multipers 2.2.3__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (189) hide show
  1. multipers/__init__.py +31 -0
  2. multipers/_signed_measure_meta.py +430 -0
  3. multipers/_slicer_meta.py +212 -0
  4. multipers/data/MOL2.py +458 -0
  5. multipers/data/UCR.py +18 -0
  6. multipers/data/__init__.py +1 -0
  7. multipers/data/graphs.py +466 -0
  8. multipers/data/immuno_regions.py +27 -0
  9. multipers/data/minimal_presentation_to_st_bf.py +0 -0
  10. multipers/data/pytorch2simplextree.py +91 -0
  11. multipers/data/shape3d.py +101 -0
  12. multipers/data/synthetic.py +111 -0
  13. multipers/distances.py +198 -0
  14. multipers/filtration_conversions.pxd +229 -0
  15. multipers/filtration_conversions.pxd.tp +84 -0
  16. multipers/filtrations.pxd +224 -0
  17. multipers/function_rips.cp310-win_amd64.pyd +0 -0
  18. multipers/function_rips.pyx +105 -0
  19. multipers/grids.cp310-win_amd64.pyd +0 -0
  20. multipers/grids.pyx +350 -0
  21. multipers/gudhi/Persistence_slices_interface.h +132 -0
  22. multipers/gudhi/Simplex_tree_interface.h +245 -0
  23. multipers/gudhi/Simplex_tree_multi_interface.h +561 -0
  24. multipers/gudhi/cubical_to_boundary.h +59 -0
  25. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -0
  26. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -0
  27. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -0
  28. multipers/gudhi/gudhi/Debug_utils.h +45 -0
  29. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -0
  30. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -0
  31. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -0
  32. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -0
  33. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -0
  34. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -0
  35. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -0
  36. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -0
  37. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -0
  38. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -0
  39. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -0
  40. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -0
  41. multipers/gudhi/gudhi/Matrix.h +2107 -0
  42. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -0
  43. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -0
  44. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -0
  45. multipers/gudhi/gudhi/Off_reader.h +173 -0
  46. multipers/gudhi/gudhi/One_critical_filtration.h +1431 -0
  47. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -0
  48. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -0
  49. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -0
  50. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -0
  51. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -0
  52. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -0
  53. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -0
  54. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -0
  55. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -0
  56. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -0
  57. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -0
  58. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -0
  59. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -0
  60. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -0
  61. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -0
  62. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -0
  63. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -0
  64. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -0
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -0
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -0
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -0
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -0
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -0
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -0
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -0
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -0
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -0
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -0
  75. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -0
  76. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -0
  77. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -0
  78. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -0
  79. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -0
  80. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -0
  81. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -0
  82. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -0
  83. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -0
  84. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -0
  85. multipers/gudhi/gudhi/Points_off_io.h +171 -0
  86. multipers/gudhi/gudhi/Simple_object_pool.h +69 -0
  87. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -0
  88. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -0
  89. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -0
  90. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -0
  91. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -0
  92. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -0
  93. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -0
  94. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -0
  95. multipers/gudhi/gudhi/Simplex_tree.h +2794 -0
  96. multipers/gudhi/gudhi/Simplex_tree_multi.h +163 -0
  97. multipers/gudhi/gudhi/distance_functions.h +62 -0
  98. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -0
  99. multipers/gudhi/gudhi/persistence_interval.h +253 -0
  100. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -0
  101. multipers/gudhi/gudhi/reader_utils.h +367 -0
  102. multipers/gudhi/mma_interface_coh.h +255 -0
  103. multipers/gudhi/mma_interface_h0.h +231 -0
  104. multipers/gudhi/mma_interface_matrix.h +282 -0
  105. multipers/gudhi/naive_merge_tree.h +575 -0
  106. multipers/gudhi/scc_io.h +289 -0
  107. multipers/gudhi/truc.h +888 -0
  108. multipers/io.cp310-win_amd64.pyd +0 -0
  109. multipers/io.pyx +711 -0
  110. multipers/ml/__init__.py +0 -0
  111. multipers/ml/accuracies.py +90 -0
  112. multipers/ml/convolutions.py +520 -0
  113. multipers/ml/invariants_with_persistable.py +79 -0
  114. multipers/ml/kernels.py +176 -0
  115. multipers/ml/mma.py +714 -0
  116. multipers/ml/one.py +472 -0
  117. multipers/ml/point_clouds.py +346 -0
  118. multipers/ml/signed_measures.py +1589 -0
  119. multipers/ml/sliced_wasserstein.py +461 -0
  120. multipers/ml/tools.py +113 -0
  121. multipers/mma_structures.cp310-win_amd64.pyd +0 -0
  122. multipers/mma_structures.pxd +127 -0
  123. multipers/mma_structures.pyx +2746 -0
  124. multipers/mma_structures.pyx.tp +1085 -0
  125. multipers/multi_parameter_rank_invariant/diff_helpers.h +93 -0
  126. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -0
  127. multipers/multi_parameter_rank_invariant/function_rips.h +322 -0
  128. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -0
  129. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -0
  130. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -0
  131. multipers/multiparameter_edge_collapse.py +41 -0
  132. multipers/multiparameter_module_approximation/approximation.h +2295 -0
  133. multipers/multiparameter_module_approximation/combinatory.h +129 -0
  134. multipers/multiparameter_module_approximation/debug.h +107 -0
  135. multipers/multiparameter_module_approximation/euler_curves.h +0 -0
  136. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -0
  137. multipers/multiparameter_module_approximation/heap_column.h +238 -0
  138. multipers/multiparameter_module_approximation/images.h +79 -0
  139. multipers/multiparameter_module_approximation/list_column.h +174 -0
  140. multipers/multiparameter_module_approximation/list_column_2.h +232 -0
  141. multipers/multiparameter_module_approximation/ru_matrix.h +347 -0
  142. multipers/multiparameter_module_approximation/set_column.h +135 -0
  143. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -0
  144. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -0
  145. multipers/multiparameter_module_approximation/utilities.h +419 -0
  146. multipers/multiparameter_module_approximation/vector_column.h +223 -0
  147. multipers/multiparameter_module_approximation/vector_matrix.h +331 -0
  148. multipers/multiparameter_module_approximation/vineyards.h +464 -0
  149. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -0
  150. multipers/multiparameter_module_approximation.cp310-win_amd64.pyd +0 -0
  151. multipers/multiparameter_module_approximation.pyx +217 -0
  152. multipers/pickle.py +53 -0
  153. multipers/plots.py +334 -0
  154. multipers/point_measure.cp310-win_amd64.pyd +0 -0
  155. multipers/point_measure.pyx +320 -0
  156. multipers/simplex_tree_multi.cp310-win_amd64.pyd +0 -0
  157. multipers/simplex_tree_multi.pxd +133 -0
  158. multipers/simplex_tree_multi.pyx +10335 -0
  159. multipers/simplex_tree_multi.pyx.tp +1935 -0
  160. multipers/slicer.cp310-win_amd64.pyd +0 -0
  161. multipers/slicer.pxd +2371 -0
  162. multipers/slicer.pxd.tp +214 -0
  163. multipers/slicer.pyx +15467 -0
  164. multipers/slicer.pyx.tp +914 -0
  165. multipers/tbb12.dll +0 -0
  166. multipers/tbbbind_2_5.dll +0 -0
  167. multipers/tbbmalloc.dll +0 -0
  168. multipers/tbbmalloc_proxy.dll +0 -0
  169. multipers/tensor/tensor.h +672 -0
  170. multipers/tensor.pxd +13 -0
  171. multipers/test.pyx +44 -0
  172. multipers/tests/__init__.py +57 -0
  173. multipers/tests/test_diff_helper.py +73 -0
  174. multipers/tests/test_hilbert_function.py +82 -0
  175. multipers/tests/test_mma.py +83 -0
  176. multipers/tests/test_point_clouds.py +49 -0
  177. multipers/tests/test_python-cpp_conversion.py +82 -0
  178. multipers/tests/test_signed_betti.py +181 -0
  179. multipers/tests/test_signed_measure.py +89 -0
  180. multipers/tests/test_simplextreemulti.py +221 -0
  181. multipers/tests/test_slicer.py +221 -0
  182. multipers/torch/__init__.py +1 -0
  183. multipers/torch/diff_grids.py +217 -0
  184. multipers/torch/rips_density.py +304 -0
  185. multipers-2.2.3.dist-info/LICENSE +21 -0
  186. multipers-2.2.3.dist-info/METADATA +134 -0
  187. multipers-2.2.3.dist-info/RECORD +189 -0
  188. multipers-2.2.3.dist-info/WHEEL +5 -0
  189. multipers-2.2.3.dist-info/top_level.txt +1 -0
@@ -0,0 +1,217 @@
1
+ """!
2
+ @package mma
3
+ @brief Files containing the C++ cythonized functions.
4
+ @author David Loiseaux
5
+ @copyright Copyright (c) 2022 Inria.
6
+ """
7
+
8
+ # distutils: language = c++
9
+
10
+ ###########################################################################
11
+ ## PYTHON LIBRARIES
12
+ import gudhi as gd
13
+ import numpy as np
14
+ from typing import List
15
+ from joblib import Parallel, delayed
16
+ import sys
17
+
18
+ ###########################################################################
19
+ ## CPP CLASSES
20
+ from libc.stdint cimport intptr_t
21
+ from libc.stdint cimport uintptr_t
22
+
23
+ ###########################################################################
24
+ ## CYTHON TYPES
25
+ from libcpp.vector cimport vector
26
+ from libcpp.utility cimport pair
27
+ #from libcpp.list cimport list as clist
28
+ from libcpp cimport bool
29
+ from libcpp cimport int
30
+ from typing import Iterable,Optional, Literal
31
+ from cython.operator import dereference
32
+ #########################################################################
33
+ ## Multipersistence Module Approximation Classes
34
+ from multipers.mma_structures cimport *
35
+ from multipers.filtrations cimport *
36
+ from multipers.filtration_conversions cimport *
37
+ cimport numpy as cnp
38
+
39
+
40
+ #########################################################################
41
+ ## Small hack for typing
42
+ from multipers.simplex_tree_multi import is_simplextree_multi, SimplexTreeMulti_type
43
+ from multipers.slicer import Slicer_type, is_slicer
44
+ from multipers._slicer_meta import Slicer
45
+ from multipers.mma_structures import *
46
+ from multipers.mma_structures import PyModule_type
47
+ from typing import Union
48
+ import multipers
49
+ import multipers.io as mio
50
+ from multipers.slicer cimport _multiparameter_module_approximation_f32, _multiparameter_module_approximation_f64
51
+
52
+
53
+
54
+ def module_approximation_from_slicer(
55
+ slicer:Slicer_type,
56
+ box:Optional[np.ndarray]=None,
57
+ max_error=-1,
58
+ bool complete=True,
59
+ bool threshold=False,
60
+ bool verbose=False,
61
+ list[float] direction = [],
62
+ )->PyModule_type:
63
+
64
+ cdef Module[float] mod_f32
65
+ cdef Module[double] mod_f64
66
+ cdef intptr_t ptr
67
+ if not slicer.is_vine:
68
+ print(r"Got a non-vine slicer as an input. Use `vineyard=True` to remove this copy.", file=sys.stderr)
69
+ slicer = Slicer(slicer, vineyard=True)
70
+ direction_ = np.asarray(direction, dtype=slicer.dtype)
71
+ if slicer.dtype == np.float32:
72
+ approx_mod = PyModule_f32()
73
+ if box is None:
74
+ box = slicer.filtration_bounds()
75
+ mod_f32 = _multiparameter_module_approximation_f32(slicer,_py21c_f32(direction_), max_error,Box[float](box),threshold, complete, verbose)
76
+ ptr = <intptr_t>(&mod_f32)
77
+ elif slicer.dtype == np.float64:
78
+ approx_mod = PyModule_f64()
79
+ if box is None:
80
+ box = slicer.filtration_bounds()
81
+ mod_f64 = _multiparameter_module_approximation_f64(slicer,_py21c_f64(direction_), max_error,Box[double](box),threshold, complete, verbose)
82
+ ptr = <intptr_t>(&mod_f64)
83
+ else:
84
+ raise ValueError(f"Slicer must be float-like. Got {slicer.dtype}.")
85
+
86
+ approx_mod._set_from_ptr(ptr)
87
+
88
+ return approx_mod
89
+
90
+ def module_approximation(
91
+ input:Union[SimplexTreeMulti_type,Slicer_type, tuple],
92
+ box:Optional[np.ndarray]=None,
93
+ float max_error=-1,
94
+ int nlines=500,
95
+ slicer_backend:Literal["matrix","clement","graph"]="matrix",
96
+ minpres:Optional[Literal["mpfree"]]=None,
97
+ degree:Optional[int]=None,
98
+ bool complete=True,
99
+ bool threshold=False,
100
+ bool verbose=False,
101
+ bool ignore_warning=False,
102
+ id="",
103
+ list[float] direction = [],
104
+ list[int] swap_box_coords = [],
105
+ *,
106
+ int n_jobs = -1,
107
+ )->PyModule_type:
108
+ """Computes an interval module approximation of a multiparameter filtration.
109
+
110
+ Parameters
111
+ ----------
112
+ input: SimplexTreeMulti or Slicer-like.
113
+ Holds the multifiltered complex.
114
+ max_error: positive float
115
+ Trade-off between approximation and computational complexity.
116
+ Upper bound of the module approximation, in bottleneck distance,
117
+ for interval-decomposable modules.
118
+ nlines: int = 200
119
+ Alternative to max_error;
120
+ specifies the number of persistence computation used for the approximation.
121
+ box : (Optional) pair of list of floats
122
+ Defines a rectangle on which to compute the approximation.
123
+ Format : [x,y], This defines a rectangle on which we draw the lines,
124
+ uniformly drawn (with a max_error step).
125
+ The first line is `x`.
126
+ **Warning**: For custom boxes, and directions, you **must** ensure
127
+ that the first line captures a generic barcode.
128
+ direction: float[:] = []
129
+ If given, the line are drawn with this angle.
130
+ **Warning**: You must ensure that the first line, defined by box,
131
+ captures a generic barcode.
132
+ slicer_backend: Either "matrix","clement", or "graph".
133
+ If a simplextree is given, it is first converted to this structure,
134
+ with different choices of backends.
135
+ minpres: (Optional) "mpfree" only for the moment.
136
+ If given, and the input is a simplextree,
137
+ computes a minimal presentation before starting the computation.
138
+ A degree has to be given.
139
+ degree: int Only required when minpres is given.
140
+ Homological degree of the minimal degree.
141
+ threshold: bool
142
+ When true, intersects the module support with the box,
143
+ i.e. no more infinite summands.
144
+ verbose: bool
145
+ Prints C++ infos.
146
+ ignore_warning : bool
147
+ Unless set to true, prevents computing on more than 10k lines.
148
+ Useful to prevent a segmentation fault due to "infinite" recursion.
149
+ Returns
150
+ -------
151
+ PyModule
152
+ An interval decomposable module approximation of the module defined by the
153
+ homology of this multi-filtration.
154
+ """
155
+ if isinstance(input, tuple) or isinstance(input, list):
156
+ assert all(s.is_minpres for s in input), "Modules cannot be merged unless they are minimal presentations."
157
+ assert np.unique([s.minpres_degree for s in input]).shape[0] == len(input), "Multiple modules are at the same degree, cannot merge modules"
158
+ if len(input) == 0:
159
+ return PyModule_f64()
160
+ if n_jobs <= 1:
161
+ modules = tuple(module_approximation(slicer, box, max_error, nlines, slicer_backend, minpres, degree, complete, threshold, verbose, ignore_warning, id, direction, swap_box_coords) for slicer in input)
162
+ else:
163
+ modules = tuple(Parallel(n_jobs=n_jobs, prefer="threads")(
164
+ delayed(module_approximation)(slicer, box, max_error, nlines, slicer_backend, minpres, degree, complete, threshold, verbose, ignore_warning, id, direction, swap_box_coords)
165
+ for slicer in input
166
+ ))
167
+ mod = PyModule_f64().set_box(PyBox_f64(*modules[0].get_box()))
168
+ for i,m in enumerate(modules):
169
+ mod.merge(m, input[i].minpres_degree)
170
+ return mod
171
+ if box is None:
172
+ if is_simplextree_multi(input):
173
+ box = input.filtration_bounds()
174
+ else:
175
+ box = input.filtration_bounds()
176
+ box = np.asarray(box)
177
+
178
+ # empty coords
179
+ zero_idx = box[1] == box[0]
180
+ if np.any(zero_idx):
181
+ box[1] += zero_idx
182
+
183
+ for i in swap_box_coords:
184
+ box[0,i], box[1,i] = box[1,i], box[0,i]
185
+ num_parameters = box.shape[1]
186
+ if num_parameters <=0:
187
+ num_parameters = box.shape[1]
188
+ assert len(direction) == 0 or len(direction) == len(box[0]), f"Invalid line direction, has to be 0 or {num_parameters=}"
189
+
190
+ prod = sum(np.abs(box[1] - box[0])[:i].prod() * np.abs(box[1] - box[0])[i+1:].prod() for i in range(0,num_parameters))
191
+
192
+ if max_error <= 0:
193
+ max_error = (prod/nlines)**(1/(num_parameters-1))
194
+
195
+ if not ignore_warning and prod >= 10_000:
196
+ raise ValueError(f"""
197
+ Warning : the number of lines (around {np.round(prod)}) may be too high.
198
+ Try to increase the precision parameter, or set `ignore_warning=True` to compute this module.
199
+ Returning the trivial module."""
200
+ )
201
+ if is_simplextree_multi(input):
202
+ input = multipers.Slicer(input,backend=slicer_backend, vineyard=True)
203
+ assert is_slicer(input), "First argument must be a simplextree or a slicer !"
204
+ return module_approximation_from_slicer(
205
+ slicer=input,
206
+ box=box,
207
+ max_error=max_error,
208
+ complete=complete,
209
+ threshold=threshold,
210
+ verbose=verbose,
211
+ direction=direction,
212
+ )
213
+
214
+
215
+
216
+
217
+
multipers/pickle.py ADDED
@@ -0,0 +1,53 @@
1
+ import numpy as np
2
+
3
+ def save_with_axis(path:str, signed_measures):
4
+ np.savez(path,
5
+ **{f"{i}_{axis}_{degree}":np.c_[sm_of_degree[0],sm_of_degree[1][:,np.newaxis]] for i,sm in enumerate(signed_measures) for axis,sm_of_axis in enumerate(sm) for degree,sm_of_degree in enumerate(sm_of_axis)},
6
+ )
7
+
8
+ def save_without_axis(path:str, signed_measures):
9
+ np.savez(path,
10
+ **{f"{i}_{degree}":np.c_[sm_of_degree[0],sm_of_degree[1][:,np.newaxis]] for i,sm in enumerate(signed_measures) for degree,sm_of_degree in enumerate(sm)},
11
+ )
12
+
13
+ def get_sm_with_axis(sms,idx,axis,degree):
14
+ sm = sms[f"{idx}_{axis}_{degree}"]
15
+ return (sm[:,:-1],sm[:,-1])
16
+ def get_sm_without_axis(sms,idx,degree):
17
+ sm = sms[f"{idx}_{degree}"]
18
+ return (sm[:,:-1],sm[:,-1])
19
+
20
+
21
+ def load_without_axis(sms):
22
+ indices = np.array([[int(i) for i in key.split('_')] for key in sms.keys()], dtype=int)
23
+ num_data,num_degrees = indices.max(axis=0)+1
24
+ signed_measures_reconstructed = [[get_sm_without_axis(sms,idx,degree) for degree in range(num_degrees)] for idx in range(num_data)]
25
+ return signed_measures_reconstructed
26
+ # test : np.all([np.array_equal(a[0],b[0]) and np.array_equal(a[1],b[1]) and len(a) == len(b) == 2 for x,y in zip(signed_measures_reconstructed,signed_measures_reconstructed) for a,b in zip(x,y)])
27
+
28
+ def load_with_axis(sms):
29
+ indices = np.array([[int(i) for i in key.split('_')] for key in sms.keys()], dtype=int)
30
+ num_data,num_axis,num_degrees = indices.max(axis=0)+1
31
+ signed_measures_reconstructed = [[[get_sm_with_axis(sms,idx,axis,degree) for degree in range(num_degrees)] for axis in range(num_axis)] for idx in range(num_data)]
32
+ return signed_measures_reconstructed
33
+
34
+ def save(path:str, signed_measures):
35
+ if isinstance(signed_measures[0][0], tuple):
36
+ save_without_axis(path=path,signed_measures=signed_measures)
37
+ else:
38
+ save_with_axis(path=path,signed_measures=signed_measures)
39
+
40
+ def load(path:str):
41
+ sms = np.load(path)
42
+ item=None
43
+ for i in sms.keys():
44
+ item=i
45
+ break
46
+ n = len(item.split('_'))
47
+ match n:
48
+ case 2:
49
+ return load_without_axis(sms)
50
+ case 3:
51
+ return load_with_axis(sms)
52
+ case _:
53
+ raise Exception("Invalid Signed Measure !")
multipers/plots.py ADDED
@@ -0,0 +1,334 @@
1
+ from typing import Optional
2
+
3
+ import matplotlib.pyplot as plt
4
+ import numpy as np
5
+
6
+
7
+ def _plot_rectangle(rectangle: np.ndarray, weight, **plt_kwargs):
8
+ rectangle = np.asarray(rectangle)
9
+ x_axis = rectangle[[0, 2]]
10
+ y_axis = rectangle[[1, 3]]
11
+ color = "blue" if weight > 0 else "red"
12
+ plt.plot(x_axis, y_axis, c=color, **plt_kwargs)
13
+
14
+
15
+ def _plot_signed_measure_2(
16
+ pts, weights, temp_alpha=0.7, threshold=(np.inf, np.inf), **plt_kwargs
17
+ ):
18
+ import matplotlib.colors
19
+
20
+ pts = np.clip(pts, a_min=-np.inf, a_max=np.asarray(threshold)[None, :])
21
+ weights = np.asarray(weights)
22
+ color_weights = np.array(weights, dtype=float)
23
+ neg_idx = weights < 0
24
+ pos_idx = weights > 0
25
+ if np.any(neg_idx):
26
+ current_weights = -weights[neg_idx]
27
+ min_weight = np.max(current_weights)
28
+ color_weights[neg_idx] /= min_weight
29
+ color_weights[neg_idx] -= 1
30
+ else:
31
+ min_weight = 0
32
+
33
+ if np.any(pos_idx):
34
+ current_weights = weights[pos_idx]
35
+ max_weight = np.max(current_weights)
36
+ color_weights[pos_idx] /= max_weight
37
+ color_weights[pos_idx] += 1
38
+ else:
39
+ max_weight = 1
40
+
41
+ bordeaux = np.array([0.70567316, 0.01555616, 0.15023281, 1])
42
+ light_bordeaux = np.array([0.70567316, 0.01555616, 0.15023281, temp_alpha])
43
+ bleu = np.array([0.2298057, 0.29871797, 0.75368315, 1])
44
+ light_bleu = np.array([0.2298057, 0.29871797, 0.75368315, temp_alpha])
45
+ norm = plt.Normalize(-2, 2)
46
+ cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
47
+ "", [bordeaux, light_bordeaux, "white", light_bleu, bleu]
48
+ )
49
+ plt.scatter(
50
+ pts[:, 0], pts[:, 1], c=color_weights, cmap=cmap, norm=norm, **plt_kwargs
51
+ )
52
+ plt.scatter([], [], color=bleu, label="positive mass", **plt_kwargs)
53
+ plt.scatter([], [], color=bordeaux, label="negative mass", **plt_kwargs)
54
+ plt.legend()
55
+
56
+
57
+ def _plot_signed_measure_4(
58
+ pts,
59
+ weights,
60
+ x_smoothing: float = 1,
61
+ area_alpha: bool = True,
62
+ threshold=(np.inf, np.inf),
63
+ alpha=None,
64
+ **plt_kwargs, # ignored ftm
65
+ ):
66
+ # compute the maximal rectangle area
67
+ pts = np.clip(pts, a_min=-np.inf, a_max=np.array((*threshold, *threshold))[None, :])
68
+ alpha_rescaling = 0
69
+ for rectangle, weight in zip(pts, weights):
70
+ if rectangle[2] > x_smoothing * rectangle[0]:
71
+ alpha_rescaling = max(
72
+ alpha_rescaling,
73
+ (rectangle[2] / x_smoothing - rectangle[0])
74
+ * (rectangle[3] - rectangle[1]),
75
+ )
76
+ # draw the rectangles
77
+ for rectangle, weight in zip(pts, weights):
78
+ # draw only the rectangles that have not been reduced to the empty set
79
+ if rectangle[2] > x_smoothing * rectangle[0]:
80
+ # make the alpha channel proportional to the rectangle's area
81
+ if area_alpha:
82
+ _plot_rectangle(
83
+ rectangle=[
84
+ rectangle[0],
85
+ rectangle[1],
86
+ rectangle[2] / x_smoothing,
87
+ rectangle[3],
88
+ ],
89
+ weight=weight,
90
+ alpha=(
91
+ (rectangle[2] / x_smoothing - rectangle[0])
92
+ * (rectangle[3] - rectangle[1])
93
+ / alpha_rescaling
94
+ if alpha is None
95
+ else alpha
96
+ ),
97
+ **plt_kwargs,
98
+ )
99
+ else:
100
+ _plot_rectangle(
101
+ rectangle=[
102
+ rectangle[0],
103
+ rectangle[1],
104
+ rectangle[2] / x_smoothing,
105
+ rectangle[3],
106
+ ],
107
+ weight=weight,
108
+ alpha=1 if alpha is None else alpha,
109
+ **plt_kwargs,
110
+ )
111
+
112
+
113
+ def plot_signed_measure(signed_measure, threshold=None, ax=None, **plt_kwargs):
114
+ if ax is None:
115
+ ax = plt.gca()
116
+ else:
117
+ plt.sca(ax)
118
+ pts, weights = signed_measure
119
+ pts = np.asarray(pts)
120
+ num_pts = pts.shape[0]
121
+ num_parameters = pts.shape[1]
122
+ if threshold is None:
123
+ if num_pts == 0:
124
+ threshold = (np.inf, np.inf)
125
+ else:
126
+ if num_parameters == 4:
127
+ pts_ = np.concatenate([pts[:, :2], pts[:, 2:]], axis=0)
128
+ else:
129
+ pts_ = pts
130
+ threshold = np.max(np.ma.masked_invalid(pts_), axis=0)
131
+ if isinstance(pts, np.ndarray):
132
+ pass
133
+ else:
134
+ import torch
135
+
136
+ if isinstance(pts, torch.Tensor):
137
+ pts = pts.detach().numpy()
138
+ else:
139
+ raise Exception("Invalid measure type.")
140
+
141
+ assert num_parameters in (2, 4)
142
+ if num_parameters == 2:
143
+ _plot_signed_measure_2(
144
+ pts=pts, weights=weights, threshold=threshold, **plt_kwargs
145
+ )
146
+ else:
147
+ _plot_signed_measure_4(
148
+ pts=pts, weights=weights, threshold=threshold, **plt_kwargs
149
+ )
150
+
151
+
152
+ def plot_signed_measures(signed_measures, threshold=None, size=4):
153
+ num_degrees = len(signed_measures)
154
+ if num_degrees <= 1:
155
+ axes = [plt.gca()]
156
+ else:
157
+ fig, axes = plt.subplots(
158
+ nrows=1, ncols=num_degrees, figsize=(num_degrees * size, size)
159
+ )
160
+ for ax, signed_measure in zip(axes, signed_measures):
161
+ plot_signed_measure(signed_measure=signed_measure, ax=ax, threshold=threshold)
162
+ plt.tight_layout()
163
+
164
+
165
+ def plot_surface(
166
+ grid,
167
+ hf,
168
+ fig=None,
169
+ ax=None,
170
+ cmap: Optional[str] = None,
171
+ discrete_surface=False,
172
+ has_negative_values=False,
173
+ **plt_args,
174
+ ):
175
+ import matplotlib
176
+
177
+ if ax is None:
178
+ ax = plt.gca()
179
+ else:
180
+ plt.sca(ax)
181
+ if hf.ndim == 3 and hf.shape[0] == 1:
182
+ hf = hf[0]
183
+ assert hf.ndim == 2, "Can only plot a 2d surface"
184
+ fig = plt.gcf() if fig is None else fig
185
+ if cmap is None:
186
+ if discrete_surface:
187
+ cmap = matplotlib.colormaps["gray_r"]
188
+ else:
189
+ cmap = matplotlib.colormaps["plasma"]
190
+ if discrete_surface:
191
+ if has_negative_values:
192
+ bounds = np.arange(-5, 6, 1, dtype=int)
193
+ else:
194
+ bounds = np.arange(0, 11, 1, dtype=int)
195
+ norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N, extend="max")
196
+ im = ax.pcolormesh(grid[0], grid[1], hf.T, cmap=cmap, norm=norm, **plt_args)
197
+ cbar = fig.colorbar(
198
+ matplotlib.cm.ScalarMappable(cmap=cmap, norm=norm),
199
+ spacing="proportional",
200
+ ax=ax,
201
+ )
202
+ cbar.set_ticks(ticks=bounds, labels=bounds)
203
+ return im
204
+ im = ax.pcolormesh(grid[0], grid[1], hf.T, cmap=cmap, **plt_args)
205
+ return im
206
+
207
+
208
+ def plot_surfaces(HF, size=4, **plt_args):
209
+ grid, hf = HF
210
+ assert (
211
+ hf.ndim == 3
212
+ ), f"Found hf.shape = {hf.shape}, expected ndim = 3 : degree, 2-parameter surface."
213
+ num_degrees = hf.shape[0]
214
+ fig, axes = plt.subplots(
215
+ nrows=1, ncols=num_degrees, figsize=(num_degrees * size, size)
216
+ )
217
+ if num_degrees == 1:
218
+ axes = [axes]
219
+ for ax, hf_of_degree in zip(axes, hf):
220
+ plot_surface(grid=grid, hf=hf_of_degree, fig=fig, ax=ax, **plt_args)
221
+ plt.tight_layout()
222
+
223
+
224
+ def _rectangle(x, y, color, alpha):
225
+ """
226
+ Defines a rectangle patch in the format {z | x  ≤ z ≤ y} with color and alpha
227
+ """
228
+ from matplotlib.patches import Rectangle as RectanglePatch
229
+
230
+ return RectanglePatch(
231
+ x, max(y[0] - x[0], 0), max(y[1] - x[1], 0), color=color, alpha=alpha
232
+ )
233
+
234
+
235
+ def _d_inf(a, b):
236
+ if type(a) != np.ndarray or type(b) != np.ndarray:
237
+ a = np.array(a)
238
+ b = np.array(b)
239
+ return np.min(np.abs(b - a))
240
+
241
+
242
+ def plot2d_PyModule(
243
+ corners,
244
+ box,
245
+ *,
246
+ dimension=-1,
247
+ separated=False,
248
+ min_persistence=0,
249
+ alpha=1,
250
+ verbose=False,
251
+ save=False,
252
+ dpi=200,
253
+ shapely=True,
254
+ xlabel=None,
255
+ ylabel=None,
256
+ cmap=None,
257
+ ):
258
+ import matplotlib
259
+
260
+ try:
261
+ from shapely import union_all
262
+ from shapely.geometry import Polygon as _Polygon
263
+ from shapely.geometry import box as _rectangle_box
264
+
265
+ shapely = True and shapely
266
+ except ImportError:
267
+ from warnings import warn
268
+
269
+ shapely = False
270
+ warn(
271
+ "Shapely not installed. Fallbacking to matplotlib. The plots may be inacurate."
272
+ )
273
+ cmap = (
274
+ matplotlib.colormaps["Spectral"] if cmap is None else matplotlib.colormaps[cmap]
275
+ )
276
+ box = list(box)
277
+ if not (separated):
278
+ # fig, ax = plt.subplots()
279
+ ax = plt.gca()
280
+ ax.set(xlim=[box[0][0], box[1][0]], ylim=[box[0][1], box[1][1]])
281
+ n_summands = len(corners)
282
+ for i in range(n_summands):
283
+ trivial_summand = True
284
+ list_of_rect = []
285
+ for birth in corners[i][0]:
286
+ if len(birth) == 1:
287
+ birth = np.asarray([birth[0]] * 2)
288
+ birth = np.asarray(birth).clip(min=box[0])
289
+ for death in corners[i][1]:
290
+ if len(death) == 1:
291
+ death = np.asarray([death[0]] * 2)
292
+ death = np.asarray(death).clip(max=box[1])
293
+ if death[1] > birth[1] and death[0] > birth[0]:
294
+ if trivial_summand and _d_inf(birth, death) > min_persistence:
295
+ trivial_summand = False
296
+ if shapely:
297
+ list_of_rect.append(
298
+ _rectangle_box(birth[0], birth[1], death[0], death[1])
299
+ )
300
+ else:
301
+ list_of_rect.append(
302
+ _rectangle(birth, death, cmap(i / n_summands), alpha)
303
+ )
304
+ if not (trivial_summand):
305
+ if separated:
306
+ fig, ax = plt.subplots()
307
+ ax.set(xlim=[box[0][0], box[1][0]], ylim=[box[0][1], box[1][1]])
308
+ if shapely:
309
+ summand_shape = union_all(list_of_rect)
310
+ if type(summand_shape) is _Polygon:
311
+ xs, ys = summand_shape.exterior.xy
312
+ ax.fill(xs, ys, alpha=alpha, fc=cmap(i / n_summands), ec="None")
313
+ else:
314
+ for polygon in summand_shape.geoms:
315
+ xs, ys = polygon.exterior.xy
316
+ ax.fill(xs, ys, alpha=alpha, fc=cmap(i / n_summands), ec="None")
317
+ else:
318
+ for rectangle in list_of_rect:
319
+ ax.add_patch(rectangle)
320
+ if separated:
321
+ if xlabel:
322
+ plt.xlabel(xlabel)
323
+ if ylabel:
324
+ plt.ylabel(ylabel)
325
+ if dimension >= 0:
326
+ plt.title(rf"$H_{dimension}$ $2$-persistence")
327
+ if not (separated):
328
+ if xlabel is not None:
329
+ plt.xlabel(xlabel)
330
+ if ylabel is not None:
331
+ plt.ylabel(ylabel)
332
+ if dimension >= 0:
333
+ plt.title(rf"$H_{dimension}$ $2$-persistence")
334
+ return