mxlpy 0.22.0__py3-none-any.whl → 0.24.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
mxlpy/units.py CHANGED
@@ -36,6 +36,7 @@ from sympy.physics.units import (
36
36
  watt,
37
37
  weber,
38
38
  )
39
+ from sympy.physics.units.quantities import Quantity
39
40
 
40
41
  __all__ = [
41
42
  "ampere",
@@ -126,3 +127,7 @@ sievert = joule / kilogram # type: ignore
126
127
  lumen = candela * steradian # type: ignore
127
128
  dimensionless = None
128
129
  item = 1 # pseudounit for one thing
130
+
131
+ # Plant units
132
+ mol_chl = Quantity("mol_chl", abbrev="mol_chl")
133
+ mmol_mol_chl = mmol / mol_chl
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mxlpy
3
- Version: 0.22.0
3
+ Version: 0.24.0
4
4
  Summary: A package to build metabolic models
5
5
  Author-email: Marvin van Aalst <marvin.vanaalst@gmail.com>
6
6
  Maintainer-email: Marvin van Aalst <marvin.vanaalst@gmail.com>
@@ -22,6 +22,7 @@ Classifier: Programming Language :: Python :: 3.11
22
22
  Classifier: Topic :: Scientific/Engineering
23
23
  Classifier: Topic :: Software Development
24
24
  Requires-Python: >=3.12
25
+ Requires-Dist: diffrax>=0.7.0
25
26
  Requires-Dist: dill>=0.3.9
26
27
  Requires-Dist: latexify-py>=0.4.4
27
28
  Requires-Dist: lazy-import>=0.2.2
@@ -32,6 +33,7 @@ Requires-Dist: numpy>=2.1.2
32
33
  Requires-Dist: pandas>=2.2.3
33
34
  Requires-Dist: parameteriser>=0.1.0
34
35
  Requires-Dist: pebble>=5.0.7
36
+ Requires-Dist: pysbml>=0.3.0
35
37
  Requires-Dist: python-libsbml>=5.20.4
36
38
  Requires-Dist: salib>=1.5.1
37
39
  Requires-Dist: scipy>=1.14.1
@@ -42,6 +44,7 @@ Requires-Dist: tabulate>=0.9.0
42
44
  Requires-Dist: toml>=0.10.2
43
45
  Requires-Dist: tqdm>=4.66.6
44
46
  Requires-Dist: typing-extensions>=4.12.2
47
+ Requires-Dist: wadler-lindig>=0.1.7
45
48
  Provides-Extra: keras
46
49
  Requires-Dist: keras>=3.9.2; extra == 'keras'
47
50
  Provides-Extra: tensorflow
@@ -118,3 +121,6 @@ You have two choices here, using `uv` (pypi-only) or using `pixi` (conda-forge,
118
121
  - Run `pixi install --frozen`
119
122
 
120
123
 
124
+ ## LLMs
125
+
126
+ We support the [llms.txt](https://llmstxt.org/) convention for making documentation available to large language models and the applications that make use of them. It is located at [docs/llms.txt](https://github.com/Computational-Biology-Aachen/MxlPy/tree/main/docs/llms.txt)
@@ -0,0 +1,57 @@
1
+ mxlpy/__init__.py,sha256=MzR_lZLel95RyWISsF16mDLscGoaw79oD976MFo5_TI,4453
2
+ mxlpy/carousel.py,sha256=3M2rqi2bx87y8D-oqEKTKZ6Q_clDQHbdLNdVjLJeO7c,6013
3
+ mxlpy/compare.py,sha256=rJPOXc-aX6I1EC3ERAAW5Jn04kMwrlqUqdBgbZa6LA4,8098
4
+ mxlpy/distributions.py,sha256=ce6RTqn19YzMMec-u09fSIUA8A92M6rehCuHuXWcX7A,8734
5
+ mxlpy/fit.py,sha256=UTNvbUcL9mg7NuH5qq3syqpXXqynT_lXmKQudxwWcsE,22880
6
+ mxlpy/fns.py,sha256=NLxYwa3ylS7SkISBjw_TgQSKEm7WnkZF9wPigX_ZCAM,13915
7
+ mxlpy/identify.py,sha256=G-Zyr_l-K2mDtIV1xGrQ52QJxoBYqRoNA5RW6GpbNjs,2213
8
+ mxlpy/label_map.py,sha256=PwYanfg07hC0ayyOOP72RFlCQNvhCTbpOhW6kZZ2GUU,17826
9
+ mxlpy/linear_label_map.py,sha256=6Ye6IziWGKkYD_5z3FmTVwnJ2T9SvVGN3U4CfXjXseo,10320
10
+ mxlpy/mc.py,sha256=uMHknTNHmK5b4REM3PtCpCjEr9LoSIBsGsCNU4_yHpg,18639
11
+ mxlpy/mca.py,sha256=IoOHJbjPnAEDqKk64OjFjgRPX5K_aE9D4RrCJ1xFIkw,9457
12
+ mxlpy/model.py,sha256=kjZTQo8yM62JX2GedwTCfxtTQpdprg8vJzgJvp_5XCI,79643
13
+ mxlpy/parallel.py,sha256=yLQLw5O4vnPVp_Zmtw1UhPWtB3483foimxQB-TwFKPg,5016
14
+ mxlpy/parameterise.py,sha256=IgbvfEnkmaqVq_5GgFjHqApGUN9CJrsVD3Fr7pg9iFA,758
15
+ mxlpy/paths.py,sha256=TK2wO4N9lG-UV1JGfeB64q48JVDbwqIUj63rl55MKuQ,1022
16
+ mxlpy/plot.py,sha256=Dng9tyga8xagINQO_OZvjLRoaYGFR8crMljDHrzwEF8,33603
17
+ mxlpy/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
18
+ mxlpy/report.py,sha256=v597yzKecgtoNmlNZ_nVhBCa3czNw0tksOK5mLtAQvE,10631
19
+ mxlpy/scan.py,sha256=KXFdeWwgUBqJBCiOGDdMAGU5nS3PRVn7Cg0ISpzzK1U,17160
20
+ mxlpy/simulator.py,sha256=-jsSP1fEnJnHj1hcj37cAPUyyP57mP_ow2cL-xd9iw8,16699
21
+ mxlpy/types.py,sha256=Vg3ekCkhbH8HjqdDTA7vaAdFp9Diney3ARZZfbq0MoA,33475
22
+ mxlpy/units.py,sha256=4bKXkCYsONUVWRdzV7aVcWFQSA6sxilebgXXFUEKw_c,2091
23
+ mxlpy/experimental/__init__.py,sha256=kZTE-92OErpHzNRqmgSQYH4CGXrogGJ5EL35XGZQ81M,206
24
+ mxlpy/experimental/diff.py,sha256=fmsM53lH86TD2iglQILK-XeZnIAtwHAcGC3Afs8V-tc,9457
25
+ mxlpy/integrators/__init__.py,sha256=TKo2dkJqdW3_n7YrmF6k3kEjr8_kr3-7MDaLu-zFWRg,533
26
+ mxlpy/integrators/int_assimulo.py,sha256=1cvR8cOBdrl_DQs9v0o7wItSG5iyYqwZVh7EO0fg3ro,5021
27
+ mxlpy/integrators/int_diffrax.py,sha256=q_8NZgIZ6T-SRRcI8kSjEb6l-DbXqPv6rjj9KApkQac,3326
28
+ mxlpy/integrators/int_scipy.py,sha256=xKyisVN1jW5hxmVD2K_RpoQ2MwNrMxSGODsAEgEt6_I,4922
29
+ mxlpy/meta/__init__.py,sha256=8-UPZan2pT6RSuN65KC4vV9WPJiAzm2ZsXz3Zu_rmww,475
30
+ mxlpy/meta/codegen_latex.py,sha256=Owj5GKDFkiqks2mIDQIXV3M_5TysGwAZgKSq8C3KBIg,23461
31
+ mxlpy/meta/codegen_model.py,sha256=FkVrAS7HOyTQPNTItgyo8jjDEylkbETGnxJgRTBDAP4,6722
32
+ mxlpy/meta/codegen_mxlpy.py,sha256=FjBw37IqziB4dv5VBAvKenFODfxjJXdW6rQqx9CqYUk,8433
33
+ mxlpy/meta/source_tools.py,sha256=e6ufIsBjgde3QuQ9OsAYES0Lib4WALw4E-0wH_2cF6Y,22442
34
+ mxlpy/meta/sympy_tools.py,sha256=mWVn63OMeiTmVlV586pXxDa3l-_Pc1VcP1G39vYRGS4,3203
35
+ mxlpy/nn/__init__.py,sha256=Qjr-ERsY2lbD75sFBOhCUwEasQDSJKcpBn_kReLZ6oA,633
36
+ mxlpy/nn/_keras.py,sha256=-5zjHRu8OjSiZeuBSIZFyB63uBsNNH5o9y4kBcPnhx8,2263
37
+ mxlpy/nn/_torch.py,sha256=GUJmLU282VU4O-fs3Sz90SEaAnfuXN2MPlBr_tHmvn4,5775
38
+ mxlpy/npe/__init__.py,sha256=hBHCUD2JYDBBGS2kTY8mTCfWB3u1R7m5l--wUupZt6o,1270
39
+ mxlpy/npe/_keras.py,sha256=ytvXMPK9KUCGOzTQm08_SgafiMb-MOIUdZQV7JjAO40,9721
40
+ mxlpy/npe/_torch.py,sha256=v3joh6lFJJxvYJj--wzmKXL9UMTaIN3h6hPNq0uX9NU,11250
41
+ mxlpy/sbml/__init__.py,sha256=Mt97CddpLi3wIrA1b_5cagLmDdNxAVF_S7QV57Pzw8s,226
42
+ mxlpy/sbml/_data.py,sha256=98w5vyhdOHilD5zjy21XFzam0FlvcW_cb1XRTsIgD_M,2019
43
+ mxlpy/sbml/_export.py,sha256=leKf7dFqpoYxO3xFu4j_mM5eAgo-lq__ywADXsmamRU,21008
44
+ mxlpy/sbml/_import.py,sha256=_4MR54YyVkIh9eVAiSMd7yijhHC_ds-3v7M_C4Zn8BY,3565
45
+ mxlpy/sbml/_name_conversion.py,sha256=93muW47M7qJoE227HKHmThWpPeWsXDN9eM8cRH2pqPs,1340
46
+ mxlpy/surrogates/__init__.py,sha256=cz9qr0ToYSutIK45IvKrMe1mPP7Lj0I_V0HYGixfpZU,916
47
+ mxlpy/surrogates/_keras.py,sha256=r2pR3iTJOaMqtATbsCm5CF94TYG9b-9cKljc8kMOplQ,3852
48
+ mxlpy/surrogates/_poly.py,sha256=z2g3JTdVyQJ8dIiXP4BOun_yMZOrlYpPNvQ0wmFYDTk,3672
49
+ mxlpy/surrogates/_qss.py,sha256=9w-hPPhdcwybkyaSX0sIfYfvcKu1U5j4HHj4SlgZcYQ,723
50
+ mxlpy/surrogates/_torch.py,sha256=gU0secuRBYgewhNqZmSo6_Xf804dSzwWwIYmdKA7y60,6389
51
+ mxlpy/symbolic/__init__.py,sha256=_vM5YM5I6OH0QDbFt9uGYKO8Z5Vly0wbGuvUScVrPRU,258
52
+ mxlpy/symbolic/strikepy.py,sha256=tzo3uvPpXLDex09hWTuitVzuTNwbgl7jWGjD8g6a8iI,20033
53
+ mxlpy/symbolic/symbolic_model.py,sha256=cKfWoktvFmXjuo8egE7gXKrKBq2iBUiy_BcIKIvvz8A,3026
54
+ mxlpy-0.24.0.dist-info/METADATA,sha256=Hqld-ntG-lfZey_b-aHgJo-T8KYylrC-iSf9CxMs-XA,4980
55
+ mxlpy-0.24.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
56
+ mxlpy-0.24.0.dist-info/licenses/LICENSE,sha256=lHX9Eu70g3Iv1aOxXTWNHa3vq9vaVYSPQx4jOLYmDpw,1096
57
+ mxlpy-0.24.0.dist-info/RECORD,,