multipers 2.3.3b6__cp312-cp312-manylinux_2_39_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of multipers might be problematic. Click here for more details.
- multipers/__init__.py +33 -0
- multipers/_signed_measure_meta.py +453 -0
- multipers/_slicer_meta.py +211 -0
- multipers/array_api/__init__.py +45 -0
- multipers/array_api/numpy.py +41 -0
- multipers/array_api/torch.py +58 -0
- multipers/data/MOL2.py +458 -0
- multipers/data/UCR.py +18 -0
- multipers/data/__init__.py +1 -0
- multipers/data/graphs.py +466 -0
- multipers/data/immuno_regions.py +27 -0
- multipers/data/minimal_presentation_to_st_bf.py +0 -0
- multipers/data/pytorch2simplextree.py +91 -0
- multipers/data/shape3d.py +101 -0
- multipers/data/synthetic.py +113 -0
- multipers/distances.py +202 -0
- multipers/filtration_conversions.pxd +229 -0
- multipers/filtration_conversions.pxd.tp +84 -0
- multipers/filtrations/__init__.py +18 -0
- multipers/filtrations/density.py +574 -0
- multipers/filtrations/filtrations.py +361 -0
- multipers/filtrations.pxd +224 -0
- multipers/function_rips.cpython-312-x86_64-linux-gnu.so +0 -0
- multipers/function_rips.pyx +105 -0
- multipers/grids.cpython-312-x86_64-linux-gnu.so +0 -0
- multipers/grids.pyx +433 -0
- multipers/gudhi/Persistence_slices_interface.h +132 -0
- multipers/gudhi/Simplex_tree_interface.h +239 -0
- multipers/gudhi/Simplex_tree_multi_interface.h +551 -0
- multipers/gudhi/cubical_to_boundary.h +59 -0
- multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -0
- multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -0
- multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -0
- multipers/gudhi/gudhi/Debug_utils.h +45 -0
- multipers/gudhi/gudhi/Fields/Multi_field.h +484 -0
- multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -0
- multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -0
- multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -0
- multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -0
- multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -0
- multipers/gudhi/gudhi/Fields/Z2_field.h +355 -0
- multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -0
- multipers/gudhi/gudhi/Fields/Zp_field.h +420 -0
- multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -0
- multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -0
- multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -0
- multipers/gudhi/gudhi/Matrix.h +2107 -0
- multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -0
- multipers/gudhi/gudhi/Multi_persistence/Box.h +174 -0
- multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -0
- multipers/gudhi/gudhi/Off_reader.h +173 -0
- multipers/gudhi/gudhi/One_critical_filtration.h +1441 -0
- multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -0
- multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -0
- multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -0
- multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -0
- multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -0
- multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -0
- multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -0
- multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -0
- multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -0
- multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -0
- multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -0
- multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -0
- multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -0
- multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -0
- multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -0
- multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -0
- multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -0
- multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -0
- multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -0
- multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -0
- multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -0
- multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -0
- multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -0
- multipers/gudhi/gudhi/Persistent_cohomology.h +745 -0
- multipers/gudhi/gudhi/Points_off_io.h +171 -0
- multipers/gudhi/gudhi/Simple_object_pool.h +69 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -0
- multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -0
- multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -0
- multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -0
- multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -0
- multipers/gudhi/gudhi/Simplex_tree.h +2794 -0
- multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -0
- multipers/gudhi/gudhi/distance_functions.h +62 -0
- multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -0
- multipers/gudhi/gudhi/persistence_interval.h +253 -0
- multipers/gudhi/gudhi/persistence_matrix_options.h +170 -0
- multipers/gudhi/gudhi/reader_utils.h +367 -0
- multipers/gudhi/mma_interface_coh.h +256 -0
- multipers/gudhi/mma_interface_h0.h +223 -0
- multipers/gudhi/mma_interface_matrix.h +293 -0
- multipers/gudhi/naive_merge_tree.h +536 -0
- multipers/gudhi/scc_io.h +310 -0
- multipers/gudhi/truc.h +1403 -0
- multipers/io.cpython-312-x86_64-linux-gnu.so +0 -0
- multipers/io.pyx +644 -0
- multipers/ml/__init__.py +0 -0
- multipers/ml/accuracies.py +90 -0
- multipers/ml/invariants_with_persistable.py +79 -0
- multipers/ml/kernels.py +176 -0
- multipers/ml/mma.py +713 -0
- multipers/ml/one.py +472 -0
- multipers/ml/point_clouds.py +352 -0
- multipers/ml/signed_measures.py +1589 -0
- multipers/ml/sliced_wasserstein.py +461 -0
- multipers/ml/tools.py +113 -0
- multipers/mma_structures.cpython-312-x86_64-linux-gnu.so +0 -0
- multipers/mma_structures.pxd +128 -0
- multipers/mma_structures.pyx +2786 -0
- multipers/mma_structures.pyx.tp +1094 -0
- multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -0
- multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -0
- multipers/multi_parameter_rank_invariant/function_rips.h +322 -0
- multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -0
- multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -0
- multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -0
- multipers/multiparameter_edge_collapse.py +41 -0
- multipers/multiparameter_module_approximation/approximation.h +2330 -0
- multipers/multiparameter_module_approximation/combinatory.h +129 -0
- multipers/multiparameter_module_approximation/debug.h +107 -0
- multipers/multiparameter_module_approximation/euler_curves.h +0 -0
- multipers/multiparameter_module_approximation/format_python-cpp.h +286 -0
- multipers/multiparameter_module_approximation/heap_column.h +238 -0
- multipers/multiparameter_module_approximation/images.h +79 -0
- multipers/multiparameter_module_approximation/list_column.h +174 -0
- multipers/multiparameter_module_approximation/list_column_2.h +232 -0
- multipers/multiparameter_module_approximation/ru_matrix.h +347 -0
- multipers/multiparameter_module_approximation/set_column.h +135 -0
- multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -0
- multipers/multiparameter_module_approximation/unordered_set_column.h +166 -0
- multipers/multiparameter_module_approximation/utilities.h +403 -0
- multipers/multiparameter_module_approximation/vector_column.h +223 -0
- multipers/multiparameter_module_approximation/vector_matrix.h +331 -0
- multipers/multiparameter_module_approximation/vineyards.h +464 -0
- multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -0
- multipers/multiparameter_module_approximation.cpython-312-x86_64-linux-gnu.so +0 -0
- multipers/multiparameter_module_approximation.pyx +235 -0
- multipers/pickle.py +90 -0
- multipers/plots.py +456 -0
- multipers/point_measure.cpython-312-x86_64-linux-gnu.so +0 -0
- multipers/point_measure.pyx +395 -0
- multipers/simplex_tree_multi.cpython-312-x86_64-linux-gnu.so +0 -0
- multipers/simplex_tree_multi.pxd +134 -0
- multipers/simplex_tree_multi.pyx +10840 -0
- multipers/simplex_tree_multi.pyx.tp +2009 -0
- multipers/slicer.cpython-312-x86_64-linux-gnu.so +0 -0
- multipers/slicer.pxd +3034 -0
- multipers/slicer.pxd.tp +234 -0
- multipers/slicer.pyx +20481 -0
- multipers/slicer.pyx.tp +1088 -0
- multipers/tensor/tensor.h +672 -0
- multipers/tensor.pxd +13 -0
- multipers/test.pyx +44 -0
- multipers/tests/__init__.py +62 -0
- multipers/torch/__init__.py +1 -0
- multipers/torch/diff_grids.py +240 -0
- multipers/torch/rips_density.py +310 -0
- multipers-2.3.3b6.dist-info/METADATA +128 -0
- multipers-2.3.3b6.dist-info/RECORD +182 -0
- multipers-2.3.3b6.dist-info/WHEEL +5 -0
- multipers-2.3.3b6.dist-info/licenses/LICENSE +21 -0
- multipers-2.3.3b6.dist-info/top_level.txt +1 -0
- multipers.libs/libtbb-ca48af5c.so.12.16 +0 -0
|
@@ -0,0 +1,337 @@
|
|
|
1
|
+
/* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
|
|
2
|
+
* See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
|
|
3
|
+
* Author(s): Siddharth Pritam, Marc Glisse
|
|
4
|
+
*
|
|
5
|
+
* Copyright (C) 2020 Inria
|
|
6
|
+
*
|
|
7
|
+
* Modification(s):
|
|
8
|
+
* - 2020/03 Vincent Rouvreau: integration to the gudhi library
|
|
9
|
+
* - 2021 Marc Glisse: complete rewrite
|
|
10
|
+
* - YYYY/MM Author: Description of the modification
|
|
11
|
+
*/
|
|
12
|
+
|
|
13
|
+
#ifndef FLAG_COMPLEX_EDGE_COLLAPSER_H_
|
|
14
|
+
#define FLAG_COMPLEX_EDGE_COLLAPSER_H_
|
|
15
|
+
|
|
16
|
+
#include <gudhi/Debug_utils.h>
|
|
17
|
+
|
|
18
|
+
#include <boost/container/flat_map.hpp>
|
|
19
|
+
#include <boost/container/flat_set.hpp>
|
|
20
|
+
|
|
21
|
+
#ifdef GUDHI_USE_TBB
|
|
22
|
+
#include <tbb/parallel_sort.h>
|
|
23
|
+
#endif
|
|
24
|
+
|
|
25
|
+
#include <utility>
|
|
26
|
+
#include <vector>
|
|
27
|
+
#include <tuple>
|
|
28
|
+
#include <algorithm>
|
|
29
|
+
#include <limits>
|
|
30
|
+
|
|
31
|
+
namespace Gudhi {
|
|
32
|
+
|
|
33
|
+
namespace collapse {
|
|
34
|
+
|
|
35
|
+
/** \private
|
|
36
|
+
*
|
|
37
|
+
* \brief Flag complex sparse matrix data structure.
|
|
38
|
+
*
|
|
39
|
+
* \tparam Vertex type must be an integer type.
|
|
40
|
+
* \tparam Filtration type for the value of the filtration function.
|
|
41
|
+
*/
|
|
42
|
+
template<typename Vertex, typename Filtration_value>
|
|
43
|
+
struct Flag_complex_edge_collapser {
|
|
44
|
+
using Filtered_edge = std::tuple<Vertex, Vertex, Filtration_value>;
|
|
45
|
+
typedef std::pair<Vertex,Vertex> Edge;
|
|
46
|
+
struct Cmpi { template<class T, class U> bool operator()(T const&a, U const&b)const{return b<a; } };
|
|
47
|
+
typedef boost::container::flat_map<Vertex, Filtration_value> Ngb_list;
|
|
48
|
+
typedef std::vector<Ngb_list> Neighbors;
|
|
49
|
+
Neighbors neighbors; // closed neighborhood
|
|
50
|
+
std::size_t num_vertices;
|
|
51
|
+
std::vector<std::tuple<Vertex, Vertex, Filtration_value>> res;
|
|
52
|
+
|
|
53
|
+
#ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
|
|
54
|
+
// Minimal matrix interface
|
|
55
|
+
// Using this matrix generally helps performance, but the memory use may be excessive for a very sparse graph
|
|
56
|
+
// (and in extreme cases the constant initialization of the matrix may start to dominate the running time).
|
|
57
|
+
// Are there cases where the matrix is too big but a hash table would help?
|
|
58
|
+
std::vector<Filtration_value> neighbors_data;
|
|
59
|
+
void init_neighbors_dense(){
|
|
60
|
+
neighbors_data.clear();
|
|
61
|
+
neighbors_data.resize(num_vertices*num_vertices, std::numeric_limits<Filtration_value>::infinity());
|
|
62
|
+
}
|
|
63
|
+
Filtration_value& neighbors_dense(Vertex i, Vertex j){return neighbors_data[num_vertices*j+i];}
|
|
64
|
+
#endif
|
|
65
|
+
|
|
66
|
+
// This does not touch the events list, only the adjacency matrix(es)
|
|
67
|
+
void delay_neighbor(Vertex u, Vertex v, Filtration_value f) {
|
|
68
|
+
neighbors[u][v]=f;
|
|
69
|
+
neighbors[v][u]=f;
|
|
70
|
+
#ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
|
|
71
|
+
neighbors_dense(u,v)=f;
|
|
72
|
+
neighbors_dense(v,u)=f;
|
|
73
|
+
#endif
|
|
74
|
+
}
|
|
75
|
+
void remove_neighbor(Vertex u, Vertex v) {
|
|
76
|
+
neighbors[u].erase(v);
|
|
77
|
+
neighbors[v].erase(u);
|
|
78
|
+
#ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
|
|
79
|
+
neighbors_dense(u,v)=std::numeric_limits<Filtration_value>::infinity();
|
|
80
|
+
neighbors_dense(v,u)=std::numeric_limits<Filtration_value>::infinity();
|
|
81
|
+
#endif
|
|
82
|
+
}
|
|
83
|
+
|
|
84
|
+
template<class FilteredEdgeRange>
|
|
85
|
+
void read_edges(FilteredEdgeRange const&r){
|
|
86
|
+
neighbors.resize(num_vertices);
|
|
87
|
+
#ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
|
|
88
|
+
init_neighbors_dense();
|
|
89
|
+
#endif
|
|
90
|
+
// Use the raw sequence to avoid maintaining the order
|
|
91
|
+
std::vector<typename Ngb_list::sequence_type> neighbors_seq(num_vertices);
|
|
92
|
+
for(auto&&e : r){
|
|
93
|
+
using std::get;
|
|
94
|
+
Vertex u = get<0>(e);
|
|
95
|
+
Vertex v = get<1>(e);
|
|
96
|
+
Filtration_value f = get<2>(e);
|
|
97
|
+
neighbors_seq[u].emplace_back(v, f);
|
|
98
|
+
neighbors_seq[v].emplace_back(u, f);
|
|
99
|
+
#ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
|
|
100
|
+
neighbors_dense(u,v)=f;
|
|
101
|
+
neighbors_dense(v,u)=f;
|
|
102
|
+
#endif
|
|
103
|
+
}
|
|
104
|
+
for(std::size_t i=0;i<neighbors_seq.size();++i){
|
|
105
|
+
neighbors_seq[i].emplace_back(i, -std::numeric_limits<Filtration_value>::infinity());
|
|
106
|
+
neighbors[i].adopt_sequence(std::move(neighbors_seq[i])); // calls sort
|
|
107
|
+
#ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
|
|
108
|
+
neighbors_dense(i,i)=-std::numeric_limits<Filtration_value>::infinity();
|
|
109
|
+
#endif
|
|
110
|
+
}
|
|
111
|
+
}
|
|
112
|
+
|
|
113
|
+
// Open neighborhood
|
|
114
|
+
// At some point it helped gcc to add __attribute__((noinline)) here, otherwise we had +50% on the running time
|
|
115
|
+
// on one example. It looks ok now, or I forgot which example that was.
|
|
116
|
+
void common_neighbors(boost::container::flat_set<Vertex>& e_ngb,
|
|
117
|
+
std::vector<std::pair<Filtration_value, Vertex>>& e_ngb_later,
|
|
118
|
+
Vertex u, Vertex v, Filtration_value f_event){
|
|
119
|
+
// Using neighbors_dense here seems to hurt, even if we loop on the smaller of nu and nv.
|
|
120
|
+
Ngb_list const&nu = neighbors[u];
|
|
121
|
+
Ngb_list const&nv = neighbors[v];
|
|
122
|
+
auto ui = nu.begin();
|
|
123
|
+
auto ue = nu.end();
|
|
124
|
+
auto vi = nv.begin();
|
|
125
|
+
auto ve = nv.end();
|
|
126
|
+
assert(ui != ue && vi != ve);
|
|
127
|
+
while(ui != ue && vi != ve){
|
|
128
|
+
Vertex w = ui->first;
|
|
129
|
+
if(w < vi->first) { ++ui; continue; }
|
|
130
|
+
if(w > vi->first) { ++vi; continue; }
|
|
131
|
+
// nu and nv are closed, so we need to exclude e here.
|
|
132
|
+
if(w != u && w != v) {
|
|
133
|
+
Filtration_value f = std::max(ui->second, vi->second);
|
|
134
|
+
if(f > f_event)
|
|
135
|
+
e_ngb_later.emplace_back(f, w);
|
|
136
|
+
else
|
|
137
|
+
e_ngb.insert(e_ngb.end(), w);
|
|
138
|
+
}
|
|
139
|
+
++ui; ++vi;
|
|
140
|
+
}
|
|
141
|
+
}
|
|
142
|
+
|
|
143
|
+
// Test if the neighborhood of e is included in the closed neighborhood of c
|
|
144
|
+
template<class Ngb>
|
|
145
|
+
bool is_dominated_by(Ngb const& e_ngb, Vertex c, Filtration_value f){
|
|
146
|
+
// The best strategy probably depends on the distribution, how sparse / dense the adjacency matrix is,
|
|
147
|
+
// how (un)balanced the sizes of e_ngb and nc are.
|
|
148
|
+
// Some efficient operations on sets work best with bitsets, although the need for a map complicates things.
|
|
149
|
+
#ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
|
|
150
|
+
for(auto v : e_ngb) {
|
|
151
|
+
// if(v==c)continue;
|
|
152
|
+
if(neighbors_dense(v,c) > f) return false;
|
|
153
|
+
}
|
|
154
|
+
return true;
|
|
155
|
+
#else
|
|
156
|
+
auto&&nc = neighbors[c];
|
|
157
|
+
// if few neighbors, use dichotomy? Seems slower.
|
|
158
|
+
// I tried storing a copy of neighbors as a vector<absl::flat_hash_map> and using it for nc, but it was
|
|
159
|
+
// a bit slower here. It did help with neighbors[dominator].find(w) in the main function though,
|
|
160
|
+
// sometimes enough, sometimes not.
|
|
161
|
+
auto ci = nc.begin();
|
|
162
|
+
auto ce = nc.end();
|
|
163
|
+
auto eni = e_ngb.begin();
|
|
164
|
+
auto ene = e_ngb.end();
|
|
165
|
+
assert(eni != ene);
|
|
166
|
+
assert(ci != ce);
|
|
167
|
+
// if(*eni == c && ++eni == ene) return true;
|
|
168
|
+
for(;;){
|
|
169
|
+
Vertex ve = *eni;
|
|
170
|
+
Vertex vc = ci->first;
|
|
171
|
+
while(ve > vc) {
|
|
172
|
+
// try a gallop strategy (exponential search)? Seems slower
|
|
173
|
+
if(++ci == ce) return false;
|
|
174
|
+
vc = ci->first;
|
|
175
|
+
}
|
|
176
|
+
if(ve < vc) return false;
|
|
177
|
+
// ve == vc
|
|
178
|
+
if(ci->second > f) return false;
|
|
179
|
+
if(++eni == ene)return true;
|
|
180
|
+
// If we stored an open neighborhood of c (excluding c), we would need to test for c here and before the loop
|
|
181
|
+
// if(*eni == c && ++eni == ene)return true;
|
|
182
|
+
if(++ci == ce) return false;
|
|
183
|
+
}
|
|
184
|
+
#endif
|
|
185
|
+
}
|
|
186
|
+
|
|
187
|
+
template<class FilteredEdgeRange, class Delay>
|
|
188
|
+
void process_edges(FilteredEdgeRange const& edges, Delay&& delay) {
|
|
189
|
+
{
|
|
190
|
+
Vertex maxi = 0, maxj = 0;
|
|
191
|
+
for(auto& fe : edges) {
|
|
192
|
+
Vertex i = std::get<0>(fe);
|
|
193
|
+
Vertex j = std::get<1>(fe);
|
|
194
|
+
if (i > maxi) maxi = i;
|
|
195
|
+
if (j > maxj) maxj = j;
|
|
196
|
+
}
|
|
197
|
+
num_vertices = std::max(maxi, maxj) + 1;
|
|
198
|
+
}
|
|
199
|
+
|
|
200
|
+
read_edges(edges);
|
|
201
|
+
|
|
202
|
+
boost::container::flat_set<Vertex> e_ngb;
|
|
203
|
+
e_ngb.reserve(num_vertices);
|
|
204
|
+
std::vector<std::pair<Filtration_value, Vertex>> e_ngb_later;
|
|
205
|
+
for(auto&e:edges) {
|
|
206
|
+
{
|
|
207
|
+
Vertex u = std::get<0>(e);
|
|
208
|
+
Vertex v = std::get<1>(e);
|
|
209
|
+
Filtration_value input_time = std::get<2>(e);
|
|
210
|
+
auto time = delay(input_time);
|
|
211
|
+
auto start_time = time;
|
|
212
|
+
e_ngb.clear();
|
|
213
|
+
e_ngb_later.clear();
|
|
214
|
+
common_neighbors(e_ngb, e_ngb_later, u, v, time);
|
|
215
|
+
// If we identify a good candidate (the first common neighbor) for being a dominator of e until infinity,
|
|
216
|
+
// we could check that a bit more cheaply. It does not seem to help though.
|
|
217
|
+
auto cmp1=[](auto const&a, auto const&b){return a.first > b.first;};
|
|
218
|
+
auto e_ngb_later_begin=e_ngb_later.begin();
|
|
219
|
+
auto e_ngb_later_end=e_ngb_later.end();
|
|
220
|
+
bool heapified = false;
|
|
221
|
+
|
|
222
|
+
bool dead = false;
|
|
223
|
+
while(true) {
|
|
224
|
+
Vertex dominator = -1;
|
|
225
|
+
// special case for size 1
|
|
226
|
+
// if(e_ngb.size()==1){dominator=*e_ngb.begin();}else
|
|
227
|
+
// It is tempting to test the dominators in increasing order of filtration value, which is likely to reduce
|
|
228
|
+
// the number of calls to is_dominated_by before finding a dominator, but sorting, even partially / lazily,
|
|
229
|
+
// is very expensive.
|
|
230
|
+
for(auto c : e_ngb){
|
|
231
|
+
if(is_dominated_by(e_ngb, c, time)){
|
|
232
|
+
dominator = c;
|
|
233
|
+
break;
|
|
234
|
+
}
|
|
235
|
+
}
|
|
236
|
+
if(dominator==-1) break;
|
|
237
|
+
// Push as long as dominator remains a dominator.
|
|
238
|
+
// Iterate on times where at least one neighbor appears.
|
|
239
|
+
for (bool still_dominated = true; still_dominated; ) {
|
|
240
|
+
if(e_ngb_later_begin == e_ngb_later_end) {
|
|
241
|
+
dead = true; goto end_move;
|
|
242
|
+
}
|
|
243
|
+
if(!heapified) {
|
|
244
|
+
// Eagerly sorting can be slow
|
|
245
|
+
std::make_heap(e_ngb_later_begin, e_ngb_later_end, cmp1);
|
|
246
|
+
heapified=true;
|
|
247
|
+
}
|
|
248
|
+
time = e_ngb_later_begin->first; // first place it may become critical
|
|
249
|
+
// Update the neighborhood for this new time, while checking if any of the new neighbors break domination.
|
|
250
|
+
while (e_ngb_later_begin != e_ngb_later_end && e_ngb_later_begin->first <= time) {
|
|
251
|
+
Vertex w = e_ngb_later_begin->second;
|
|
252
|
+
#ifdef GUDHI_COLLAPSE_USE_DENSE_ARRAY
|
|
253
|
+
if (neighbors_dense(dominator,w) > e_ngb_later_begin->first)
|
|
254
|
+
still_dominated = false;
|
|
255
|
+
#else
|
|
256
|
+
auto& ngb_dom = neighbors[dominator];
|
|
257
|
+
auto wit = ngb_dom.find(w); // neighborhood may be open or closed, it does not matter
|
|
258
|
+
if (wit == ngb_dom.end() || wit->second > e_ngb_later_begin->first)
|
|
259
|
+
still_dominated = false;
|
|
260
|
+
#endif
|
|
261
|
+
e_ngb.insert(w);
|
|
262
|
+
std::pop_heap(e_ngb_later_begin, e_ngb_later_end--, cmp1);
|
|
263
|
+
}
|
|
264
|
+
} // this doesn't seem to help that much...
|
|
265
|
+
}
|
|
266
|
+
end_move:
|
|
267
|
+
if(dead) {
|
|
268
|
+
remove_neighbor(u, v);
|
|
269
|
+
} else if(start_time != time) {
|
|
270
|
+
delay_neighbor(u, v, time);
|
|
271
|
+
res.emplace_back(u, v, time);
|
|
272
|
+
} else {
|
|
273
|
+
res.emplace_back(u, v, input_time);
|
|
274
|
+
}
|
|
275
|
+
}
|
|
276
|
+
}
|
|
277
|
+
}
|
|
278
|
+
|
|
279
|
+
std::vector<Filtered_edge> output() {
|
|
280
|
+
return std::move(res);
|
|
281
|
+
}
|
|
282
|
+
|
|
283
|
+
};
|
|
284
|
+
|
|
285
|
+
template<class R> R to_range(R&& r) { return std::move(r); }
|
|
286
|
+
template<class R, class T> R to_range(T const& t) { R r; r.insert(r.end(), t.begin(), t.end()); return r; }
|
|
287
|
+
|
|
288
|
+
template<class FilteredEdgeRange, class Delay>
|
|
289
|
+
auto flag_complex_collapse_edges(FilteredEdgeRange&& edges, Delay&&delay) {
|
|
290
|
+
// Would it help to label the points according to some spatial sorting?
|
|
291
|
+
auto first_edge_itr = std::begin(edges);
|
|
292
|
+
using Vertex = std::decay_t<decltype(std::get<0>(*first_edge_itr))>;
|
|
293
|
+
using Filtration_value = std::decay_t<decltype(std::get<2>(*first_edge_itr))>;
|
|
294
|
+
using Edge_collapser = Flag_complex_edge_collapser<Vertex, Filtration_value>;
|
|
295
|
+
if (first_edge_itr != std::end(edges)) {
|
|
296
|
+
auto edges2 = to_range<std::vector<typename Edge_collapser::Filtered_edge>>(std::forward<FilteredEdgeRange>(edges));
|
|
297
|
+
#ifdef GUDHI_USE_TBB
|
|
298
|
+
// I think this sorting is always negligible compared to the collapse, but parallelizing it shouldn't hurt.
|
|
299
|
+
tbb::parallel_sort(edges2.begin(), edges2.end(),
|
|
300
|
+
[](auto const&a, auto const&b){return std::get<2>(a)>std::get<2>(b);});
|
|
301
|
+
#else
|
|
302
|
+
std::sort(edges2.begin(), edges2.end(), [](auto const&a, auto const&b){return std::get<2>(a)>std::get<2>(b);});
|
|
303
|
+
#endif
|
|
304
|
+
Edge_collapser edge_collapser;
|
|
305
|
+
edge_collapser.process_edges(edges2, std::forward<Delay>(delay));
|
|
306
|
+
return edge_collapser.output();
|
|
307
|
+
}
|
|
308
|
+
return std::vector<typename Edge_collapser::Filtered_edge>();
|
|
309
|
+
}
|
|
310
|
+
|
|
311
|
+
/** \brief Implicitly constructs a flag complex from edges as an input, collapses edges while preserving the persistent
|
|
312
|
+
* homology and returns the remaining edges as a range. The filtration value of vertices is irrelevant to this function.
|
|
313
|
+
*
|
|
314
|
+
* \param[in] edges Range of Filtered edges. There is no need for the range to be sorted, as it will be done internally.
|
|
315
|
+
*
|
|
316
|
+
* \tparam FilteredEdgeRange Range of `std::tuple<Vertex_handle, Vertex_handle, Filtration_value>`
|
|
317
|
+
* where `Vertex_handle` is the type of a vertex index.
|
|
318
|
+
*
|
|
319
|
+
* \return Remaining edges after collapse as a range of
|
|
320
|
+
* `std::tuple<Vertex_handle, Vertex_handle, Filtration_value>`.
|
|
321
|
+
*
|
|
322
|
+
* \ingroup edge_collapse
|
|
323
|
+
*
|
|
324
|
+
* \note
|
|
325
|
+
* Advanced: Defining the macro GUDHI_COLLAPSE_USE_DENSE_ARRAY tells gudhi to allocate a square table of size the
|
|
326
|
+
* maximum vertex index. This usually speeds up the computation for dense graphs. However, for sparse graphs, the memory
|
|
327
|
+
* use may be problematic and initializing this large table may be slow.
|
|
328
|
+
*/
|
|
329
|
+
template<class FilteredEdgeRange> auto flag_complex_collapse_edges(const FilteredEdgeRange& edges) {
|
|
330
|
+
return flag_complex_collapse_edges(edges, [](auto const&d){return d;});
|
|
331
|
+
}
|
|
332
|
+
|
|
333
|
+
} // namespace collapse
|
|
334
|
+
|
|
335
|
+
} // namespace Gudhi
|
|
336
|
+
|
|
337
|
+
#endif // FLAG_COMPLEX_EDGE_COLLAPSER_H_
|