multipers 1.1.3__cp311-cp311-macosx_11_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (63) hide show
  1. multipers/.dylibs/libtbb.12.12.dylib +0 -0
  2. multipers/.dylibs/libtbbmalloc.2.12.dylib +0 -0
  3. multipers/__init__.py +5 -0
  4. multipers/_old_rank_invariant.pyx +328 -0
  5. multipers/_signed_measure_meta.py +193 -0
  6. multipers/data/MOL2.py +350 -0
  7. multipers/data/UCR.py +18 -0
  8. multipers/data/__init__.py +1 -0
  9. multipers/data/graphs.py +466 -0
  10. multipers/data/immuno_regions.py +27 -0
  11. multipers/data/minimal_presentation_to_st_bf.py +0 -0
  12. multipers/data/pytorch2simplextree.py +91 -0
  13. multipers/data/shape3d.py +101 -0
  14. multipers/data/synthetic.py +68 -0
  15. multipers/distances.py +172 -0
  16. multipers/euler_characteristic.cpython-311-darwin.so +0 -0
  17. multipers/euler_characteristic.pyx +137 -0
  18. multipers/function_rips.cpython-311-darwin.so +0 -0
  19. multipers/function_rips.pyx +102 -0
  20. multipers/hilbert_function.cpython-311-darwin.so +0 -0
  21. multipers/hilbert_function.pyi +46 -0
  22. multipers/hilbert_function.pyx +151 -0
  23. multipers/io.cpython-311-darwin.so +0 -0
  24. multipers/io.pyx +176 -0
  25. multipers/ml/__init__.py +0 -0
  26. multipers/ml/accuracies.py +61 -0
  27. multipers/ml/convolutions.py +510 -0
  28. multipers/ml/invariants_with_persistable.py +79 -0
  29. multipers/ml/kernels.py +128 -0
  30. multipers/ml/mma.py +657 -0
  31. multipers/ml/one.py +472 -0
  32. multipers/ml/point_clouds.py +191 -0
  33. multipers/ml/signed_betti.py +50 -0
  34. multipers/ml/signed_measures.py +1479 -0
  35. multipers/ml/sliced_wasserstein.py +313 -0
  36. multipers/ml/tools.py +116 -0
  37. multipers/mma_structures.cpython-311-darwin.so +0 -0
  38. multipers/mma_structures.pxd +155 -0
  39. multipers/mma_structures.pyx +651 -0
  40. multipers/multiparameter_edge_collapse.py +29 -0
  41. multipers/multiparameter_module_approximation.cpython-311-darwin.so +0 -0
  42. multipers/multiparameter_module_approximation.pyi +439 -0
  43. multipers/multiparameter_module_approximation.pyx +311 -0
  44. multipers/pickle.py +53 -0
  45. multipers/plots.py +292 -0
  46. multipers/point_measure_integration.cpython-311-darwin.so +0 -0
  47. multipers/point_measure_integration.pyx +59 -0
  48. multipers/rank_invariant.cpython-311-darwin.so +0 -0
  49. multipers/rank_invariant.pyx +154 -0
  50. multipers/simplex_tree_multi.cpython-311-darwin.so +0 -0
  51. multipers/simplex_tree_multi.pxd +121 -0
  52. multipers/simplex_tree_multi.pyi +715 -0
  53. multipers/simplex_tree_multi.pyx +1417 -0
  54. multipers/slicer.cpython-311-darwin.so +0 -0
  55. multipers/slicer.pxd +94 -0
  56. multipers/slicer.pyx +276 -0
  57. multipers/tensor.pxd +13 -0
  58. multipers/test.pyx +44 -0
  59. multipers-1.1.3.dist-info/LICENSE +21 -0
  60. multipers-1.1.3.dist-info/METADATA +22 -0
  61. multipers-1.1.3.dist-info/RECORD +63 -0
  62. multipers-1.1.3.dist-info/WHEEL +5 -0
  63. multipers-1.1.3.dist-info/top_level.txt +1 -0
@@ -0,0 +1,68 @@
1
+ import numpy as np
2
+ def noisy_annulus(n1:int=1000,n2:int=200, r1:float=1, r2:float=2, dim:int=2, center:np.ndarray|list|None=None, **kwargs)->np.ndarray:
3
+ """Generates a noisy annulus dataset.
4
+
5
+ Parameters
6
+ ----------
7
+ r1 : float.
8
+ Lower radius of the annulus.
9
+ r2 : float.
10
+ Upper radius of the annulus.
11
+ n1 : int
12
+ Number of points in the annulus.
13
+ n2 : int
14
+ Number of points in the square.
15
+ dim : int
16
+ Dimension of the annulus.
17
+ center: list or array
18
+ center of the annulus.
19
+
20
+ Returns
21
+ -------
22
+ numpy array
23
+ Dataset. size : (n1+n2) x dim
24
+
25
+ """
26
+ from numpy.random import uniform
27
+ from numpy.linalg import norm
28
+
29
+ set =[]
30
+ while len(set)<n1:
31
+ draw=uniform(low=-r2, high=r2, size=dim)
32
+ if norm(draw) > r1 and norm(draw) < r2:
33
+ set.append(draw)
34
+ annulus = np.array(set) if center == None else np.array(set) + np.array(center)
35
+ diffuse_noise = uniform(size=(n2,dim), low=-1.1*r2,high=1.1*r2)
36
+ if center is not None: diffuse_noise += np.array(center)
37
+ return np.vstack([annulus, diffuse_noise])
38
+
39
+
40
+ def three_annulus(num_pts:int=500,num_outliers:int=500):
41
+ X = np.block([
42
+ [np.random.uniform(low=-2,high=2,size=(num_outliers,2))],
43
+ [np.array(noisy_annulus(r1=0.6,r2=0.9,n1=(int)(num_pts*1/3), n2=0, center = [1,-0.2]))],
44
+ [np.array(noisy_annulus(r1=0.4,r2=0.55,n1=(int)(num_pts*1/3), n2=0, center = [-1.2,-1]))],
45
+ [np.array(noisy_annulus(r1=0.3,r2=0.4,n1=(int)(num_pts*1/3), n2=0, center = [-0.7,1.1]))],
46
+ ])
47
+ return X
48
+
49
+ def orbit(n:int=1000, r:float=1., x0=[]):
50
+ point_list=[]
51
+ if len(x0) != 2:
52
+ x,y=np.random.uniform(size=2)
53
+ else:
54
+ x,y = x0
55
+ point_list.append([x,y])
56
+ for _ in range(n-1):
57
+ x = (x + r*y*(1-y)) %1
58
+ y = (y + r*x*(1-x)) %1
59
+ point_list.append([x,y])
60
+ return np.asarray(point_list, dtype=float)
61
+
62
+ def get_orbit5k(num_pts = 1000, num_data=5000):
63
+ from sklearn.preprocessing import LabelEncoder
64
+ rs = [2.5, 3.5, 4, 4.1, 4.3]
65
+ labels = np.random.choice(rs, size=num_data, replace=True)
66
+ X = [orbit(n=num_pts, r=r) for r in labels]
67
+ labels = LabelEncoder().fit_transform(labels)
68
+ return X, labels
multipers/distances.py ADDED
@@ -0,0 +1,172 @@
1
+ import torch
2
+ import ot
3
+ import numpy as np
4
+ from multipers.simplex_tree_multi import SimplexTreeMulti
5
+ from multipers.multiparameter_module_approximation import PyModule
6
+ from multipers.mma_structures import PyMultiDiagrams
7
+
8
+
9
+ def sm2diff(sm1, sm2):
10
+ if isinstance(sm1[0], np.ndarray):
11
+
12
+ def backend_concatenate(a, b):
13
+ return np.concatenate([a, b], axis=0)
14
+
15
+ def backend_tensor(x):
16
+ return np.asarray(x, dtype=int)
17
+ elif isinstance(sm1[0], torch.Tensor):
18
+
19
+ def backend_concatenate(a, b):
20
+ return torch.concatenate([a, b], dim=0)
21
+
22
+ def backend_tensor(x):
23
+ return torch.tensor(x).type(torch.int)
24
+ else:
25
+ raise Exception("Invalid backend. Numpy or torch.")
26
+ pts1, w1 = sm1
27
+ pts2, w2 = sm2
28
+ pos_indices1 = backend_tensor(
29
+ [i for i, w in enumerate(w1) for _ in range(w) if w > 0]
30
+ )
31
+ pos_indices2 = backend_tensor(
32
+ [i for i, w in enumerate(w2) for _ in range(w) if w > 0]
33
+ )
34
+ neg_indices1 = backend_tensor(
35
+ [i for i, w in enumerate(w1) for _ in range(-w) if w < 0]
36
+ )
37
+ neg_indices2 = backend_tensor(
38
+ [i for i, w in enumerate(w2) for _ in range(-w) if w < 0]
39
+ )
40
+ x = backend_concatenate(pts1[pos_indices1], pts2[neg_indices2])
41
+ y = backend_concatenate(pts1[neg_indices1], pts2[pos_indices2])
42
+ return x, y
43
+
44
+
45
+ def sm_distance(sm1, sm2, reg=0, reg_m=0, numItermax=10000, p=1):
46
+ x, y = sm2diff(sm1, sm2)
47
+ loss = ot.dist(
48
+ x, y, metric="sqeuclidean", p=2
49
+ ) # only euc + sqeuclidian are implemented in pot for the moment with torch backend # TODO : check later
50
+ if isinstance(x, np.ndarray):
51
+ empty_tensor = np.array([]) # uniform weights
52
+ elif isinstance(x, torch.Tensor):
53
+ empty_tensor = torch.tensor([]) # uniform weights
54
+
55
+ if reg == 0:
56
+ return ot.lp.emd2(empty_tensor, empty_tensor, M=loss) * len(x)
57
+ if reg_m == 0:
58
+ return ot.sinkhorn2(
59
+ a=empty_tensor, b=empty_tensor, M=loss, reg=reg, numItermax=numItermax
60
+ )
61
+ return ot.sinkhorn_unbalanced2(
62
+ a=empty_tensor,
63
+ b=empty_tensor,
64
+ M=loss,
65
+ reg=reg,
66
+ reg_m=reg_m,
67
+ numItermax=numItermax,
68
+ )
69
+ # return ot.sinkhorn2(a=onesx,b=onesy,M=loss,reg=reg, numItermax=numItermax)
70
+ # return ot.bregman.empirical_sinkhorn2(x,y,reg=reg)
71
+
72
+
73
+ def estimate_matching(b1: PyMultiDiagrams, b2: PyMultiDiagrams):
74
+ assert len(b1) == len(b2)
75
+ from gudhi.bottleneck import bottleneck_distance
76
+
77
+ def get_bc(b: PyMultiDiagrams, i: int) -> np.ndarray:
78
+ temp = b[i].get_points()
79
+ out = (
80
+ np.array(temp)[:, :, 0] if len(temp) > 0 else np.empty((0, 2))
81
+ ) # GUDHI FIX
82
+ return out
83
+
84
+ return max(
85
+ (bottleneck_distance(get_bc(b1, i), get_bc(b2, i))
86
+ for i in range(len(b1)))
87
+ )
88
+
89
+
90
+ # Functions to estimate precision
91
+ def estimate_error(
92
+ st: SimplexTreeMulti,
93
+ module: PyModule,
94
+ degree: int,
95
+ nlines: int = 100,
96
+ verbose: bool = False,
97
+ ):
98
+ """
99
+ Given an MMA SimplexTree and PyModule, estimates the bottleneck distance using barcodes given by gudhi.
100
+
101
+ Parameters
102
+ ----------
103
+ st:SimplexTree
104
+ The simplextree representing the n-filtered complex. Used to define the gudhi simplextrees on different lines.
105
+ module:PyModule
106
+ The module on which to estimate approximation error, w.r.t. the original simplextree st.
107
+ degree: The homology degree to consider
108
+
109
+ Returns
110
+ -------
111
+ The estimation of the matching distance, i.e., the maximum of the sampled bottleneck distances.
112
+
113
+ """
114
+ from time import perf_counter
115
+
116
+ parameter = 0
117
+
118
+ def _get_bc_ST(st, basepoint, degree: int):
119
+ """
120
+ Slices an mma simplextree to a gudhi simplextree, and compute its persistence on the diagonal line crossing the given basepoint.
121
+ """
122
+ gst = st.project_on_line(
123
+ basepoint=basepoint, parameter=parameter
124
+ ) # we consider only the 1rst coordinate (as )
125
+ gst.compute_persistence()
126
+ return gst.persistence_intervals_in_dimension(degree)
127
+
128
+ from gudhi.bottleneck import bottleneck_distance
129
+
130
+ low, high = module.get_box()
131
+ nfiltration = len(low)
132
+ basepoints = np.random.uniform(
133
+ low=low, high=high, size=(nlines, nfiltration))
134
+ # barcodes from module
135
+ print("Computing mma barcodes...", flush=1, end="") if verbose else None
136
+ time = perf_counter()
137
+ bcs_from_mod = module.barcodes(
138
+ degree=degree, basepoints=basepoints).get_points()
139
+ print(f"Done. {perf_counter() - time}s.") if verbose else None
140
+
141
+ def clean(dgm):
142
+ return np.array(
143
+ [
144
+ [birth[parameter], death[parameter]]
145
+ for birth, death in dgm
146
+ if len(birth) > 0 and birth[parameter] != np.inf
147
+ ]
148
+ )
149
+
150
+ bcs_from_mod = [
151
+ clean(dgm) for dgm in bcs_from_mod
152
+ ] # we only consider the 1st coordinate of the barcode
153
+ # Computes gudhi barcodes
154
+ from tqdm import tqdm
155
+
156
+ bcs_from_gudhi = [
157
+ _get_bc_ST(st, basepoint=basepoint, degree=degree)
158
+ for basepoint in tqdm(
159
+ basepoints, disable=not verbose, desc="Computing gudhi barcodes"
160
+ )
161
+ ]
162
+ return max(
163
+ (
164
+ bottleneck_distance(a, b)
165
+ for a, b in tqdm(
166
+ zip(bcs_from_mod, bcs_from_gudhi),
167
+ disable=not verbose,
168
+ total=nlines,
169
+ desc="Computing bottleneck distances",
170
+ )
171
+ )
172
+ )
@@ -0,0 +1,137 @@
1
+ # cimport multipers.tensor as mt
2
+ from libc.stdint cimport intptr_t, uint16_t, uint32_t, int32_t
3
+ from libcpp.vector cimport vector
4
+ from libcpp cimport bool, int, float
5
+ from libcpp.utility cimport pair
6
+ from typing import Optional,Iterable,Callable
7
+
8
+ import numpy as np
9
+ cimport numpy as cnp
10
+ cnp.import_array()
11
+
12
+ ctypedef float value_type
13
+ python_value_type=np.float32
14
+
15
+ ctypedef int32_t indices_type # uint fails for some reason
16
+ python_indices_type=np.int32
17
+
18
+ ctypedef int32_t tensor_dtype
19
+ python_tensor_dtype = np.int32
20
+
21
+
22
+ ctypedef pair[vector[vector[indices_type]], vector[tensor_dtype]] signed_measure_type
23
+
24
+ cdef extern from "multi_parameter_rank_invariant/euler_characteristic.h" namespace "Gudhi::multiparameter::euler_characteristic":
25
+ void get_euler_surface_python(const intptr_t, tensor_dtype*, const vector[indices_type], bool, bool, bool) except + nogil
26
+ signed_measure_type get_euler_signed_measure(const intptr_t, tensor_dtype* , const vector[indices_type], bool, bool) except + nogil
27
+
28
+ def euler_signed_measure(simplextree, mass_default=None, bool verbose=False, bool plot=False, grid_conversion=None):
29
+ """
30
+ Computes the signed measures given by the decomposition of the hilbert function.
31
+
32
+ Input
33
+ -----
34
+ - simplextree:SimplexTreeMulti, the multifiltered simplicial complex
35
+ - mass_default: Either None, or 'auto' or 'inf', or array-like of floats. Where to put the default mass to get a zero-mass measure.
36
+ - plot:bool, plots the computed measures if true.
37
+ - n_jobs:int, number of jobs. Defaults to #cpu, but when doing parallel computations of signed measures, we recommend setting this to 1.
38
+ - verbose:bool, prints c++ logs.
39
+
40
+ Output
41
+ ------
42
+ `[signed_measure_of_degree for degree in degrees]`
43
+ with `signed_measure_of_degree` of the form `(dirac location, dirac weights)`.
44
+ """
45
+ assert len(simplextree.filtration_grid[0]) > 0, "Squeeze grid first."
46
+ cdef bool zero_pad = mass_default is not None
47
+ grid_conversion = [np.asarray(f) for f in simplextree.filtration_grid] if grid_conversion is None else grid_conversion
48
+ # assert simplextree.num_parameters == 2
49
+ grid_shape = np.array([len(f) for f in grid_conversion])
50
+
51
+ # match mass_default: ## Cython bug
52
+ # case None:
53
+ # pass
54
+ # case "inf":
55
+ # mass_default = np.array([np.inf]*simplextree.num_parameters)
56
+ # case "auto":
57
+ # mass_default = np.array([1.1*np.max(f) - 0.1*np.min(f) for f in grid_conversion])
58
+ # case _:
59
+ # mass_default = np.asarray(mass_default)
60
+ # assert mass_default.ndim == 1 and mass_default.shape[0] == simplextree.num_parameters
61
+ if mass_default is None:
62
+ mass_default = mass_default
63
+ else:
64
+ mass_default = np.asarray(mass_default)
65
+ assert mass_default.ndim == 1 and mass_default.shape[0] == simplextree.num_parameters
66
+ if zero_pad:
67
+ for i, _ in enumerate(grid_shape):
68
+ grid_shape[i] += 1 # adds a 0
69
+ for i,f in enumerate(grid_conversion):
70
+ grid_conversion[i] = np.concatenate([f, [mass_default[i]]])
71
+ assert len(grid_shape) == simplextree.num_parameters, "Grid shape size has to be the number of parameters."
72
+ container_array = np.ascontiguousarray(np.zeros(grid_shape, dtype=python_tensor_dtype).flatten())
73
+ assert len(container_array) < np.iinfo(python_indices_type).max, "Too large container. Raise an issue on github if you encounter this issue. (Due to tensor's operator[])"
74
+ cdef intptr_t simplextree_ptr = simplextree.thisptr
75
+ cdef vector[indices_type] c_grid_shape = grid_shape
76
+ cdef tensor_dtype[::1] container = container_array
77
+ cdef tensor_dtype* container_ptr = &container[0]
78
+ cdef signed_measure_type out
79
+ with nogil:
80
+ out = get_euler_signed_measure(simplextree_ptr, container_ptr, c_grid_shape, zero_pad, verbose)
81
+ pts, weights = np.asarray(out.first, dtype=int).reshape(-1, simplextree.num_parameters), np.asarray(out.second, dtype=int)
82
+ # return pts, weights
83
+ def empty_like(x):
84
+ if isinstance(grid_conversion[0], np.ndarray):
85
+ return np.empty_like(x, dtype=float)
86
+ import torch
87
+ assert isinstance(grid_conversion[0], torch.Tensor), f"Invalid grid type. Got {type(grid_conversion[0])}, expected numpy or torch array."
88
+ return torch.empty(x.shape,dtype=float)
89
+ coords = empty_like(pts)
90
+ for i in range(coords.shape[1]):
91
+ coords[:,i] = grid_conversion[i][pts[:,i]]
92
+ sm =(coords, weights)
93
+ if plot:
94
+ from multipers.plots import plot_signed_measures
95
+ plot_signed_measures([sm])
96
+ return sm
97
+
98
+
99
+ def euler_surface(simplextree, bool mobius_inversion=False, bool zero_pad=False, plot=False, bool verbose=False):
100
+ """
101
+ Computes the hilbert function.
102
+
103
+ Input
104
+ -----
105
+ - simplextree:SimplexTreeMulti, the multifiltered simplicial complex
106
+ - degrees:array-like of ints, the degrees to compute
107
+ - mass_default: Either None, or 'auto' or 'inf', or array-like of floats. Where to put the default mass to get a zero-mass measure.
108
+ - plot:bool, plots the computed measures if true.
109
+ - n_jobs:int, number of jobs. Defaults to #cpu, but when doing parallel computations of signed measures, we recommend setting this to 1.
110
+ - verbose:bool, prints c++ logs.
111
+
112
+ Output
113
+ ------
114
+ Integer array of the form `(num_degrees, num_filtration_values_of_parameter 1, ..., num_filtration_values_of_parameter n)`
115
+ """
116
+ assert len(simplextree.filtration_grid[0]) > 0, "Squeeze grid first."
117
+ grid_conversion = [np.asarray(f) for f in simplextree.filtration_grid] if len(simplextree.filtration_grid[0]) > 0 else None
118
+ # assert simplextree.num_parameters == 2
119
+ grid_shape = [len(f) for f in grid_conversion]
120
+ assert len(grid_shape) == simplextree.num_parameters
121
+ container_array = np.ascontiguousarray(np.zeros(grid_shape, dtype=python_tensor_dtype).flatten())
122
+ cdef intptr_t simplextree_ptr = simplextree.thisptr
123
+ cdef vector[indices_type] c_grid_shape = grid_shape
124
+ cdef tensor_dtype[::1] container = container_array
125
+ cdef tensor_dtype* container_ptr = &container[0]
126
+ # cdef signed_measure_type out
127
+ # cdef indices_type i = 0
128
+ # cdef indices_type j = 1
129
+ # cdef vector[indices_type] fixed_values = np.asarray([0,0], dtype=int)
130
+ with nogil:
131
+ get_euler_surface_python(simplextree_ptr, container_ptr, c_grid_shape, mobius_inversion, zero_pad, verbose)
132
+ out = (grid_conversion, container_array.reshape(grid_shape))
133
+ if plot:
134
+ from multipers.plots import plot_surface
135
+ plot_surface(*out)
136
+ return out
137
+
@@ -0,0 +1,102 @@
1
+ # cimport multipers.tensor as mt
2
+ from libc.stdint cimport intptr_t, uint16_t, uint32_t, int32_t
3
+ from libcpp.vector cimport vector
4
+ from libcpp cimport bool, int, float
5
+ from libcpp.utility cimport pair, tuple
6
+ from typing import Optional,Iterable,Callable
7
+
8
+ import numpy as np
9
+ cimport numpy as cnp
10
+ cnp.import_array()
11
+
12
+ ctypedef float value_type
13
+ python_value_type=np.float32
14
+
15
+ ctypedef int32_t indices_type # uint fails for some reason
16
+ python_indices_type=np.int32
17
+
18
+ ctypedef int32_t tensor_dtype
19
+ python_tensor_dtype = np.int32
20
+
21
+ ctypedef pair[vector[vector[indices_type]], vector[tensor_dtype]] signed_measure_type
22
+
23
+
24
+ from multipers.simplex_tree_multi import SimplexTreeMulti
25
+
26
+ cdef extern from "multi_parameter_rank_invariant/function_rips.h" namespace "Gudhi::multiparameter::function_rips":
27
+ void compute_function_rips_surface_python(const intptr_t, tensor_dtype* , const vector[indices_type], indices_type,indices_type, bool, bool, indices_type) except + nogil
28
+ signed_measure_type compute_function_rips_signed_measure_python(const intptr_t, tensor_dtype* , const vector[indices_type], indices_type,indices_type, bool, bool, indices_type) except + nogil
29
+ pair[vector[value_type],int] get_degree_rips_st_python(const intptr_t,const intptr_t, const vector[int]) except + nogil
30
+
31
+
32
+
33
+
34
+
35
+ def get_degree_rips(st, vector[int] degrees, grid_strategy="exact", resolution=0):
36
+ assert st.dimension() == 1
37
+ degree_rips_st = SimplexTreeMulti(num_parameters=degrees.size())
38
+ cdef intptr_t simplextree_ptr = st.thisptr
39
+ cdef intptr_t st_multi_ptr = degree_rips_st.thisptr
40
+ cdef pair[vector[value_type],int] out
41
+ with nogil:
42
+ out = get_degree_rips_st_python(simplextree_ptr, st_multi_ptr, degrees)
43
+ filtrations = np.asarray(out.first)
44
+ cdef int max_degree = out.second
45
+ cdef bool inf_flag = filtrations[-1] == np.inf
46
+ if inf_flag:
47
+ filtrations = filtrations[:-1]
48
+ filtrations, = degree_rips_st._reduce_grid([filtrations],strategy=grid_strategy,resolutions=resolution)
49
+ if inf_flag:
50
+ filtrations = np.concatenate([filtrations, [np.inf]])
51
+ degree_rips_st.grid_squeeze([filtrations]*degree_rips_st.num_parameters)
52
+ degree_rips_st.filtration_grid = [filtrations, np.asarray(degrees)[::-1]]
53
+ degree_rips_st._is_function_simplextree= True
54
+ return degree_rips_st,max_degree
55
+
56
+ def function_rips_surface(st_multi, vector[indices_type] homological_degrees, bool mobius_inversion=True, bool zero_pad=False, indices_type n_jobs=0):
57
+ assert st_multi._is_squeezed, "Squeeze first !"
58
+ cdef intptr_t st_multi_ptr = st_multi.thisptr
59
+ cdef indices_type I = len(st_multi.filtration_grid[0])
60
+ cdef indices_type J = st_multi.num_parameters
61
+ container_shape = (homological_degrees.size(),I,J)
62
+ container_array = np.ascontiguousarray(np.zeros(container_shape, dtype=python_tensor_dtype).flatten())
63
+ assert len(container_array) < np.iinfo(np.uint32).max, "Too large container. Raise an issue on github if you encounter this issue. (Due to tensor's operator[])"
64
+ cdef tensor_dtype[::1] container = container_array
65
+ cdef tensor_dtype* container_ptr = &container[0]
66
+ with nogil:
67
+ compute_function_rips_surface_python(st_multi_ptr,container_ptr, homological_degrees, I,J, mobius_inversion, zero_pad, n_jobs)
68
+ filtration_grid = st_multi.filtration_grid
69
+ if filtration_grid[0][-1] == np.inf:
70
+ filtration_grid[0][-1] = filtration_grid[0][-2]
71
+ return filtration_grid, container_array.reshape(container_shape)
72
+
73
+
74
+
75
+ def function_rips_signed_measure(st_multi, vector[indices_type] homological_degrees, bool mobius_inversion=True, bool zero_pad=False, indices_type n_jobs=0, bool reconvert = True):
76
+ assert st_multi._is_squeezed
77
+ cdef intptr_t st_multi_ptr = st_multi.thisptr
78
+ cdef indices_type I = len(st_multi.filtration_grid[0])
79
+ cdef indices_type J = st_multi.num_parameters
80
+ container_shape = (homological_degrees.size(),I,J)
81
+ container_array = np.ascontiguousarray(np.zeros(container_shape, dtype=python_tensor_dtype).flatten())
82
+ assert len(container_array) < np.iinfo(np.uint32).max, "Too large container. Raise an issue on github if you encounter this issue. (Due to tensor's operator[])"
83
+ cdef tensor_dtype[::1] container = container_array
84
+ cdef tensor_dtype* container_ptr = &container[0]
85
+ cdef signed_measure_type out
86
+ # TODO nogil
87
+ with nogil:
88
+ out = compute_function_rips_signed_measure_python(st_multi_ptr,container_ptr, homological_degrees, I,J, mobius_inversion, zero_pad, n_jobs)
89
+ pts, weights = np.asarray(out.first, dtype=int).reshape(-1, 3), np.asarray(out.second, dtype=int)
90
+
91
+ degree_indices = [np.argwhere(pts[:,0] == degree_index).flatten() for degree_index, degree in enumerate(homological_degrees)] ## TODO : maybe optimize
92
+ sms = [(pts[id,1:],weights[id]) for id in degree_indices]
93
+ if not reconvert: return sms
94
+
95
+ grid_conversion = st_multi.filtration_grid
96
+ for degree_index,(pts,weights) in enumerate(sms):
97
+ coords = np.empty(shape=pts.shape, dtype=float)
98
+ for i in range(coords.shape[1]):
99
+ coords[:,i] = np.asarray(grid_conversion[i])[pts[:,i]]
100
+ sms[degree_index]=(coords, weights)
101
+
102
+ return sms
@@ -0,0 +1,46 @@
1
+ # cimport multipers.tensor as mt
2
+ from libc.stdint cimport intptr_t, uint16_t, uint32_t, int32_t
3
+ from libcpp.vector cimport vector
4
+ from libcpp cimport bool, int, float
5
+ from libcpp.utility cimport pair
6
+ from typing import Optional,Iterable,Callable
7
+
8
+ def hilbert_signed_measure(simplextree, degrees, mass_default=None, plot=False, n_jobs=0, verbose=False):
9
+ """
10
+ Computes the signed measures given by the decomposition of the hilbert function.
11
+
12
+ Input
13
+ -----
14
+ - simplextree:SimplexTreeMulti, the multifiltered simplicial complex
15
+ - degrees:array-like of ints, the degrees to compute
16
+ - mass_default: Either None, or 'auto' or 'inf', or array-like of floats. Where to put the default mass to get a zero-mass measure.
17
+ - plot:bool, plots the computed measures if true.
18
+ - n_jobs:int, number of jobs. Defaults to #cpu, but when doing parallel computations of signed measures, we recommend setting this to 1.
19
+ - verbose:bool, prints c++ logs.
20
+
21
+ Output
22
+ ------
23
+ `[signed_measure_of_degree for degree in degrees]`
24
+ with `signed_measure_of_degree` of the form `(dirac location, dirac weights)`.
25
+ """
26
+ pass
27
+
28
+
29
+ def hilbert_function(simplextree, degrees, zero_pad=False, plot=False, n_jobs=0):
30
+ """
31
+ Computes the hilbert function.
32
+
33
+ Input
34
+ -----
35
+ - simplextree:SimplexTreeMulti, the multifiltered simplicial complex
36
+ - degrees:array-like of ints, the degrees to compute
37
+ - mass_default: Either None, or 'auto' or 'inf', or array-like of floats. Where to put the default mass to get a zero-mass measure.
38
+ - plot:bool, plots the computed measures if true.
39
+ - n_jobs:int, number of jobs. Defaults to #cpu, but when doing parallel computations of signed measures, we recommend setting this to 1.
40
+ - verbose:bool, prints c++ logs.
41
+
42
+ Output
43
+ ------
44
+ Integer array of the form `(num_degrees, num_filtration_values_of_parameter 1, ..., num_filtration_values_of_parameter n)`
45
+ """
46
+ pass
@@ -0,0 +1,151 @@
1
+ # cimport multipers.tensor as mt
2
+ from libc.stdint cimport intptr_t, uint16_t, uint32_t, int32_t
3
+ from libcpp.vector cimport vector
4
+ from libcpp cimport bool, int, float
5
+ from libcpp.utility cimport pair
6
+ from typing import Optional,Iterable,Callable
7
+
8
+ import numpy as np
9
+ cimport numpy as cnp
10
+ cnp.import_array()
11
+
12
+ ctypedef float value_type
13
+ python_value_type=np.float32
14
+
15
+ ctypedef int32_t indices_type # uint fails for some reason
16
+ python_indices_type=np.int32
17
+
18
+ ctypedef int32_t tensor_dtype
19
+ python_tensor_dtype = np.int32
20
+
21
+
22
+ ctypedef pair[vector[vector[indices_type]], vector[tensor_dtype]] signed_measure_type
23
+
24
+ cdef extern from "multi_parameter_rank_invariant/hilbert_function.h" namespace "Gudhi::multiparameter::hilbert_function":
25
+ void get_hilbert_surface_python(const intptr_t, tensor_dtype* , const vector[indices_type], const vector[indices_type], bool, bool, indices_type, bool) except + nogil
26
+ signed_measure_type get_hilbert_signed_measure(const intptr_t, tensor_dtype* , const vector[indices_type], const vector[indices_type], bool, indices_type, bool, bool) except + nogil
27
+
28
+
29
+ def hilbert_signed_measure(
30
+ simplextree,
31
+ vector[indices_type] degrees,
32
+ mass_default=None,
33
+ plot=False,
34
+ indices_type n_jobs=0,
35
+ bool verbose=False,
36
+ bool expand_collapse=False,
37
+ grid_conversion = None
38
+ ):
39
+ """
40
+ Computes the signed measures given by the decomposition of the hilbert function.
41
+
42
+ Input
43
+ -----
44
+ - simplextree:SimplexTreeMulti, the multifiltered simplicial complex
45
+ - degrees:array-like of ints, the degrees to compute
46
+ - mass_default: Either None, or 'auto' or 'inf', or array-like of floats. Where to put the default mass to get a zero-mass measure.
47
+ - plot:bool, plots the computed measures if true.
48
+ - n_jobs:int, number of jobs. Defaults to #cpu, but when doing parallel computations of signed measures, we recommend setting this to 1.
49
+ - verbose:bool, prints c++ logs.
50
+
51
+ Output
52
+ ------
53
+ `[signed_measure_of_degree for degree in degrees]`
54
+ with `signed_measure_of_degree` of the form `(dirac location, dirac weights)`.
55
+ """
56
+ assert simplextree._is_squeezed > 0, "Squeeze grid first."
57
+ cdef bool zero_pad = mass_default is not None
58
+ grid_conversion = [np.asarray(f) for f in simplextree.filtration_grid] if grid_conversion is None else grid_conversion
59
+ # assert simplextree.num_parameters == 2
60
+ grid_shape = np.array([len(f) for f in grid_conversion])
61
+ if mass_default is None:
62
+ mass_default = mass_default
63
+ else:
64
+ mass_default = np.asarray(mass_default)
65
+ assert mass_default.ndim == 1 and mass_default.shape[0] == simplextree.num_parameters
66
+ if zero_pad:
67
+ for i, _ in enumerate(grid_shape):
68
+ grid_shape[i] += 1 # adds a 0
69
+ for i,f in enumerate(grid_conversion):
70
+ grid_conversion[i] = np.concatenate([f, [mass_default[i]]])
71
+ assert len(grid_shape) == simplextree.num_parameters, "Grid shape size has to be the number of parameters."
72
+ grid_shape_with_degree = np.asarray(np.concatenate([[len(degrees)], grid_shape]), dtype=python_indices_type)
73
+ container_array = np.ascontiguousarray(np.zeros(grid_shape_with_degree, dtype=python_tensor_dtype).flatten())
74
+ assert len(container_array) < np.iinfo(np.uint32).max, "Too large container. Raise an issue on github if you encounter this issue. (Due to tensor's operator[])"
75
+ cdef intptr_t simplextree_ptr = simplextree.thisptr
76
+ cdef vector[indices_type] c_grid_shape = grid_shape_with_degree
77
+ cdef tensor_dtype[::1] container = container_array
78
+ cdef tensor_dtype* container_ptr = &container[0]
79
+ cdef signed_measure_type out
80
+ with nogil:
81
+ out = get_hilbert_signed_measure(simplextree_ptr, container_ptr, c_grid_shape, degrees, zero_pad, n_jobs, verbose, expand_collapse)
82
+ pts, weights = np.asarray(out.first, dtype=int).reshape(-1, simplextree.num_parameters+1), np.asarray(out.second, dtype=int)
83
+ # return pts, weights
84
+ degree_indices = [np.argwhere(pts[:,0] == degree_index).flatten() for degree_index, degree in enumerate(degrees)] ## TODO : maybe optimize
85
+ sms = [(pts[id,1:],weights[id]) for id in degree_indices]
86
+
87
+ def empty_like(x):
88
+ if isinstance(grid_conversion[0], np.ndarray):
89
+ return np.empty_like(x, dtype=float)
90
+ import torch
91
+ assert isinstance(grid_conversion[0], torch.Tensor), f"Invalid grid type. Got {type(grid_conversion[0])}, expected numpy or torch array."
92
+ return torch.empty(x.shape,dtype=float)
93
+
94
+ for degree_index,(pts,weights) in enumerate(sms):
95
+ coords = empty_like(pts)
96
+ for i in range(coords.shape[1]):
97
+ coords[:,i] = grid_conversion[i][pts[:,i]]
98
+ sms[degree_index]=(coords, weights)
99
+ if plot:
100
+ from multipers.plots import plot_signed_measures
101
+ plot_signed_measures(sms)
102
+ return sms
103
+
104
+
105
+ def hilbert_surface(simplextree, vector[indices_type] degrees, mass_default=None, bool mobius_inversion=False, bool plot=False, indices_type n_jobs=0, bool expand_collapse=False):
106
+ """
107
+ Computes the hilbert function.
108
+
109
+ Input
110
+ -----
111
+ - simplextree:SimplexTreeMulti, the multifiltered simplicial complex
112
+ - degrees:array-like of ints, the degrees to compute
113
+ - mass_default: Either None, or 'auto' or 'inf', or array-like of floats. Where to put the default mass to get a zero-mass measure.
114
+ - plot:bool, plots the computed measures if true.
115
+ - n_jobs:int, number of jobs. Defaults to #cpu, but when doing parallel computations of signed measures, we recommend setting this to 1.
116
+ - verbose:bool, prints c++ logs.
117
+
118
+ Output
119
+ ------
120
+ Integer array of the form `(num_degrees, num_filtration_values_of_parameter 1, ..., num_filtration_values_of_parameter n)`
121
+ """
122
+ assert simplextree._is_squeezed > 0, "Squeeze grid first."
123
+ cdef bool zero_pad = mass_default is not None
124
+ grid_conversion = [np.asarray(f) for f in simplextree.filtration_grid]
125
+ grid_shape = np.array([len(f) for f in grid_conversion])
126
+ if mass_default is None:
127
+ mass_default = mass_default
128
+ else:
129
+ mass_default = np.asarray(mass_default)
130
+ assert mass_default.ndim == 1 and mass_default.shape[0] == simplextree.num_parameters
131
+ if zero_pad:
132
+ for i, _ in enumerate(grid_shape):
133
+ grid_shape[i] += 1 # adds a 0
134
+ for i,f in enumerate(grid_conversion):
135
+ grid_conversion[i] = np.concatenate([f, [mass_default[i]]])
136
+ assert len(grid_shape) == simplextree.num_parameters, "Grid shape size has to be the number of parameters."
137
+ grid_shape_with_degree = np.asarray(np.concatenate([[len(degrees)], grid_shape]), dtype=python_indices_type)
138
+ container_array = np.ascontiguousarray(np.zeros(grid_shape_with_degree, dtype=python_tensor_dtype).flatten())
139
+ assert len(container_array) < np.iinfo(np.uint32).max, "Too large container. Raise an issue on github if you encounter this issue. (Due to tensor's operator[])"
140
+ cdef intptr_t simplextree_ptr = simplextree.thisptr
141
+ cdef vector[indices_type] c_grid_shape = grid_shape_with_degree
142
+ cdef tensor_dtype[::1] container = container_array
143
+ cdef tensor_dtype* container_ptr = &container[0]
144
+ with nogil:
145
+ get_hilbert_surface_python(simplextree_ptr, container_ptr, c_grid_shape, degrees, mobius_inversion, zero_pad, n_jobs, expand_collapse)
146
+ out = (grid_conversion, container_array.reshape(grid_shape_with_degree))
147
+ if plot:
148
+ from multipers.plots import plot_surfaces
149
+ plot_surfaces(out)
150
+ return out
151
+
Binary file