napari-tmidas 0.1.9__py3-none-any.whl → 0.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -16,6 +16,12 @@ except ImportError:
16
16
  "scikit-image not available, some processing functions will be disabled"
17
17
  )
18
18
 
19
+ import contextlib
20
+ import os
21
+
22
+ import pandas as pd
23
+
24
+ from napari_tmidas._file_selector import ProcessingWorker
19
25
  from napari_tmidas._registry import BatchProcessingRegistry
20
26
 
21
27
  if SKIMAGE_AVAILABLE:
@@ -114,6 +120,293 @@ if SKIMAGE_AVAILABLE:
114
120
  image, min_size=min_size
115
121
  )
116
122
 
123
+ @BatchProcessingRegistry.register(
124
+ name="Invert Image",
125
+ suffix="_inverted",
126
+ description="Invert pixel values in the image using scikit-image's invert function",
127
+ )
128
+ def invert_image(image: np.ndarray) -> np.ndarray:
129
+ """
130
+ Invert the image pixel values.
131
+
132
+ This function inverts the values in an image using scikit-image's invert function,
133
+ which handles different data types appropriately.
134
+
135
+ Parameters:
136
+ -----------
137
+ image : numpy.ndarray
138
+ Input image array
139
+
140
+ Returns:
141
+ --------
142
+ numpy.ndarray
143
+ Inverted image with the same data type as the input
144
+ """
145
+ # Make a copy to avoid modifying the original
146
+ image_copy = image.copy()
147
+
148
+ # Use skimage's invert function which handles all data types properly
149
+ return skimage.util.invert(image_copy)
150
+
151
+ @BatchProcessingRegistry.register(
152
+ name="Semantic to Instance Segmentation",
153
+ suffix="_instance",
154
+ description="Convert semantic segmentation masks to instance segmentation labels using connected components",
155
+ )
156
+ def semantic_to_instance(image: np.ndarray) -> np.ndarray:
157
+ """
158
+ Convert semantic segmentation masks to instance segmentation labels.
159
+
160
+ This function takes a binary or multi-class semantic segmentation mask and
161
+ converts it to an instance segmentation by finding connected components.
162
+ Each connected region receives a unique label.
163
+
164
+ Parameters:
165
+ -----------
166
+ image : numpy.ndarray
167
+ Input semantic segmentation mask
168
+
169
+ Returns:
170
+ --------
171
+ numpy.ndarray
172
+ Instance segmentation with unique labels for each connected component
173
+ """
174
+ # Create a copy to avoid modifying the original
175
+ instance_mask = image.copy()
176
+
177
+ # If the input is multi-class, process each class separately
178
+ if np.max(instance_mask) > 1:
179
+ # Get unique non-zero class values
180
+ class_values = np.unique(instance_mask)
181
+ class_values = class_values[
182
+ class_values > 0
183
+ ] # Remove background (0)
184
+
185
+ # Create an empty output mask
186
+ result = np.zeros_like(instance_mask, dtype=np.uint32)
187
+
188
+ # Process each class
189
+ label_offset = 0
190
+ for class_val in class_values:
191
+ # Create binary mask for this class
192
+ binary_mask = (instance_mask == class_val).astype(np.uint8)
193
+
194
+ # Find connected components
195
+ labeled = skimage.measure.label(binary_mask, connectivity=2)
196
+
197
+ # Skip if no components found
198
+ if np.max(labeled) == 0:
199
+ continue
200
+
201
+ # Add offset to avoid label overlap between classes
202
+ labeled[labeled > 0] += label_offset
203
+
204
+ # Add to result
205
+ result = np.maximum(result, labeled)
206
+
207
+ # Update offset for next class
208
+ label_offset = np.max(result)
209
+ else:
210
+ # For binary masks, just find connected components
211
+ result = skimage.measure.label(instance_mask > 0, connectivity=2)
212
+
213
+ return result.astype(np.uint32)
214
+
215
+ @BatchProcessingRegistry.register(
216
+ name="Extract Region Properties",
217
+ suffix="_props", # Changed to indicate this is for CSV output only
218
+ description="Extract properties of labeled regions and save as CSV (no image output)",
219
+ parameters={
220
+ "properties": {
221
+ "type": str,
222
+ "default": "area,bbox,centroid,eccentricity,euler_number,perimeter",
223
+ "description": "Comma-separated list of properties to extract (e.g., area,perimeter,centroid)",
224
+ },
225
+ "intensity_image": {
226
+ "type": bool,
227
+ "default": False,
228
+ "description": "Use input as intensity image for intensity-based measurements",
229
+ },
230
+ "min_area": {
231
+ "type": int,
232
+ "default": 0,
233
+ "min": 0,
234
+ "max": 100000,
235
+ "description": "Minimum area to include in results (pixels)",
236
+ },
237
+ },
238
+ )
239
+ def extract_region_properties(
240
+ image: np.ndarray,
241
+ properties: str = "area,bbox,centroid,eccentricity,euler_number,perimeter",
242
+ intensity_image: bool = False,
243
+ min_area: int = 0,
244
+ ) -> np.ndarray:
245
+ """
246
+ Extract properties of labeled regions in an image and save results as CSV.
247
+
248
+ This function analyzes all labeled regions in a label image and computes
249
+ various region properties like area, perimeter, centroid, etc. The results
250
+ are saved as a CSV file. The input image is returned unchanged.
251
+
252
+ Parameters:
253
+ -----------
254
+ image : numpy.ndarray
255
+ Input label image (instance segmentation)
256
+ properties : str
257
+ Comma-separated list of properties to extract
258
+ See scikit-image documentation for all available properties:
259
+ https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.regionprops
260
+ intensity_image : bool
261
+ Whether to use the input image as intensity image for intensity-based measurements
262
+ min_area : int
263
+ Minimum area (in pixels) for regions to include in results
264
+
265
+ Returns:
266
+ --------
267
+ numpy.ndarray
268
+ The original image (unchanged)
269
+ """
270
+ # Check if we have a proper label image
271
+ if image.ndim < 2 or np.max(image) == 0:
272
+ print(
273
+ "Input must be a valid label image with at least one labeled region"
274
+ )
275
+ return image
276
+
277
+ # Convert image to proper format for regionprops
278
+ label_image = image.astype(np.int32)
279
+
280
+ # Parse the properties list
281
+ prop_list = [prop.strip() for prop in properties.split(",")]
282
+
283
+ # Get region properties
284
+ if intensity_image:
285
+ # Use the same image as both label and intensity image # this is wrong
286
+ regions = skimage.measure.regionprops(
287
+ label_image, intensity_image=image
288
+ )
289
+ else:
290
+ regions = skimage.measure.regionprops(label_image)
291
+
292
+ # Collect property data
293
+ data = []
294
+ for region in regions:
295
+ # Skip regions that are too small
296
+ if region.area < min_area:
297
+ continue
298
+
299
+ # Get all requested properties
300
+ region_data = {"label": region.label}
301
+ for prop in prop_list:
302
+ try:
303
+ value = getattr(region, prop)
304
+
305
+ # Handle different types of properties
306
+ if isinstance(value, tuple) or (
307
+ isinstance(value, np.ndarray) and value.ndim > 0
308
+ ):
309
+ # For tuple/array properties like centroid, bbox, etc.
310
+ if isinstance(value, tuple):
311
+ value = np.array(value)
312
+
313
+ # For each element in the tuple/array
314
+ for i, val in enumerate(value):
315
+ region_data[f"{prop}_{i}"] = val
316
+ else:
317
+ # For scalar properties like area, perimeter, etc.
318
+ region_data[prop] = value
319
+ except AttributeError:
320
+ print(f"Property '{prop}' not found, skipping")
321
+ continue
322
+
323
+ data.append(region_data)
324
+
325
+ # Create a DataFrame
326
+ df = pd.DataFrame(data)
327
+
328
+ # Store the DataFrame as an attribute of the function
329
+ extract_region_properties.csv_data = df
330
+ extract_region_properties.save_csv = True
331
+ extract_region_properties.no_image_output = (
332
+ True # Indicate no image output needed
333
+ )
334
+
335
+ print(f"Extracted properties for {len(data)} regions")
336
+ return image
337
+
338
+ # Monkey patch to handle saving CSV files without creating a new image file
339
+ try:
340
+ # Check if ProcessingWorker is imported and available
341
+ original_process_file = ProcessingWorker.process_file
342
+
343
+ # Create a new version that handles saving CSV
344
+ def process_file_with_csv_export(self, filepath):
345
+ """Modified process_file function that saves CSV after processing."""
346
+ result = original_process_file(self, filepath)
347
+
348
+ # Check if there's a result and if we should save CSV
349
+ if isinstance(result, dict) and "processed_file" in result:
350
+ output_path = result["processed_file"]
351
+
352
+ # Check if the processing function had CSV data
353
+ if (
354
+ hasattr(self.processing_func, "save_csv")
355
+ and self.processing_func.save_csv
356
+ and hasattr(self.processing_func, "csv_data")
357
+ ):
358
+
359
+ # Get the CSV data
360
+ df = self.processing_func.csv_data
361
+
362
+ # For functions that don't need an image output, use the original filepath
363
+ # as the base for the CSV filename
364
+ if (
365
+ hasattr(self.processing_func, "no_image_output")
366
+ and self.processing_func.no_image_output
367
+ ):
368
+ # Use the original filepath without creating a new image file
369
+ base_path = os.path.splitext(filepath)[0]
370
+ csv_path = f"{base_path}_regionprops.csv"
371
+
372
+ # Don't save a duplicate image file
373
+ if (
374
+ os.path.exists(output_path)
375
+ and output_path != filepath
376
+ ):
377
+ contextlib.suppress(OSError)
378
+ else:
379
+ # Create CSV filename from the output image path
380
+ csv_path = (
381
+ os.path.splitext(output_path)[0]
382
+ + "_regionprops.csv"
383
+ )
384
+
385
+ # Save the CSV file
386
+ df.to_csv(csv_path, index=False)
387
+ print(f"Saved region properties to {csv_path}")
388
+
389
+ # Add the CSV file to the result
390
+ result["secondary_files"] = [csv_path]
391
+
392
+ # If we don't need an image output, update the result to just point to the CSV
393
+ if (
394
+ hasattr(self.processing_func, "no_image_output")
395
+ and self.processing_func.no_image_output
396
+ ):
397
+ result["processed_file"] = csv_path
398
+
399
+ return result
400
+
401
+ # Apply the monkey patch
402
+ ProcessingWorker.process_file = process_file_with_csv_export
403
+
404
+ except (NameError, AttributeError) as e:
405
+ print(f"Warning: Could not apply CSV export patch: {e}")
406
+ print(
407
+ "Region properties will be extracted but CSV files may not be saved"
408
+ )
409
+
117
410
 
118
411
  # binary to labels
119
412
  @BatchProcessingRegistry.register(
@@ -132,3 +425,33 @@ def binary_to_labels(image: np.ndarray) -> np.ndarray:
132
425
  label_image = skimage.measure.label(label_image, connectivity=2)
133
426
 
134
427
  return label_image
428
+
429
+
430
+ @BatchProcessingRegistry.register(
431
+ name="Convert to 8-bit (uint8)",
432
+ suffix="_uint8",
433
+ description="Convert image data to 8-bit (uint8) format with proper scaling",
434
+ )
435
+ def convert_to_uint8(image: np.ndarray) -> np.ndarray:
436
+ """
437
+ Convert image data to 8-bit (uint8) format with proper scaling.
438
+
439
+ This function handles any input image dimensions (including TZYX) and properly
440
+ rescales data to the 0-1 range before conversion to uint8. Ideal for scientific
441
+ imaging data with arbitrary value ranges.
442
+
443
+ Parameters:
444
+ -----------
445
+ image : numpy.ndarray
446
+ Input image array of any numerical dtype
447
+
448
+ Returns:
449
+ --------
450
+ numpy.ndarray
451
+ 8-bit image with shape preserved and values properly scaled
452
+ """
453
+ # Rescale to 0-1 range (works for any input range, negative or positive)
454
+ img_rescaled = skimage.exposure.rescale_intensity(image, out_range=(0, 1))
455
+
456
+ # Convert the rescaled image to uint8
457
+ return skimage.img_as_ubyte(img_rescaled)