CalledProcessError as e:
|
|
118
|
+
print(f"Error creating TrackAstra environment: {e}")
|
|
119
|
+
return False
|
|
120
|
+
|
|
121
|
+
|
|
122
|
+
def create_trackastra_script(img_path, mask_path, model, mode, output_path):
|
|
123
|
+
"""Create a Python script to run TrackAstra in the dedicated environment."""
|
|
124
|
+
script_content = f"""
|
|
125
|
+
import sys
|
|
126
|
+
import numpy as np
|
|
127
|
+
from skimage.io import imread
|
|
128
|
+
from tifffile import imwrite
|
|
129
|
+
import torch
|
|
130
|
+
from trackastra.model import Trackastra
|
|
131
|
+
from trackastra.tracking import graph_to_ctc, graph_to_napari_tracks
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
# Load images
|
|
135
|
+
print('Loading images...')
|
|
136
|
+
img = imread('{img_path}')
|
|
137
|
+
mask = imread('{mask_path}')
|
|
138
|
+
print(f'Img shape: {{img.shape}}, Mask shape: {{mask.shape}}')
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
# Validate dimensions
|
|
142
|
+
if mask.ndim not in [3, 4]:
|
|
143
|
+
raise ValueError(f'Expected 3D (TYX) or 4D (TZYX) mask, got {{mask.ndim}}D')
|
|
144
|
+
|
|
145
|
+
if mask.shape[0] < 2:
|
|
146
|
+
raise ValueError(f'Need at least 2 timepoints, got {{mask.shape[0]}}')
|
|
147
|
+
|
|
148
|
+
model = Trackastra.from_pretrained('{model}', device="automatic")
|
|
149
|
+
track_graph = model.track(img, mask, mode='{mode}')
|
|
150
|
+
_, masks_tracked = graph_to_ctc(track_graph, mask, outdir=None)
|
|
151
|
+
|
|
152
|
+
# Save the tracked masks
|
|
153
|
+
imwrite('{output_path}', masks_tracked.astype(np.uint32), compression='zlib')
|
|
154
|
+
print(f'Saved tracked masks to: {output_path}')
|
|
155
|
+
|
|
156
|
+
"""
|
|
157
|
+
|
|
158
|
+
return script_content
|
|
159
|
+
|
|
160
|
+
|
|
161
|
+
@BatchProcessingRegistry.register(
|
|
162
|
+
name="Track Cells with Trackastra",
|
|
163
|
+
suffix="_tracked",
|
|
164
|
+
description="Track cells across time using TrackAstra deep learning (expects TYX or TZYX label images)",
|
|
165
|
+
parameters={
|
|
166
|
+
"model": {
|
|
167
|
+
"type": str,
|
|
168
|
+
"default": "ctc",
|
|
169
|
+
"description": "general_2d (nuclei/cells/particles) or ctc (Cell Tracking Challenge; 2D/3D)",
|
|
170
|
+
},
|
|
171
|
+
"mode": {
|
|
172
|
+
"type": str,
|
|
173
|
+
"default": "greedy",
|
|
174
|
+
"description": "greedy (fast), ilp (accurate with divisions), greedy_nodiv",
|
|
175
|
+
},
|
|
176
|
+
"label_pattern": {
|
|
177
|
+
"type": str,
|
|
178
|
+
"default": "_labels.tif",
|
|
179
|
+
"description": " ",
|
|
180
|
+
},
|
|
181
|
+
},
|
|
182
|
+
)
|
|
183
|
+
def trackastra_tracking(
|
|
184
|
+
image: np.ndarray,
|
|
185
|
+
model: str = "ctc",
|
|
186
|
+
mode: str = "greedy",
|
|
187
|
+
label_pattern: str = "_labels.tif",
|
|
188
|
+
) -> np.ndarray:
|
|
189
|
+
"""
|
|
190
|
+
Track cells in time-lapse label images using TrackAstra.
|
|
191
|
+
|
|
192
|
+
This function takes a time series of segmentation masks and performs
|
|
193
|
+
automatic cell tracking using TrackAstra deep learning framework.
|
|
194
|
+
|
|
195
|
+
Expected input dimensions:
|
|
196
|
+
- TYX: Time series of 2D label images
|
|
197
|
+
- TZYX: Time series of 3D label images (will process each Z-slice separately)
|
|
198
|
+
|
|
199
|
+
Parameters:
|
|
200
|
+
-----------
|
|
201
|
+
image : np.ndarray
|
|
202
|
+
Input label image array with time as first dimension
|
|
203
|
+
model : str
|
|
204
|
+
TrackAstra model: 'general_2d' or 'ctc' (default: "ctc")
|
|
205
|
+
mode : str
|
|
206
|
+
Tracking mode: 'greedy', 'ilp', or 'greedy_nodiv' (default: "greedy")
|
|
207
|
+
label_pattern : str
|
|
208
|
+
To identify label images
|
|
209
|
+
|
|
210
|
+
Returns:
|
|
211
|
+
--------
|
|
212
|
+
np.ndarray
|
|
213
|
+
Tracked label image with consistent IDs across time
|
|
214
|
+
"""
|
|
215
|
+
print(f"Input shape: {image.shape}, dtype: {image.dtype}")
|
|
216
|
+
|
|
217
|
+
# Validate input
|
|
218
|
+
if image.ndim < 3:
|
|
219
|
+
print(
|
|
220
|
+
"Input is not a time series (needs at least 3 dimensions). Returning unchanged."
|
|
221
|
+
)
|
|
222
|
+
return image
|
|
223
|
+
|
|
224
|
+
if image.shape[0] < 2:
|
|
225
|
+
print(
|
|
226
|
+
"Input has only one timepoint. Need at least 2 for tracking. Returning unchanged."
|
|
227
|
+
)
|
|
228
|
+
return image
|
|
229
|
+
|
|
230
|
+
# Ensure TrackAstra environment exists
|
|
231
|
+
if not TrackAstraEnvManager.check_env_exists():
|
|
232
|
+
print("TrackAstra environment not found. Creating it now...")
|
|
233
|
+
if not TrackAstraEnvManager.create_env():
|
|
234
|
+
print(
|
|
235
|
+
"Failed to create TrackAstra environment. Returning unchanged."
|
|
236
|
+
)
|
|
237
|
+
return image
|
|
238
|
+
|
|
239
|
+
# Get the current file path from the processing context
|
|
240
|
+
import inspect
|
|
241
|
+
|
|
242
|
+
img_path = None
|
|
243
|
+
|
|
244
|
+
for frame_info in inspect.stack():
|
|
245
|
+
frame_locals = frame_info.frame.f_locals
|
|
246
|
+
if "filepath" in frame_locals:
|
|
247
|
+
img_path = frame_locals["filepath"]
|
|
248
|
+
break
|
|
249
|
+
|
|
250
|
+
if img_path is None:
|
|
251
|
+
print("Could not determine input file path. Returning unchanged.")
|
|
252
|
+
|
|
253
|
+
temp_dir = Path(os.path.dirname(img_path))
|
|
254
|
+
|
|
255
|
+
# Save the mask data
|
|
256
|
+
mask_path = img_path.replace(".tif", "_labels.tif")
|
|
257
|
+
# Create the tracking script
|
|
258
|
+
script_path = temp_dir / "run_tracking.py"
|
|
259
|
+
output_path = temp_dir / os.path.basename(img_path).replace(
|
|
260
|
+
".tif", "_tracked.tif"
|
|
261
|
+
)
|
|
262
|
+
|
|
263
|
+
script_content = create_trackastra_script(
|
|
264
|
+
str(img_path), str(mask_path), model, mode, str(output_path)
|
|
265
|
+
)
|
|
266
|
+
|
|
267
|
+
with open(script_path, "w") as f:
|
|
268
|
+
f.write(script_content)
|
|
269
|
+
|
|
270
|
+
if label_pattern in img_path:
|
|
271
|
+
pass
|
|
272
|
+
else:
|
|
273
|
+
# Run TrackAstra in the dedicated environment
|
|
274
|
+
conda_cmd = TrackAstraEnvManager.get_conda_cmd()
|
|
275
|
+
cmd = [
|
|
276
|
+
conda_cmd,
|
|
277
|
+
"run",
|
|
278
|
+
"-n",
|
|
279
|
+
"trackastra",
|
|
280
|
+
"python",
|
|
281
|
+
str(script_path),
|
|
282
|
+
]
|
|
283
|
+
print(f"Running TrackAstra with model='{model}', mode='{mode}'...")
|
|
284
|
+
result = subprocess.run(cmd, capture_output=True, text=True)
|
|
285
|
+
|
|
286
|
+
if result.returncode != 0:
|
|
287
|
+
print("TrackAstra error:")
|
|
288
|
+
print(result.stdout)
|
|
289
|
+
print(result.stderr)
|
|
290
|
+
print("Returning original image unchanged.")
|
|
291
|
+
return image
|
|
292
|
+
|
|
293
|
+
print(result.stdout)
|
|
294
|
+
|
|
295
|
+
# Load and return the tracked result
|
|
296
|
+
if output_path.exists():
|
|
297
|
+
tracked = imread(str(output_path))
|
|
298
|
+
print(f"Tracking completed. Output shape: {tracked.shape}")
|
|
299
|
+
os.remove(script_path)
|
|
300
|
+
return tracked
|
|
301
|
+
else:
|
|
302
|
+
print("TrackAstra did not produce output. Returning unchanged.")
|
|
303
|
+
return image
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: napari-tmidas
|
|
3
|
-
Version: 0.1
|
|
3
|
+
Version: 0.2.1
|
|
4
4
|
Summary: A plugin for batch processing of confocal and whole-slide microscopy images of biological tissues
|
|
5
5
|
Author: Marco Meer
|
|
6
6
|
Author-email: marco.meer@pm.me
|
|
@@ -100,7 +100,7 @@ Now you can install `napari-tmidas` via [pip]:
|
|
|
100
100
|
|
|
101
101
|
pip install napari-tmidas
|
|
102
102
|
|
|
103
|
-
It is recommended to install the latest development version:
|
|
103
|
+
It is recommended to install the latest development version. Please also regularly execute this command in the activated environment:
|
|
104
104
|
|
|
105
105
|
pip install git+https://github.com/macromeer/napari-tmidas.git
|
|
106
106
|
|
|
@@ -108,19 +108,26 @@ It is recommended to install the latest development version:
|
|
|
108
108
|
|
|
109
109
|
To use the Batch Microscopy Image Conversion pipeline, we need some libraries to read microscopy formats:
|
|
110
110
|
|
|
111
|
+
# mamba activate napari-tmidas
|
|
111
112
|
pip install nd2 readlif tiffslide pylibCZIrw acquifer-napari
|
|
112
113
|
|
|
113
|
-
For the Batch Crop Anything pipeline, we need to install MobileSAM and its dependencies:
|
|
114
|
-
|
|
115
|
-
pip install git+https://github.com/ChaoningZhang/MobileSAM.git
|
|
116
|
-
|
|
117
|
-
|
|
118
114
|
If you want to batch compress images using [Zstandard](https://github.com/facebook/zstd), use the package manager of your operating system to install it:
|
|
119
115
|
|
|
120
116
|
sudo apt-get install zstd # for Linux
|
|
121
117
|
brew install zstd # for macOS
|
|
122
118
|
choco install zstandard # for Windows
|
|
123
119
|
|
|
120
|
+
To use the Batch Crop Anything pipeline, we need to install SAM2 in the napari-tmidas environment:
|
|
121
|
+
|
|
122
|
+
# mamba activate napari-tmidas
|
|
123
|
+
cd /opt
|
|
124
|
+
git clone https://github.com/facebookresearch/sam2.git && cd sam2
|
|
125
|
+
pip install -e .
|
|
126
|
+
wget https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_large.pt -P checkpoints/
|
|
127
|
+
pip install decord
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
|
|
124
131
|
|
|
125
132
|
## Usage
|
|
126
133
|
|
|
@@ -153,7 +160,7 @@ You can start this pipeline via `Plugins > T-MIDAS > Batch Microscopy Image Conv
|
|
|
153
160
|

|
|
154
161
|
|
|
155
162
|
4. You can click on the images in the table to show them in the viewer. For example first click on one of the `Original Files`, and then the corresponding `Processed File` to see an overlay.
|
|
156
|
-
|
|
163
|
+
|
|
157
164
|
<img src="https://github.com/user-attachments/assets/cfe84828-c1cc-4196-9a53-5dfb82d5bfce" alt="Image Processing Widget" style="width:75%; height:auto;">
|
|
158
165
|
|
|
159
166
|
|
|
@@ -1,13 +1,13 @@
|
|
|
1
1
|
napari_tmidas/__init__.py,sha256=YNBLESwk8jr_TlDdkSC1CwH0tf0CKHF1i2_efzLjdpk,589
|
|
2
|
-
napari_tmidas/_crop_anything.py,sha256=
|
|
2
|
+
napari_tmidas/_crop_anything.py,sha256=KgGZhNEHaGbk6npDHXGi7FrgahsfivlVwvdNAAYdME0,101452
|
|
3
3
|
napari_tmidas/_file_conversion.py,sha256=V6evJmggUwOFzJO203Y5ltboHXEWNJQckZPedGRkrLI,72203
|
|
4
|
-
napari_tmidas/_file_selector.py,sha256=
|
|
5
|
-
napari_tmidas/_label_inspection.py,sha256=
|
|
4
|
+
napari_tmidas/_file_selector.py,sha256=JQ8t_nVzJXqlVUwIBjGE2jJDeyhuDKCXHJP_cPbzzBw,43091
|
|
5
|
+
napari_tmidas/_label_inspection.py,sha256=74V36y5EnGs0vWK1FC7Kui4CPLBW_SIg885PSKeZsJ4,9184
|
|
6
6
|
napari_tmidas/_reader.py,sha256=A9_hdDxtVkVGmbOsbqgnARCSvpEh7GGPo7ylzmbnu8o,2485
|
|
7
7
|
napari_tmidas/_registry.py,sha256=Oz9HFJh41MKRLeKxRuc7x7yzc-OrmoTdRFnfngFU_XE,2007
|
|
8
8
|
napari_tmidas/_roi_colocalization.py,sha256=OVjdHvtFN07DgrtTX8uqbrxZL6jVwl2L3klorgW2C9k,43196
|
|
9
9
|
napari_tmidas/_sample_data.py,sha256=khuv1jemz_fCjqNwEKMFf83Ju0EN4S89IKydsUMmUxw,645
|
|
10
|
-
napari_tmidas/_version.py,sha256=
|
|
10
|
+
napari_tmidas/_version.py,sha256=UoNvMtd4wCG76RwoSpNCUtaFyTwakGcZolfjXzNVSMY,511
|
|
11
11
|
napari_tmidas/_widget.py,sha256=u9uf9WILAwZg_InhFyjWInY4ej1TV1a59dR8Fe3vNF8,4794
|
|
12
12
|
napari_tmidas/_writer.py,sha256=wbVfHFjjHdybSg37VR4lVmL-kdCkDZsUPDJ66AVLaFQ,1941
|
|
13
13
|
napari_tmidas/napari.yaml,sha256=1Am1dA0-ZtCXk6veIT6jrMz3zwQ7dF8_p9tZTFx_vTg,2641
|
|
@@ -17,16 +17,22 @@ napari_tmidas/_tests/test_sample_data.py,sha256=D1HU_C3hWpO3mlSW_7Z94xaYHDtxz0XU
|
|
|
17
17
|
napari_tmidas/_tests/test_widget.py,sha256=I_d-Cra_CTcS0QdMItg_HMphvhj0XCx81JnFyCHk9lg,2204
|
|
18
18
|
napari_tmidas/_tests/test_writer.py,sha256=4_MlZM9a5So74J16_4tIOJc6pwTOw9R0-oAE_YioIx4,122
|
|
19
19
|
napari_tmidas/processing_functions/__init__.py,sha256=osXY9jSgDsrwFaS6ShPHP0wGRxMuX1mHRN9EDa9l41g,1891
|
|
20
|
-
napari_tmidas/processing_functions/basic.py,sha256=
|
|
21
|
-
napari_tmidas/processing_functions/
|
|
22
|
-
napari_tmidas/processing_functions/
|
|
20
|
+
napari_tmidas/processing_functions/basic.py,sha256=NJj7pjVPGZwH2H8lnDtxxK-p3JLpcayAqfmTduuPFDw,26777
|
|
21
|
+
napari_tmidas/processing_functions/careamics_denoising.py,sha256=DFE_6lefeqckAvx-1EqwzJSU3iR3g3ujBGRnF_fnpoM,11638
|
|
22
|
+
napari_tmidas/processing_functions/careamics_env_manager.py,sha256=QfmhY5CaeFboUGTxeDlQDPi9WSfeBWp56Zz_qc2luew,11219
|
|
23
|
+
napari_tmidas/processing_functions/cellpose_env_manager.py,sha256=EWNuHuY0PPw8_mL61ElZ58M0-DTduPKuWUdvsrmKV8I,6191
|
|
24
|
+
napari_tmidas/processing_functions/cellpose_segmentation.py,sha256=miRPIsrkv0jL1jNdUFwlTkmr6-m9g7U7k9ijyeatUY0,13410
|
|
23
25
|
napari_tmidas/processing_functions/colocalization.py,sha256=AiTTVAcVhKuuHZhrj5IHwbzns7-GE6ewvFqhYy1L-do,7657
|
|
24
26
|
napari_tmidas/processing_functions/file_compression.py,sha256=mxR-yqBdc-T1XI3StIXpW8h5xGdCOtLQjt8uoRFpDSY,6859
|
|
27
|
+
napari_tmidas/processing_functions/sam2_env_manager.py,sha256=WzKOLFeu1KZRRBryKdWkDm6QJolhs3rCj-KD6Q-z9dE,2897
|
|
28
|
+
napari_tmidas/processing_functions/sam2_mp4.py,sha256=NF0dWar2uyP_yQWxC8e08J6198C2qxEIzQccSI_5g40,10352
|
|
25
29
|
napari_tmidas/processing_functions/scipy_filters.py,sha256=kKpDAlQQ0ZNbkt77QUWi-Bwolk6MMDvtG_bZJV3MjOo,1612
|
|
26
|
-
napari_tmidas/processing_functions/skimage_filters.py,sha256=
|
|
27
|
-
napari_tmidas
|
|
28
|
-
napari_tmidas
|
|
29
|
-
napari_tmidas-0.1.
|
|
30
|
-
napari_tmidas-0.1.
|
|
31
|
-
napari_tmidas-0.1.
|
|
32
|
-
napari_tmidas-0.1.
|
|
30
|
+
napari_tmidas/processing_functions/skimage_filters.py,sha256=tSBx0nal88ixxVbu5o7ojTn90HgsUTt-aA_T6XLvmyY,16320
|
|
31
|
+
napari_tmidas/processing_functions/timepoint_merger.py,sha256=DwL5vZBSplXt9dBBrKtMm9aH_NvT3mY7cdbeGg2OU_Y,16567
|
|
32
|
+
napari_tmidas/processing_functions/trackastra_tracking.py,sha256=4kswVZCRHJ68oY95ezZmSrXMNrhjjEeN5x8a7GIjh4E,9084
|
|
33
|
+
napari_tmidas-0.2.1.dist-info/licenses/LICENSE,sha256=tSjiOqj57exmEIfP2YVPCEeQf0cH49S6HheQR8IiY3g,1485
|
|
34
|
+
napari_tmidas-0.2.1.dist-info/METADATA,sha256=AYL6vxMkpxPlXBrYZdBOvH1_AuNAQ83X68hue3KfA_k,11874
|
|
35
|
+
napari_tmidas-0.2.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
36
|
+
napari_tmidas-0.2.1.dist-info/entry_points.txt,sha256=fbVjzbJTm4aDMIBtel1Lyqvq-CwXY7wmCOo_zJ-jtRY,60
|
|
37
|
+
napari_tmidas-0.2.1.dist-info/top_level.txt,sha256=63ybdxCZ4SeT13f_Ou4TsivGV_2Gtm_pJOXToAt30_E,14
|
|
38
|
+
napari_tmidas-0.2.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|