multipers 1.1.3__cp311-cp311-macosx_11_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of multipers might be problematic. Click here for more details.
- multipers/.dylibs/libtbb.12.12.dylib +0 -0
- multipers/.dylibs/libtbbmalloc.2.12.dylib +0 -0
- multipers/__init__.py +5 -0
- multipers/_old_rank_invariant.pyx +328 -0
- multipers/_signed_measure_meta.py +193 -0
- multipers/data/MOL2.py +350 -0
- multipers/data/UCR.py +18 -0
- multipers/data/__init__.py +1 -0
- multipers/data/graphs.py +466 -0
- multipers/data/immuno_regions.py +27 -0
- multipers/data/minimal_presentation_to_st_bf.py +0 -0
- multipers/data/pytorch2simplextree.py +91 -0
- multipers/data/shape3d.py +101 -0
- multipers/data/synthetic.py +68 -0
- multipers/distances.py +172 -0
- multipers/euler_characteristic.cpython-311-darwin.so +0 -0
- multipers/euler_characteristic.pyx +137 -0
- multipers/function_rips.cpython-311-darwin.so +0 -0
- multipers/function_rips.pyx +102 -0
- multipers/hilbert_function.cpython-311-darwin.so +0 -0
- multipers/hilbert_function.pyi +46 -0
- multipers/hilbert_function.pyx +151 -0
- multipers/io.cpython-311-darwin.so +0 -0
- multipers/io.pyx +176 -0
- multipers/ml/__init__.py +0 -0
- multipers/ml/accuracies.py +61 -0
- multipers/ml/convolutions.py +510 -0
- multipers/ml/invariants_with_persistable.py +79 -0
- multipers/ml/kernels.py +128 -0
- multipers/ml/mma.py +657 -0
- multipers/ml/one.py +472 -0
- multipers/ml/point_clouds.py +191 -0
- multipers/ml/signed_betti.py +50 -0
- multipers/ml/signed_measures.py +1479 -0
- multipers/ml/sliced_wasserstein.py +313 -0
- multipers/ml/tools.py +116 -0
- multipers/mma_structures.cpython-311-darwin.so +0 -0
- multipers/mma_structures.pxd +155 -0
- multipers/mma_structures.pyx +651 -0
- multipers/multiparameter_edge_collapse.py +29 -0
- multipers/multiparameter_module_approximation.cpython-311-darwin.so +0 -0
- multipers/multiparameter_module_approximation.pyi +439 -0
- multipers/multiparameter_module_approximation.pyx +311 -0
- multipers/pickle.py +53 -0
- multipers/plots.py +292 -0
- multipers/point_measure_integration.cpython-311-darwin.so +0 -0
- multipers/point_measure_integration.pyx +59 -0
- multipers/rank_invariant.cpython-311-darwin.so +0 -0
- multipers/rank_invariant.pyx +154 -0
- multipers/simplex_tree_multi.cpython-311-darwin.so +0 -0
- multipers/simplex_tree_multi.pxd +121 -0
- multipers/simplex_tree_multi.pyi +715 -0
- multipers/simplex_tree_multi.pyx +1417 -0
- multipers/slicer.cpython-311-darwin.so +0 -0
- multipers/slicer.pxd +94 -0
- multipers/slicer.pyx +276 -0
- multipers/tensor.pxd +13 -0
- multipers/test.pyx +44 -0
- multipers-1.1.3.dist-info/LICENSE +21 -0
- multipers-1.1.3.dist-info/METADATA +22 -0
- multipers-1.1.3.dist-info/RECORD +63 -0
- multipers-1.1.3.dist-info/WHEEL +5 -0
- multipers-1.1.3.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1417 @@
|
|
|
1
|
+
# This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
|
|
2
|
+
# See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
|
|
3
|
+
# Author(s): Vincent Rouvreau
|
|
4
|
+
#
|
|
5
|
+
# Copyright (C) 2016 Inria
|
|
6
|
+
#
|
|
7
|
+
# Modification(s):
|
|
8
|
+
# - 2023 David Loiseaux : Conversions with standard simplextree, scc2020 format, edge collapses, euler characteristic, grid filtrations.
|
|
9
|
+
# - 2022/11 Hannah Schreiber / David Loiseaux : adapt for multipersistence.
|
|
10
|
+
# - YYYY/MM Author: Description of the modification
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
__author__ = "Vincent Rouvreau"
|
|
15
|
+
__copyright__ = "Copyright (C) 2016 Inria"
|
|
16
|
+
__license__ = "MIT"
|
|
17
|
+
|
|
18
|
+
from libc.stdint cimport intptr_t, int32_t, int64_t
|
|
19
|
+
from cython.operator import dereference, preincrement
|
|
20
|
+
from libc.stdint cimport intptr_t
|
|
21
|
+
from libc.stdint cimport uintptr_t, intptr_t
|
|
22
|
+
from libcpp.map cimport map
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
ctypedef fused some_int:
|
|
26
|
+
int32_t
|
|
27
|
+
int64_t
|
|
28
|
+
int
|
|
29
|
+
|
|
30
|
+
ctypedef fused some_float:
|
|
31
|
+
float
|
|
32
|
+
double
|
|
33
|
+
|
|
34
|
+
ctypedef vector[pair[pair[int,int],pair[value_type,value_type]]] edge_list_type
|
|
35
|
+
|
|
36
|
+
from typing import Any
|
|
37
|
+
|
|
38
|
+
cimport numpy as cnp
|
|
39
|
+
import numpy as np
|
|
40
|
+
cnp.import_array()
|
|
41
|
+
|
|
42
|
+
from multipers.simplex_tree_multi cimport *
|
|
43
|
+
cimport cython
|
|
44
|
+
from gudhi.simplex_tree import SimplexTree ## Small hack for typing
|
|
45
|
+
from multipers.multiparameter_module_approximation import PyModule
|
|
46
|
+
from multipers.io import simplextree2scc
|
|
47
|
+
from typing import Iterable,Literal,Optional
|
|
48
|
+
from tqdm import tqdm
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
from warnings import warn
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
cdef extern from "gudhi/Simplex_tree_multi_interface.h" namespace "Gudhi::multiparameter":
|
|
56
|
+
void multify_from_ptr(const intptr_t, const intptr_t, const unsigned int, const vector[value_type]&) except + nogil
|
|
57
|
+
void flatten_from_ptr(const intptr_t, const intptr_t, const unsigned int) nogil
|
|
58
|
+
void linear_projection_from_ptr(const intptr_t, const intptr_t, const vector[value_type]&) nogil
|
|
59
|
+
void flatten_diag_from_ptr(const intptr_t, const intptr_t, const vector[value_type], int) nogil
|
|
60
|
+
void squeeze_filtration_from_ptr(intptr_t, const vector[vector[value_type]]&, bool) except + nogil
|
|
61
|
+
vector[vector[vector[value_type]]] get_filtration_values_from_ptr(intptr_t, const vector[int]&) except + nogil
|
|
62
|
+
|
|
63
|
+
SAFE_CONVERSION=True #Slower but at least it works everywhere
|
|
64
|
+
|
|
65
|
+
_available_strategies = Literal["regular","regular_closest", "partition", "quantile", "precomputed"]
|
|
66
|
+
# cdef bool callback(vector[int] simplex, void *blocker_func):
|
|
67
|
+
# return (<object>blocker_func)(simplex)
|
|
68
|
+
|
|
69
|
+
# SimplexTree python interface
|
|
70
|
+
cdef class SimplexTreeMulti:
|
|
71
|
+
"""The simplex tree is an efficient and flexible data structure for
|
|
72
|
+
representing general (filtered) simplicial complexes. The data structure
|
|
73
|
+
is described in Jean-Daniel Boissonnat and Clément Maria. The Simplex
|
|
74
|
+
Tree: An Efficient Data Structure for General Simplicial Complexes.
|
|
75
|
+
Algorithmica, pages 1–22, 2014.
|
|
76
|
+
|
|
77
|
+
This class is a multi-filtered, with keys, and non contiguous vertices version
|
|
78
|
+
of the simplex tree.
|
|
79
|
+
"""
|
|
80
|
+
# unfortunately 'cdef public Simplex_tree_multi_interface* thisptr' is not possible
|
|
81
|
+
# Use intptr_t instead to cast the pointer
|
|
82
|
+
cdef public intptr_t thisptr
|
|
83
|
+
|
|
84
|
+
cdef public vector[vector[value_type]] filtration_grid
|
|
85
|
+
cdef public bool _is_function_simplextree
|
|
86
|
+
# Get the pointer casted as it should be
|
|
87
|
+
cdef Simplex_tree_multi_interface* get_ptr(self) noexcept nogil:
|
|
88
|
+
return <Simplex_tree_multi_interface*>(self.thisptr)
|
|
89
|
+
|
|
90
|
+
# cdef Simplex_tree_persistence_interface * pcohptr
|
|
91
|
+
# Fake constructor that does nothing but documenting the constructor
|
|
92
|
+
def __init__(self, other = None, num_parameters:int=2,default_values=[], safe_conversion=False):
|
|
93
|
+
"""SimplexTreeMulti constructor.
|
|
94
|
+
|
|
95
|
+
:param other: If `other` is `None` (default value), an empty `SimplexTreeMulti` is created.
|
|
96
|
+
If `other` is a `SimplexTree`, the `SimplexTreeMulti` is constructed from a deep copy of `other`.
|
|
97
|
+
If `other` is a `SimplexTreeMulti`, the `SimplexTreeMulti` is constructed from a deep copy of `other`.
|
|
98
|
+
:type other: SimplexTree or SimplexTreeMulti (Optional)
|
|
99
|
+
:param num_parameters: The number of parameter of the multi-parameter filtration.
|
|
100
|
+
:type num_parameters: int
|
|
101
|
+
:returns: An empty or a copy simplex tree.
|
|
102
|
+
:rtype: SimplexTreeMulti
|
|
103
|
+
|
|
104
|
+
:raises TypeError: In case `other` is neither `None`, nor a `SimplexTree`, nor a `SimplexTreeMulti`.
|
|
105
|
+
"""
|
|
106
|
+
|
|
107
|
+
# The real cython constructor
|
|
108
|
+
def __cinit__(self, other = None, int num_parameters=2,
|
|
109
|
+
default_values=np.asarray([-np.inf]), # I'm not sure why `[]` does not work. Cython bug ?
|
|
110
|
+
bool safe_conversion=False,
|
|
111
|
+
): #TODO doc
|
|
112
|
+
cdef vector[value_type] c_default_values=default_values
|
|
113
|
+
cdef intptr_t other_ptr
|
|
114
|
+
if other is not None:
|
|
115
|
+
if isinstance(other, SimplexTreeMulti):
|
|
116
|
+
self.thisptr = _get_copy_intptr(other)
|
|
117
|
+
num_parameters = other.num_parameters
|
|
118
|
+
self.filtration_grid = other.filtration_grid
|
|
119
|
+
elif isinstance(other, SimplexTree): # Constructs a SimplexTreeMulti from a SimplexTree
|
|
120
|
+
self.thisptr = <intptr_t>(new Simplex_tree_multi_interface())
|
|
121
|
+
if safe_conversion or SAFE_CONVERSION:
|
|
122
|
+
new_st_multi = _safe_simplextree_multify(other, num_parameters = num_parameters, default_values=np.asarray(default_values))
|
|
123
|
+
self.thisptr, new_st_multi.thisptr = new_st_multi.thisptr, self.thisptr
|
|
124
|
+
else:
|
|
125
|
+
other_ptr = other.thisptr
|
|
126
|
+
with nogil:
|
|
127
|
+
multify_from_ptr(other_ptr, self.thisptr, num_parameters, c_default_values)
|
|
128
|
+
else:
|
|
129
|
+
raise TypeError("`other` argument requires to be of type `SimplexTree`, `SimplexTreeMulti`, or `None`.")
|
|
130
|
+
else:
|
|
131
|
+
self.thisptr = <intptr_t>(new Simplex_tree_multi_interface())
|
|
132
|
+
self.get_ptr().set_number_of_parameters(num_parameters)
|
|
133
|
+
self._is_function_simplextree = False
|
|
134
|
+
self.filtration_grid=[[]*num_parameters]
|
|
135
|
+
|
|
136
|
+
def __dealloc__(self):
|
|
137
|
+
cdef Simplex_tree_multi_interface* ptr = self.get_ptr()
|
|
138
|
+
if ptr != NULL:
|
|
139
|
+
del ptr
|
|
140
|
+
# if self.pcohptr != NULL:
|
|
141
|
+
# del self.pcohptr
|
|
142
|
+
|
|
143
|
+
def __is_defined(self):
|
|
144
|
+
"""Returns true if SimplexTree pointer is not NULL.
|
|
145
|
+
"""
|
|
146
|
+
return self.get_ptr() != NULL
|
|
147
|
+
|
|
148
|
+
# def __is_persistence_defined(self):
|
|
149
|
+
# """Returns true if Persistence pointer is not NULL.
|
|
150
|
+
# """
|
|
151
|
+
# return self.pcohptr != NULL
|
|
152
|
+
|
|
153
|
+
def copy(self)->SimplexTreeMulti:
|
|
154
|
+
"""
|
|
155
|
+
:returns: A simplex tree that is a deep copy of itself.
|
|
156
|
+
:rtype: SimplexTreeMulti
|
|
157
|
+
|
|
158
|
+
:note: The persistence information is not copied. If you need it in the clone, you have to call
|
|
159
|
+
:func:`compute_persistence` on it even if you had already computed it in the original.
|
|
160
|
+
"""
|
|
161
|
+
stree = SimplexTreeMulti(self,num_parameters=self.num_parameters)
|
|
162
|
+
return stree
|
|
163
|
+
|
|
164
|
+
def __deepcopy__(self):
|
|
165
|
+
return self.copy()
|
|
166
|
+
|
|
167
|
+
def filtration(self, simplex:list|np.ndarray)->np.ndarray:
|
|
168
|
+
"""This function returns the filtration value for a given N-simplex in
|
|
169
|
+
this simplicial complex, or +infinity if it is not in the complex.
|
|
170
|
+
|
|
171
|
+
:param simplex: The N-simplex, represented by a list of vertex.
|
|
172
|
+
:type simplex: list of int
|
|
173
|
+
:returns: The simplicial complex multi-critical filtration value.
|
|
174
|
+
:rtype: numpy array of shape (-1, num_parameters)
|
|
175
|
+
"""
|
|
176
|
+
return self[simplex]
|
|
177
|
+
|
|
178
|
+
def assign_filtration(self, simplex:list|np.ndarray, filtration:list|np.ndarray)->None:
|
|
179
|
+
"""This function assigns a new multi-critical filtration value to a
|
|
180
|
+
given N-simplex.
|
|
181
|
+
|
|
182
|
+
:param simplex: The N-simplex, represented by a list of vertex.
|
|
183
|
+
:type simplex: list of int
|
|
184
|
+
:param filtration: The new filtration(s) value(s), concatenated.
|
|
185
|
+
:type filtration: list[float] or np.ndarray[float, ndim=1]
|
|
186
|
+
|
|
187
|
+
.. note::
|
|
188
|
+
Beware that after this operation, the structure may not be a valid
|
|
189
|
+
filtration anymore, a simplex could have a lower filtration value
|
|
190
|
+
than one of its faces. Callers are responsible for fixing this
|
|
191
|
+
(with more :meth:`assign_filtration` or
|
|
192
|
+
:meth:`make_filtration_non_decreasing` for instance) before calling
|
|
193
|
+
any function that relies on the filtration property, like
|
|
194
|
+
:meth:`persistence`.
|
|
195
|
+
"""
|
|
196
|
+
assert len(filtration)>0 and len(filtration) % self.get_ptr().get_number_of_parameters() == 0
|
|
197
|
+
self.get_ptr().assign_simplex_filtration(simplex, Finitely_critical_multi_filtration(<python_filtration_type>filtration))
|
|
198
|
+
|
|
199
|
+
def __getitem__(self, simplex):
|
|
200
|
+
cdef vector[int] csimplex = simplex
|
|
201
|
+
cdef value_type[:] filtration_view = <value_type[:self.get_ptr().get_number_of_parameters()]> self.get_ptr().simplex_filtration(csimplex)
|
|
202
|
+
return np.asarray(filtration_view)
|
|
203
|
+
|
|
204
|
+
|
|
205
|
+
@property
|
|
206
|
+
def num_vertices(self)->int:
|
|
207
|
+
"""This function returns the number of vertices of the simplicial
|
|
208
|
+
complex.
|
|
209
|
+
|
|
210
|
+
:returns: The simplicial complex number of vertices.
|
|
211
|
+
:rtype: int
|
|
212
|
+
"""
|
|
213
|
+
return self.get_ptr().num_vertices()
|
|
214
|
+
|
|
215
|
+
@property
|
|
216
|
+
def num_simplices(self)->int:
|
|
217
|
+
"""This function returns the number of simplices of the simplicial
|
|
218
|
+
complex.
|
|
219
|
+
|
|
220
|
+
:returns: the simplicial complex number of simplices.
|
|
221
|
+
:rtype: int
|
|
222
|
+
"""
|
|
223
|
+
return self.get_ptr().num_simplices()
|
|
224
|
+
|
|
225
|
+
@property
|
|
226
|
+
def dimension(self)->int:
|
|
227
|
+
"""This function returns the dimension of the simplicial complex.
|
|
228
|
+
|
|
229
|
+
:returns: the simplicial complex dimension.
|
|
230
|
+
:rtype: int
|
|
231
|
+
|
|
232
|
+
.. note::
|
|
233
|
+
|
|
234
|
+
This function is not constant time because it can recompute
|
|
235
|
+
dimension if required (can be triggered by
|
|
236
|
+
:func:`remove_maximal_simplex`
|
|
237
|
+
or
|
|
238
|
+
:func:`prune_above_filtration`
|
|
239
|
+
methods).
|
|
240
|
+
"""
|
|
241
|
+
return self.get_ptr().dimension()
|
|
242
|
+
def upper_bound_dimension(self)->int:
|
|
243
|
+
"""This function returns a valid dimension upper bound of the
|
|
244
|
+
simplicial complex.
|
|
245
|
+
|
|
246
|
+
:returns: an upper bound on the dimension of the simplicial complex.
|
|
247
|
+
:rtype: int
|
|
248
|
+
"""
|
|
249
|
+
return self.get_ptr().upper_bound_dimension()
|
|
250
|
+
|
|
251
|
+
def set_dimension(self, dimension)->None:
|
|
252
|
+
"""This function sets the dimension of the simplicial complex.
|
|
253
|
+
|
|
254
|
+
:param dimension: The new dimension value.
|
|
255
|
+
:type dimension: int
|
|
256
|
+
|
|
257
|
+
.. note::
|
|
258
|
+
|
|
259
|
+
This function must be used with caution because it disables
|
|
260
|
+
dimension recomputation when required
|
|
261
|
+
(this recomputation can be triggered by
|
|
262
|
+
:func:`remove_maximal_simplex`
|
|
263
|
+
or
|
|
264
|
+
:func:`prune_above_filtration`
|
|
265
|
+
).
|
|
266
|
+
"""
|
|
267
|
+
self.get_ptr().set_dimension(<int>dimension)
|
|
268
|
+
|
|
269
|
+
# def find(self, simplex)->bool:
|
|
270
|
+
# """This function returns if the N-simplex was found in the simplicial
|
|
271
|
+
# complex or not.
|
|
272
|
+
|
|
273
|
+
# :param simplex: The N-simplex to find, represented by a list of vertex.
|
|
274
|
+
# :type simplex: list of int
|
|
275
|
+
# :returns: true if the simplex was found, false otherwise.
|
|
276
|
+
# :rtype: bool
|
|
277
|
+
# """
|
|
278
|
+
# return self.get_ptr().find_simplex(simplex)
|
|
279
|
+
def __contains__(self, simplex)->bool:
|
|
280
|
+
"""This function returns if the N-simplex was found in the simplicial
|
|
281
|
+
complex or not.
|
|
282
|
+
|
|
283
|
+
:param simplex: The N-simplex to find, represented by a list of vertex.
|
|
284
|
+
:type simplex: list of int
|
|
285
|
+
:returns: true if the simplex was found, false otherwise.
|
|
286
|
+
:rtype: bool
|
|
287
|
+
"""
|
|
288
|
+
return self.get_ptr().find_simplex(simplex)
|
|
289
|
+
|
|
290
|
+
def insert(self, simplex, filtration:list|np.ndarray|None=None)->bool:
|
|
291
|
+
"""This function inserts the given N-simplex and its subfaces with the
|
|
292
|
+
given filtration value (default value is '0.0'). If some of those
|
|
293
|
+
simplices are already present with a higher filtration value, their
|
|
294
|
+
filtration value is lowered.
|
|
295
|
+
|
|
296
|
+
:param simplex: The N-simplex to insert, represented by a list of
|
|
297
|
+
vertex.
|
|
298
|
+
:type simplex: list of int
|
|
299
|
+
:param filtration: The filtration value of the simplex.
|
|
300
|
+
:type filtration: float
|
|
301
|
+
:returns: true if the simplex was not yet in the complex, false
|
|
302
|
+
otherwise (whatever its original filtration value).
|
|
303
|
+
:rtype: bool
|
|
304
|
+
"""
|
|
305
|
+
# TODO C++, to be compatible with insert_batch and multicritical filtrations
|
|
306
|
+
num_parameters = self.get_ptr().get_number_of_parameters()
|
|
307
|
+
assert filtration is None or len(filtration) % num_parameters == 0, f"Invalid number \
|
|
308
|
+
of parameters. Should be {num_parameters}, got {len(filtration)}"
|
|
309
|
+
if filtration is None:
|
|
310
|
+
filtration = np.array([-np.inf]*num_parameters, dtype = float)
|
|
311
|
+
return self.get_ptr().insert(simplex, Finitely_critical_multi_filtration(<python_filtration_type>filtration))
|
|
312
|
+
|
|
313
|
+
@cython.boundscheck(False)
|
|
314
|
+
@cython.wraparound(False)
|
|
315
|
+
def insert_batch(self, some_int[:,:] vertex_array, some_float[:,:] filtrations)->SimplexTreeMulti:
|
|
316
|
+
"""Inserts k-simplices given by a sparse array in a format similar
|
|
317
|
+
to `torch.sparse <https://pytorch.org/docs/stable/sparse.html>`_.
|
|
318
|
+
The n-th simplex has vertices `vertex_array[0,n]`, ...,
|
|
319
|
+
`vertex_array[k,n]` and filtration value `filtrations[n,num_parameters]`.
|
|
320
|
+
/!\ Only compatible with 1-critical filtrations. If a simplex is repeated,
|
|
321
|
+
only one filtration value will be taken into account.
|
|
322
|
+
|
|
323
|
+
:param vertex_array: the k-simplices to insert.
|
|
324
|
+
:type vertex_array: numpy.array of shape (k+1,n)
|
|
325
|
+
:param filtrations: the filtration values.
|
|
326
|
+
:type filtrations: numpy.array of shape (n,num_parameters)
|
|
327
|
+
"""
|
|
328
|
+
# TODO : multi-critical
|
|
329
|
+
# cdef vector[int] vertices = np.unique(vertex_array)
|
|
330
|
+
cdef Py_ssize_t k = vertex_array.shape[0]
|
|
331
|
+
cdef Py_ssize_t n = vertex_array.shape[1]
|
|
332
|
+
assert filtrations.shape[0] == n, f"inconsistent sizes for vertex_array and filtrations\
|
|
333
|
+
Filtrations should be of shape ({n},{self.num_parameters})"
|
|
334
|
+
assert filtrations.shape[1] == self.num_parameters, f"Inconsistent number of parameters.\
|
|
335
|
+
Filtrations should be of shape ({n},{self.num_parameters})"
|
|
336
|
+
cdef Py_ssize_t i
|
|
337
|
+
cdef Py_ssize_t j
|
|
338
|
+
cdef vector[int] v
|
|
339
|
+
cdef Finitely_critical_multi_filtration w
|
|
340
|
+
cdef int n_parameters = self.num_parameters
|
|
341
|
+
with nogil:
|
|
342
|
+
for i in range(n):
|
|
343
|
+
for j in range(k):
|
|
344
|
+
v.push_back(vertex_array[j, i])
|
|
345
|
+
for j in range(n_parameters):
|
|
346
|
+
w.push_back(filtrations[i,j])
|
|
347
|
+
self.get_ptr().insert(v, w)
|
|
348
|
+
v.clear()
|
|
349
|
+
w.clear()
|
|
350
|
+
return self
|
|
351
|
+
|
|
352
|
+
def assign_all(self, filtration_values)-> SimplexTreeMulti:
|
|
353
|
+
cdef Py_ssize_t num_simplices = filtration_values.shape[0]
|
|
354
|
+
cdef Py_ssize_t num_parameters = filtration_values.shape[1]
|
|
355
|
+
|
|
356
|
+
assert num_simplices == self.num_simplices, f"Number of filtration values {filtration_values.shape[0]} is not the number of simplices {self.num_simplices}"
|
|
357
|
+
assert num_parameters == self.num_parameters, f"Number of parameter do not coincide {filtration_values.shape[1]} vs {self.num_parameters}"
|
|
358
|
+
cdef Simplex_tree_multi_simplices_iterator it = self.get_ptr().get_simplices_iterator_begin()
|
|
359
|
+
cdef Simplex_tree_multi_simplices_iterator end = self.get_ptr().get_simplices_iterator_end()
|
|
360
|
+
cdef Simplex_tree_multi_simplex_handle sh = dereference(it)
|
|
361
|
+
cdef int counter =0
|
|
362
|
+
# cdef cnp.ndarray[value_type,ndim=1] current_filtration
|
|
363
|
+
cdef value_type[:,:] F = filtration_values
|
|
364
|
+
with nogil:
|
|
365
|
+
while it != end:
|
|
366
|
+
pair = self.get_ptr().get_simplex_and_filtration(dereference(it))
|
|
367
|
+
|
|
368
|
+
for i in range(num_parameters):
|
|
369
|
+
pair.second[i] = F[counter,i]
|
|
370
|
+
# current_filtration= F[counter]
|
|
371
|
+
counter += 1
|
|
372
|
+
# yield SimplexTreeMulti._pair_simplex_filtration_to_python(out)
|
|
373
|
+
preincrement(it)
|
|
374
|
+
|
|
375
|
+
|
|
376
|
+
|
|
377
|
+
@cython.boundscheck(False)
|
|
378
|
+
@cython.wraparound(False)
|
|
379
|
+
def assign_batch_filtration(self, some_int[:,:] vertex_array, some_float[:,:] filtrations, bool propagate=True)->SimplexTreeMulti:
|
|
380
|
+
"""Assign k-simplices given by a sparse array in a format similar
|
|
381
|
+
to `torch.sparse <https://pytorch.org/docs/stable/sparse.html>`_.
|
|
382
|
+
The n-th simplex has vertices `vertex_array[0,n]`, ...,
|
|
383
|
+
`vertex_array[k,n]` and filtration value `filtrations[n,num_parameters]`.
|
|
384
|
+
/!\ Only compatible with 1-critical filtrations. If a simplex is repeated,
|
|
385
|
+
only one filtration value will be taken into account.
|
|
386
|
+
|
|
387
|
+
:param vertex_array: the k-simplices to assign.
|
|
388
|
+
:type vertex_array: numpy.array of shape (k+1,n)
|
|
389
|
+
:param filtrations: the filtration values.
|
|
390
|
+
:type filtrations: numpy.array of shape (n,num_parameters)
|
|
391
|
+
"""
|
|
392
|
+
cdef Py_ssize_t k = vertex_array.shape[0]
|
|
393
|
+
cdef Py_ssize_t n = vertex_array.shape[1]
|
|
394
|
+
assert filtrations.shape[0] == n, 'inconsistent sizes for vertex_array and filtrations'
|
|
395
|
+
assert filtrations.shape[1] == self.num_parameters, "wrong number of parameters"
|
|
396
|
+
cdef Py_ssize_t i
|
|
397
|
+
cdef Py_ssize_t j
|
|
398
|
+
cdef vector[int] v
|
|
399
|
+
cdef Finitely_critical_multi_filtration w
|
|
400
|
+
cdef int n_parameters = self.num_parameters
|
|
401
|
+
with nogil:
|
|
402
|
+
for i in range(n):
|
|
403
|
+
for j in range(k):
|
|
404
|
+
v.push_back(vertex_array[j, i])
|
|
405
|
+
for j in range(n_parameters):
|
|
406
|
+
w.push_back(filtrations[i,j])
|
|
407
|
+
self.get_ptr().assign_simplex_filtration(v, w)
|
|
408
|
+
v.clear()
|
|
409
|
+
w.clear()
|
|
410
|
+
if propagate: self.make_filtration_non_decreasing()
|
|
411
|
+
return self
|
|
412
|
+
|
|
413
|
+
|
|
414
|
+
|
|
415
|
+
def get_simplices(self):
|
|
416
|
+
"""This function returns a generator with simplices and their given
|
|
417
|
+
filtration values.
|
|
418
|
+
|
|
419
|
+
:returns: The simplices.
|
|
420
|
+
:rtype: generator with tuples(simplex, filtration)
|
|
421
|
+
"""
|
|
422
|
+
cdef Simplex_tree_multi_simplices_iterator it = self.get_ptr().get_simplices_iterator_begin()
|
|
423
|
+
cdef Simplex_tree_multi_simplices_iterator end = self.get_ptr().get_simplices_iterator_end()
|
|
424
|
+
cdef Simplex_tree_multi_simplex_handle sh = dereference(it)
|
|
425
|
+
# cdef pair[simplex_type,Finitely_critical_multi_filtration] out_
|
|
426
|
+
# while it != end:
|
|
427
|
+
# out_ = self.get_ptr().get_simplex_and_filtration(dereference(it))
|
|
428
|
+
# out = (out_.first,out_.second.get_vector())
|
|
429
|
+
# yield out
|
|
430
|
+
# preincrement(it)
|
|
431
|
+
# cdef pair[simplex_type,filtration_type] out
|
|
432
|
+
cdef int num_parameters = self.get_ptr().get_number_of_parameters()
|
|
433
|
+
while it != end:
|
|
434
|
+
pair = self.get_ptr().get_simplex_and_filtration(dereference(it))
|
|
435
|
+
|
|
436
|
+
yield (np.asarray(pair.first, dtype=int),np.asarray(<value_type[:num_parameters]> pair.second))
|
|
437
|
+
# yield SimplexTreeMulti._pair_simplex_filtration_to_python(out)
|
|
438
|
+
preincrement(it)
|
|
439
|
+
|
|
440
|
+
|
|
441
|
+
def get_filtration(self):
|
|
442
|
+
"""This function returns a generator with simplices and their given
|
|
443
|
+
filtration values sorted by increasing filtration values.
|
|
444
|
+
|
|
445
|
+
:returns: The simplices sorted by increasing filtration values.
|
|
446
|
+
:rtype: generator with tuples(simplex, filtration)
|
|
447
|
+
"""
|
|
448
|
+
cdef vector[Simplex_tree_multi_simplex_handle].const_iterator it = self.get_ptr().get_filtration_iterator_begin()
|
|
449
|
+
cdef vector[Simplex_tree_multi_simplex_handle].const_iterator end = self.get_ptr().get_filtration_iterator_end()
|
|
450
|
+
cdef int num_parameters = self.get_ptr().get_number_of_parameters()
|
|
451
|
+
while it != end:
|
|
452
|
+
# yield self.get_ptr().get_simplex_and_filtration(dereference(it))
|
|
453
|
+
pair = self.get_ptr().get_simplex_and_filtration(dereference(it))
|
|
454
|
+
yield (np.asarray(pair.first, dtype=int),np.asarray(<value_type[:num_parameters]> pair.second))
|
|
455
|
+
preincrement(it)
|
|
456
|
+
|
|
457
|
+
def get_skeleton(self, dimension):
|
|
458
|
+
"""This function returns a generator with the (simplices of the) skeleton of a maximum given dimension.
|
|
459
|
+
|
|
460
|
+
:param dimension: The skeleton dimension value.
|
|
461
|
+
:type dimension: int
|
|
462
|
+
:returns: The (simplices of the) skeleton of a maximum dimension.
|
|
463
|
+
:rtype: generator with tuples(simplex, filtration)
|
|
464
|
+
"""
|
|
465
|
+
cdef Simplex_tree_multi_skeleton_iterator it = self.get_ptr().get_skeleton_iterator_begin(dimension)
|
|
466
|
+
cdef Simplex_tree_multi_skeleton_iterator end = self.get_ptr().get_skeleton_iterator_end(dimension)
|
|
467
|
+
cdef int num_parameters = self.get_ptr().get_number_of_parameters()
|
|
468
|
+
while it != end:
|
|
469
|
+
# yield self.get_ptr().get_simplex_and_filtration(dereference(it))
|
|
470
|
+
pair = self.get_ptr().get_simplex_and_filtration(dereference(it))
|
|
471
|
+
yield (np.asarray(pair.first, dtype=int),np.asarray(<value_type[:num_parameters]> pair.second))
|
|
472
|
+
preincrement(it)
|
|
473
|
+
|
|
474
|
+
def get_star(self, simplex):
|
|
475
|
+
"""This function returns the star of a given N-simplex.
|
|
476
|
+
|
|
477
|
+
:param simplex: The N-simplex, represented by a list of vertex.
|
|
478
|
+
:type simplex: list of int
|
|
479
|
+
:returns: The (simplices of the) star of a simplex.
|
|
480
|
+
:rtype: list of tuples(simplex, filtration)
|
|
481
|
+
"""
|
|
482
|
+
cdef simplex_type csimplex = simplex
|
|
483
|
+
cdef int num_parameters = self.num_parameters
|
|
484
|
+
# for i in simplex:
|
|
485
|
+
# csimplex.push_back(i)
|
|
486
|
+
cdef vector[simplex_filtration_type] star \
|
|
487
|
+
= self.get_ptr().get_star(csimplex)
|
|
488
|
+
ct = []
|
|
489
|
+
|
|
490
|
+
for filtered_simplex in star:
|
|
491
|
+
v = []
|
|
492
|
+
for vertex in filtered_simplex.first:
|
|
493
|
+
v.append(vertex)
|
|
494
|
+
ct.append((v, np.asarray(<value_type[:num_parameters]>filtered_simplex.second)))
|
|
495
|
+
return ct
|
|
496
|
+
|
|
497
|
+
def get_cofaces(self, simplex, codimension):
|
|
498
|
+
"""This function returns the cofaces of a given N-simplex with a
|
|
499
|
+
given codimension.
|
|
500
|
+
|
|
501
|
+
:param simplex: The N-simplex, represented by a list of vertex.
|
|
502
|
+
:type simplex: list of int
|
|
503
|
+
:param codimension: The codimension. If codimension = 0, all cofaces
|
|
504
|
+
are returned (equivalent of get_star function)
|
|
505
|
+
:type codimension: int
|
|
506
|
+
:returns: The (simplices of the) cofaces of a simplex
|
|
507
|
+
:rtype: list of tuples(simplex, filtration)
|
|
508
|
+
"""
|
|
509
|
+
cdef vector[int] csimplex = simplex
|
|
510
|
+
cdef int num_parameters = self.num_parameters
|
|
511
|
+
# for i in simplex:
|
|
512
|
+
# csimplex.push_back(i)
|
|
513
|
+
cdef vector[simplex_filtration_type] cofaces \
|
|
514
|
+
= self.get_ptr().get_cofaces(csimplex, <int>codimension)
|
|
515
|
+
ct = []
|
|
516
|
+
for filtered_simplex in cofaces:
|
|
517
|
+
v = []
|
|
518
|
+
for vertex in filtered_simplex.first:
|
|
519
|
+
v.append(vertex)
|
|
520
|
+
ct.append((v, np.asarray(<value_type[:num_parameters]>filtered_simplex.second)))
|
|
521
|
+
return ct
|
|
522
|
+
|
|
523
|
+
def get_boundaries(self, simplex):
|
|
524
|
+
"""This function returns a generator with the boundaries of a given N-simplex.
|
|
525
|
+
If you do not need the filtration values, the boundary can also be obtained as
|
|
526
|
+
:code:`itertools.combinations(simplex,len(simplex)-1)`.
|
|
527
|
+
|
|
528
|
+
:param simplex: The N-simplex, represented by a list of vertex.
|
|
529
|
+
:type simplex: list of int.
|
|
530
|
+
:returns: The (simplices of the) boundary of a simplex
|
|
531
|
+
:rtype: generator with tuples(simplex, filtration)
|
|
532
|
+
"""
|
|
533
|
+
cdef pair[Simplex_tree_multi_boundary_iterator, Simplex_tree_multi_boundary_iterator] it = self.get_ptr().get_boundary_iterators(simplex)
|
|
534
|
+
|
|
535
|
+
# while it.first != it.second:
|
|
536
|
+
# yield self.get_ptr().get_simplex_and_filtration(dereference(it.first))
|
|
537
|
+
# preincrement(it.first)
|
|
538
|
+
cdef int num_parameters = self.get_ptr().get_number_of_parameters()
|
|
539
|
+
while it.first != it.second:
|
|
540
|
+
# yield self.get_ptr().get_simplex_and_filtration(dereference(it))
|
|
541
|
+
pair = self.get_ptr().get_simplex_and_filtration(dereference(it.first))
|
|
542
|
+
yield (np.asarray(pair.first, dtype=int),np.asarray(<value_type[:num_parameters]> pair.second))
|
|
543
|
+
preincrement(it.first)
|
|
544
|
+
def remove_maximal_simplex(self, simplex):
|
|
545
|
+
"""This function removes a given maximal N-simplex from the simplicial
|
|
546
|
+
complex.
|
|
547
|
+
|
|
548
|
+
:param simplex: The N-simplex, represented by a list of vertex.
|
|
549
|
+
:type simplex: list of int
|
|
550
|
+
|
|
551
|
+
.. note::
|
|
552
|
+
|
|
553
|
+
The dimension of the simplicial complex may be lower after calling
|
|
554
|
+
remove_maximal_simplex than it was before. However,
|
|
555
|
+
:func:`upper_bound_dimension`
|
|
556
|
+
method will return the old value, which
|
|
557
|
+
remains a valid upper bound. If you care, you can call
|
|
558
|
+
:func:`dimension`
|
|
559
|
+
to recompute the exact dimension.
|
|
560
|
+
"""
|
|
561
|
+
self.get_ptr().remove_maximal_simplex(simplex)
|
|
562
|
+
|
|
563
|
+
# def prune_above_filtration(self, filtration)->bool:
|
|
564
|
+
# """Prune above filtration value given as parameter.
|
|
565
|
+
|
|
566
|
+
# :param filtration: Maximum threshold value.
|
|
567
|
+
# :type filtration: float
|
|
568
|
+
# :returns: The filtration modification information.
|
|
569
|
+
# :rtype: bool
|
|
570
|
+
|
|
571
|
+
|
|
572
|
+
# .. note::
|
|
573
|
+
|
|
574
|
+
# Note that the dimension of the simplicial complex may be lower
|
|
575
|
+
# after calling
|
|
576
|
+
# :func:`prune_above_filtration`
|
|
577
|
+
# than it was before. However,
|
|
578
|
+
# :func:`upper_bound_dimension`
|
|
579
|
+
# will return the old value, which remains a
|
|
580
|
+
# valid upper bound. If you care, you can call
|
|
581
|
+
# :func:`dimension`
|
|
582
|
+
# method to recompute the exact dimension.
|
|
583
|
+
# """
|
|
584
|
+
# return self.get_ptr().prune_above_filtration(filtration)
|
|
585
|
+
def prune_above_dimension(self, int dimension):
|
|
586
|
+
"""Remove all simplices of dimension greater than a given value.
|
|
587
|
+
|
|
588
|
+
:param dimension: Maximum dimension value.
|
|
589
|
+
:type dimension: int
|
|
590
|
+
:returns: The modification information.
|
|
591
|
+
:rtype: bool
|
|
592
|
+
"""
|
|
593
|
+
return self.get_ptr().prune_above_dimension(dimension)
|
|
594
|
+
def expansion(self, int max_dim)->SimplexTreeMulti:
|
|
595
|
+
"""Expands the simplex tree containing only its one skeleton
|
|
596
|
+
until dimension max_dim.
|
|
597
|
+
|
|
598
|
+
The expanded simplicial complex until dimension :math:`d`
|
|
599
|
+
attached to a graph :math:`G` is the maximal simplicial complex of
|
|
600
|
+
dimension at most :math:`d` admitting the graph :math:`G` as
|
|
601
|
+
:math:`1`-skeleton.
|
|
602
|
+
The filtration value assigned to a simplex is the maximal filtration
|
|
603
|
+
value of one of its edges.
|
|
604
|
+
|
|
605
|
+
The simplex tree must contain no simplex of dimension bigger than
|
|
606
|
+
1 when calling the method.
|
|
607
|
+
|
|
608
|
+
:param max_dim: The maximal dimension.
|
|
609
|
+
:type max_dim: int
|
|
610
|
+
"""
|
|
611
|
+
with nogil:
|
|
612
|
+
self.get_ptr().expansion(max_dim)
|
|
613
|
+
# This is a fix for multipersistence. FIXME expansion in c++
|
|
614
|
+
self.get_ptr().make_filtration_non_decreasing()
|
|
615
|
+
return self
|
|
616
|
+
|
|
617
|
+
def make_filtration_non_decreasing(self)->bool:
|
|
618
|
+
"""This function ensures that each simplex has a higher filtration
|
|
619
|
+
value than its faces by increasing the filtration values.
|
|
620
|
+
|
|
621
|
+
:returns: True if any filtration value was modified,
|
|
622
|
+
False if the filtration was already non-decreasing.
|
|
623
|
+
:rtype: bool
|
|
624
|
+
"""
|
|
625
|
+
cdef bool out
|
|
626
|
+
with nogil:
|
|
627
|
+
out = self.get_ptr().make_filtration_non_decreasing()
|
|
628
|
+
return out
|
|
629
|
+
|
|
630
|
+
def reset_filtration(self, filtration, min_dim = 0):
|
|
631
|
+
"""This function resets the filtration value of all the simplices of dimension at least min_dim. Resets all the
|
|
632
|
+
simplex tree when `min_dim = 0`.
|
|
633
|
+
`reset_filtration` may break the filtration property with `min_dim > 0`, and it is the user's responsibility to
|
|
634
|
+
make it a valid filtration (using a large enough `filt_value`, or calling `make_filtration_non_decreasing`
|
|
635
|
+
afterwards for instance).
|
|
636
|
+
|
|
637
|
+
:param filtration: New threshold value.
|
|
638
|
+
:type filtration: float.
|
|
639
|
+
:param min_dim: The minimal dimension. Default value is 0.
|
|
640
|
+
:type min_dim: int.
|
|
641
|
+
"""
|
|
642
|
+
self.get_ptr().reset_filtration(Finitely_critical_multi_filtration(<python_filtration_type>filtration), min_dim)
|
|
643
|
+
|
|
644
|
+
|
|
645
|
+
|
|
646
|
+
# def extend_filtration(self):
|
|
647
|
+
# """ Extend filtration for computing extended persistence. This function only uses the filtration values at the
|
|
648
|
+
# 0-dimensional simplices, and computes the extended persistence diagram induced by the lower-star filtration
|
|
649
|
+
# computed with these values.
|
|
650
|
+
#
|
|
651
|
+
# .. note::
|
|
652
|
+
#
|
|
653
|
+
# Note that after calling this function, the filtration values are actually modified within the simplex tree.
|
|
654
|
+
# The function :func:`extended_persistence` retrieves the original values.
|
|
655
|
+
#
|
|
656
|
+
# .. note::
|
|
657
|
+
#
|
|
658
|
+
# Note that this code creates an extra vertex internally, so you should make sure that the simplex tree does
|
|
659
|
+
# not contain a vertex with the largest possible value (i.e., 4294967295).
|
|
660
|
+
#
|
|
661
|
+
# This `notebook <https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-extended-persistence.ipynb>`_
|
|
662
|
+
# explains how to compute an extension of persistence called extended persistence.
|
|
663
|
+
# """
|
|
664
|
+
# self.get_ptr().compute_extended_filtration()
|
|
665
|
+
|
|
666
|
+
# def extended_persistence(self, homology_coeff_field=11, min_persistence=0):
|
|
667
|
+
# """This function retrieves good values for extended persistence, and separate the diagrams into the Ordinary,
|
|
668
|
+
# Relative, Extended+ and Extended- subdiagrams.
|
|
669
|
+
#
|
|
670
|
+
# :param homology_coeff_field: The homology coefficient field. Must be a prime number. Default value is 11. Max is 46337.
|
|
671
|
+
# :type homology_coeff_field: int
|
|
672
|
+
# :param min_persistence: The minimum persistence value (i.e., the absolute value of the difference between the
|
|
673
|
+
# persistence diagram point coordinates) to take into account (strictly greater than min_persistence).
|
|
674
|
+
# Default value is 0.0. Sets min_persistence to -1.0 to see all values.
|
|
675
|
+
# :type min_persistence: float
|
|
676
|
+
# :returns: A list of four persistence diagrams in the format described in :func:`persistence`. The first one is
|
|
677
|
+
# Ordinary, the second one is Relative, the third one is Extended+ and the fourth one is Extended-.
|
|
678
|
+
# See https://link.springer.com/article/10.1007/s10208-008-9027-z and/or section 2.2 in
|
|
679
|
+
# https://link.springer.com/article/10.1007/s10208-017-9370-z for a description of these subtypes.
|
|
680
|
+
#
|
|
681
|
+
# .. note::
|
|
682
|
+
#
|
|
683
|
+
# This function should be called only if :func:`extend_filtration` has been called first!
|
|
684
|
+
#
|
|
685
|
+
# .. note::
|
|
686
|
+
#
|
|
687
|
+
# The coordinates of the persistence diagram points might be a little different than the
|
|
688
|
+
# original filtration values due to the internal transformation (scaling to [-2,-1]) that is
|
|
689
|
+
# performed on these values during the computation of extended persistence.
|
|
690
|
+
#
|
|
691
|
+
# This `notebook <https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-extended-persistence.ipynb>`_
|
|
692
|
+
# explains how to compute an extension of persistence called extended persistence.
|
|
693
|
+
# """
|
|
694
|
+
# cdef vector[pair[int, pair[value_type, value_type]]] persistence_result
|
|
695
|
+
# if self.pcohptr != NULL:
|
|
696
|
+
# del self.pcohptr
|
|
697
|
+
# self.pcohptr = new Simplex_tree_persistence_interface(self.get_ptr(), False)
|
|
698
|
+
# self.pcohptr.compute_persistence(homology_coeff_field, -1.)
|
|
699
|
+
# return self.pcohptr.compute_extended_persistence_subdiagrams(min_persistence)
|
|
700
|
+
|
|
701
|
+
# TODO : cython3
|
|
702
|
+
# def expansion_with_blocker(self, max_dim, blocker_func):
|
|
703
|
+
# """Expands the Simplex_tree containing only a graph. Simplices corresponding to cliques in the graph are added
|
|
704
|
+
# incrementally, faces before cofaces, unless the simplex has dimension larger than `max_dim` or `blocker_func`
|
|
705
|
+
# returns `True` for this simplex.
|
|
706
|
+
|
|
707
|
+
# The function identifies a candidate simplex whose faces are all already in the complex, inserts it with a
|
|
708
|
+
# filtration value corresponding to the maximum of the filtration values of the faces, then calls `blocker_func`
|
|
709
|
+
# with this new simplex (represented as a list of int). If `blocker_func` returns `True`, the simplex is removed,
|
|
710
|
+
# otherwise it is kept. The algorithm then proceeds with the next candidate.
|
|
711
|
+
|
|
712
|
+
# .. warning::
|
|
713
|
+
# Several candidates of the same dimension may be inserted simultaneously before calling `blocker_func`, so
|
|
714
|
+
# if you examine the complex in `blocker_func`, you may hit a few simplices of the same dimension that have
|
|
715
|
+
# not been vetted by `blocker_func` yet, or have already been rejected but not yet removed.
|
|
716
|
+
|
|
717
|
+
# :param max_dim: Expansion maximal dimension value.
|
|
718
|
+
# :type max_dim: int
|
|
719
|
+
# :param blocker_func: Blocker oracle.
|
|
720
|
+
# :type blocker_func: Callable[[List[int]], bool]
|
|
721
|
+
# """
|
|
722
|
+
# self.get_ptr().expansion_with_blockers_callback(max_dim, callback, <void*>blocker_func)
|
|
723
|
+
|
|
724
|
+
# def persistence(self, homology_coeff_field=11, min_persistence=0, persistence_dim_max = False):
|
|
725
|
+
# """This function computes and returns the persistence of the simplicial complex.
|
|
726
|
+
#
|
|
727
|
+
# :param homology_coeff_field: The homology coefficient field. Must be a
|
|
728
|
+
# prime number. Default value is 11. Max is 46337.
|
|
729
|
+
# :type homology_coeff_field: int
|
|
730
|
+
# :param min_persistence: The minimum persistence value to take into
|
|
731
|
+
# account (strictly greater than min_persistence). Default value is
|
|
732
|
+
# 0.0.
|
|
733
|
+
# Set min_persistence to -1.0 to see all values.
|
|
734
|
+
# :type min_persistence: float
|
|
735
|
+
# :param persistence_dim_max: If true, the persistent homology for the
|
|
736
|
+
# maximal dimension in the complex is computed. If false, it is
|
|
737
|
+
# ignored. Default is false.
|
|
738
|
+
# :type persistence_dim_max: bool
|
|
739
|
+
# :returns: The persistence of the simplicial complex.
|
|
740
|
+
# :rtype: list of pairs(dimension, pair(birth, death))
|
|
741
|
+
# """
|
|
742
|
+
# self.compute_persistence(homology_coeff_field, min_persistence, persistence_dim_max)
|
|
743
|
+
# return self.pcohptr.get_persistence()
|
|
744
|
+
|
|
745
|
+
def persistence_approximation(self, **kwargs)->PyModule:
|
|
746
|
+
"""Computes an interval module approximation of a multiparameter filtration.
|
|
747
|
+
|
|
748
|
+
Parameters
|
|
749
|
+
----------
|
|
750
|
+
max_error: positive float
|
|
751
|
+
Trade-off between approximation and computational complexity.
|
|
752
|
+
Upper bound of the module approximation, in bottleneck distance,
|
|
753
|
+
for interval-decomposable modules.
|
|
754
|
+
nlines: int
|
|
755
|
+
Alternative to precision.
|
|
756
|
+
box : pair of list of floats
|
|
757
|
+
Defines a rectangle on which to compute the approximation.
|
|
758
|
+
Format : [x,y], where x,y defines the rectangle {z : x ≤ z ≤ y}
|
|
759
|
+
threshold: bool
|
|
760
|
+
When true, computes the module restricted to the box.
|
|
761
|
+
max_dimension:int
|
|
762
|
+
Max simplextree dimension to consider.
|
|
763
|
+
verbose: bool
|
|
764
|
+
Prints C++ infos.
|
|
765
|
+
ignore_warning : bool
|
|
766
|
+
Unless set to true, prevents computing on more than 10k lines. Useful to prevent a segmentation fault due to "infinite" recursion.
|
|
767
|
+
|
|
768
|
+
Returns
|
|
769
|
+
-------
|
|
770
|
+
PyModule
|
|
771
|
+
An interval decomposable module approximation of the module defined by the
|
|
772
|
+
homology of this multi-filtration.
|
|
773
|
+
"""
|
|
774
|
+
from multipers.multiparameter_module_approximation import module_approximation, PyModule
|
|
775
|
+
if self.num_simplices <= 0:
|
|
776
|
+
return PyModule()
|
|
777
|
+
assert self.num_parameters > 1, f"Use standard Gudhi for 1-parameter persistence."
|
|
778
|
+
return module_approximation(self,**kwargs)
|
|
779
|
+
|
|
780
|
+
|
|
781
|
+
## This function is only meant for the edge collapse interface.
|
|
782
|
+
def get_edge_list(self):
|
|
783
|
+
cdef edge_list out
|
|
784
|
+
with nogil:
|
|
785
|
+
out = self.get_ptr().get_edge_list()
|
|
786
|
+
return out
|
|
787
|
+
|
|
788
|
+
def collapse_edges(self, max_dimension:int=None, num:int=1, progress:bool=False, strong:bool=True, full:bool=False, ignore_warning:bool=False)->SimplexTreeMulti:
|
|
789
|
+
"""Edge collapse for 1-critical 2-parameter clique complex (see https://arxiv.org/abs/2211.05574).
|
|
790
|
+
It uses the code from the github repository https://github.com/aj-alonso/filtration_domination .
|
|
791
|
+
|
|
792
|
+
Parameters
|
|
793
|
+
----------
|
|
794
|
+
max_dimension:int
|
|
795
|
+
Max simplicial dimension of the complex. Unless specified, keeps the same dimension.
|
|
796
|
+
num:int
|
|
797
|
+
The number of collapses to do.
|
|
798
|
+
strong:bool
|
|
799
|
+
Whether to use strong collapses or standard collapses (slower, but may remove more edges)
|
|
800
|
+
full:bool
|
|
801
|
+
Collapses the maximum number of edges if true, i.e., will do (at most) 100 strong collapses and (at most) 100 non-strong collapses afterward.
|
|
802
|
+
progress:bool
|
|
803
|
+
If true, shows the progress of the number of collapses.
|
|
804
|
+
|
|
805
|
+
WARNING
|
|
806
|
+
-------
|
|
807
|
+
- This will destroy all of the k-simplices, with k>=2. Be sure to use this with a clique complex, if you want to preserve the homology >= dimension 1.
|
|
808
|
+
- This is for 1 critical simplices, with 2 parameter persistence.
|
|
809
|
+
Returns
|
|
810
|
+
-------
|
|
811
|
+
self:SimplexTreeMulti
|
|
812
|
+
A (smaller) simplex tree that has the same homology over this bifiltration.
|
|
813
|
+
|
|
814
|
+
"""
|
|
815
|
+
# TODO : find a way to do multiple edge collapses without python conversions.
|
|
816
|
+
if num == 0:
|
|
817
|
+
return self
|
|
818
|
+
elif num == -1:
|
|
819
|
+
num=100
|
|
820
|
+
full=False
|
|
821
|
+
elif num == -2:
|
|
822
|
+
num=100
|
|
823
|
+
full=True
|
|
824
|
+
assert self.num_parameters == 2, "Number of parameters has to be 2 to use edge collapses ! This is a limitation of Filtration-domination"
|
|
825
|
+
if self.dimension > 1 and not ignore_warning: warn("This method ignores simplices of dimension > 1 !")
|
|
826
|
+
|
|
827
|
+
max_dimension = self.dimension if max_dimension is None else max_dimension
|
|
828
|
+
|
|
829
|
+
# Retrieves the edge list, and send it to filration_domination
|
|
830
|
+
edges = self.get_edge_list()
|
|
831
|
+
from multipers.multiparameter_edge_collapse import _collapse_edge_list
|
|
832
|
+
edges = _collapse_edge_list(edges, num=num, full=full, strong=strong, progress=progress)
|
|
833
|
+
# Retrieves the collapsed simplicial complex
|
|
834
|
+
self._reconstruct_from_edge_list(edges, swap=True, expand_dimension=max_dimension)
|
|
835
|
+
return self
|
|
836
|
+
|
|
837
|
+
def _reconstruct_from_edge_list(self, edges, swap:bool=True, expand_dimension:int=None)->SimplexTreeMulti:
|
|
838
|
+
"""
|
|
839
|
+
Generates a 1-dimensional copy of self, with the edges given as input. Useful for edge collapses
|
|
840
|
+
|
|
841
|
+
Input
|
|
842
|
+
-----
|
|
843
|
+
- edges : Iterable[(int,int),(float,float)] ## This is the format of the rust library filtration-domination
|
|
844
|
+
- swap : bool
|
|
845
|
+
If true, will swap self and the collapsed simplextrees.
|
|
846
|
+
- expand_dim : int
|
|
847
|
+
expands back the simplextree to this dimension
|
|
848
|
+
Ouput
|
|
849
|
+
-----
|
|
850
|
+
The reduced SimplexTreeMulti having only these edges.
|
|
851
|
+
"""
|
|
852
|
+
reduced_tree = SimplexTreeMulti(num_parameters=self.num_parameters)
|
|
853
|
+
|
|
854
|
+
## Adds vertices back, with good filtration
|
|
855
|
+
if self.num_vertices > 0:
|
|
856
|
+
vertices = np.asarray([splx for splx, f in self.get_skeleton(0)], dtype=int).T
|
|
857
|
+
vertices_filtration = np.asarray([f for splx, f in self.get_skeleton(0)], dtype=np.float32)
|
|
858
|
+
reduced_tree.insert_batch(vertices, vertices_filtration)
|
|
859
|
+
|
|
860
|
+
## Adds edges again
|
|
861
|
+
if self.num_simplices - self.num_vertices > 0:
|
|
862
|
+
edges_filtration = np.asarray([f for e,f in edges], dtype=np.float32)
|
|
863
|
+
edges = np.asarray([e for e, _ in edges], dtype=int).T
|
|
864
|
+
reduced_tree.insert_batch(edges, edges_filtration)
|
|
865
|
+
if swap:
|
|
866
|
+
# Swaps the simplextrees pointers
|
|
867
|
+
self.thisptr, reduced_tree.thisptr = reduced_tree.thisptr, self.thisptr # Swaps self and reduced tree (self is a local variable)
|
|
868
|
+
if expand_dimension is not None:
|
|
869
|
+
self.expansion(expand_dimension) # Expands back the simplextree to the original dimension.
|
|
870
|
+
return self if swap else reduced_tree
|
|
871
|
+
|
|
872
|
+
@property
|
|
873
|
+
def num_parameters(self)->int:
|
|
874
|
+
return self.get_ptr().get_number_of_parameters()
|
|
875
|
+
def get_simplices_of_dimension(self, dim:int)->np.ndarray:
|
|
876
|
+
return np.asarray(self.get_ptr().get_simplices_of_dimension(dim), dtype=int)
|
|
877
|
+
def key(self, simplex:list|np.ndarray):
|
|
878
|
+
return self.get_ptr().get_key(simplex)
|
|
879
|
+
def set_keys_to_enumerate(self)->None:
|
|
880
|
+
self.get_ptr().set_keys_to_enumerate()
|
|
881
|
+
return
|
|
882
|
+
def set_key(self,simplex:list|np.ndarray, key:int)->None:
|
|
883
|
+
self.get_ptr().set_key(simplex, key)
|
|
884
|
+
return
|
|
885
|
+
|
|
886
|
+
|
|
887
|
+
def __old__to_scc(self, path="scc_dataset.txt", progress:bool=True, overwrite:bool=False, ignore_last_generators:bool=True, strip_comments:bool=False, reverse_block:bool=True, rivet_compatible=False)->None:
|
|
888
|
+
""" Create a file with the scc2020 standard, representing the n-filtration of the simplextree.
|
|
889
|
+
Link : https://bitbucket.org/mkerber/chain_complex_format/src/master/
|
|
890
|
+
|
|
891
|
+
Parameters
|
|
892
|
+
----------
|
|
893
|
+
path:str
|
|
894
|
+
path of the file.
|
|
895
|
+
ignore_last_generators:bool = True
|
|
896
|
+
If false, will include the filtration values of the last free persistence module.
|
|
897
|
+
progress:bool = True
|
|
898
|
+
Shows the progress bar.
|
|
899
|
+
overwrite:bool = False
|
|
900
|
+
If true, will overwrite the previous file if it already exists.
|
|
901
|
+
ignore_last_generators:bool=True
|
|
902
|
+
If true, does not write the final generators to the file. Rivet ignores them.
|
|
903
|
+
reverse_block:bool=True
|
|
904
|
+
Some obscure programs reverse the inside-block order.
|
|
905
|
+
rivet_compatible:bool=False
|
|
906
|
+
Returns a firep (old scc2020) format instead. Only Rivet uses this.
|
|
907
|
+
|
|
908
|
+
Returns
|
|
909
|
+
-------
|
|
910
|
+
Nothing
|
|
911
|
+
"""
|
|
912
|
+
### initialize keys
|
|
913
|
+
self.set_keys_to_enumerate()
|
|
914
|
+
### File
|
|
915
|
+
from os.path import exists
|
|
916
|
+
from os import remove
|
|
917
|
+
if exists(path):
|
|
918
|
+
if not(overwrite):
|
|
919
|
+
raise Exception(f"The file {path} already exists. Use the `overwrite` flag if you want to overwrite.")
|
|
920
|
+
remove(path)
|
|
921
|
+
file = open(path, "a")
|
|
922
|
+
file.write("scc2020\n") if not rivet_compatible else file.write("firep\n")
|
|
923
|
+
if not strip_comments and not rivet_compatible: file.write("# Number of parameters\n")
|
|
924
|
+
num_parameters = self.get_ptr().get_number_of_parameters()
|
|
925
|
+
if rivet_compatible:
|
|
926
|
+
assert num_parameters == 2
|
|
927
|
+
file.write("Filtration 1\n")
|
|
928
|
+
file.write("Filtration 2\n")
|
|
929
|
+
else:
|
|
930
|
+
file.write(f"{num_parameters}\n")
|
|
931
|
+
if not strip_comments: file.write("# Sizes of generating sets\n")
|
|
932
|
+
## WRITES TSR VARIABLES
|
|
933
|
+
tsr:list= [0]*(self.dimension+1) # dimension --- 0
|
|
934
|
+
for splx,f in self.get_simplices():
|
|
935
|
+
dim = len(splx)-1
|
|
936
|
+
tsr[dim] += (int)(len(f) // num_parameters)
|
|
937
|
+
tsr.reverse()
|
|
938
|
+
file.write(" ".join([str(n) for n in tsr])+"\n")
|
|
939
|
+
|
|
940
|
+
## Adds the boundaries to the dictionnary + tsr
|
|
941
|
+
dict_splx_to_firep_number = {}
|
|
942
|
+
tsr:list = [[] for _ in range(len(tsr))] # tsr stores simplices vertices, according to dimension, and the dictionnary
|
|
943
|
+
for dim in range(self.dimension,-1 , -1): # range(2,-1,-1):
|
|
944
|
+
for splx,F in self.get_skeleton(dim):
|
|
945
|
+
if len(splx) != dim+1: continue
|
|
946
|
+
for b,_ in self.get_boundaries(splx):
|
|
947
|
+
if not self.key(b) in dict_splx_to_firep_number:
|
|
948
|
+
dict_splx_to_firep_number[self.key(b)] = len(tsr[dim-1])
|
|
949
|
+
tsr[dim-1].append(b)
|
|
950
|
+
|
|
951
|
+
## Adds simplices that are not borders to tsr, i.e., simplices not in the dictionnary
|
|
952
|
+
for splx,_ in self.get_simplices():
|
|
953
|
+
if not self.key(splx) in dict_splx_to_firep_number:
|
|
954
|
+
tsr[len(splx)-1].append(splx)
|
|
955
|
+
## Writes simplices of tsr to file
|
|
956
|
+
dim_range = range(self.dimension,0,-1) if ignore_last_generators else range(self.dimension,-1,-1)
|
|
957
|
+
for dim in dim_range: # writes block by block
|
|
958
|
+
if not strip_comments: file.write(f"# Block of dimension {dim}\n")
|
|
959
|
+
if reverse_block: tsr[dim].reverse()
|
|
960
|
+
for splx in tsr[dim]: # for simplices of dimension
|
|
961
|
+
F = np.concatenate(self.filtration(splx), axis=0)
|
|
962
|
+
nbirth = (int)(len(F)//num_parameters)
|
|
963
|
+
for i in range(nbirth):
|
|
964
|
+
simplex_filtration = F[i*num_parameters:(i+1)*num_parameters]
|
|
965
|
+
file.write(" ".join([str(f) for f in simplex_filtration]))
|
|
966
|
+
file.write(" ;")
|
|
967
|
+
for b,_ in self.get_boundaries(splx):
|
|
968
|
+
file.write(f" {dict_splx_to_firep_number[self.key(b)]}")
|
|
969
|
+
file.write("\n")
|
|
970
|
+
file.close()
|
|
971
|
+
return
|
|
972
|
+
|
|
973
|
+
def to_scc_kcritical(self,
|
|
974
|
+
path="scc_dataset.scc",
|
|
975
|
+
bool rivet_compatible=False,
|
|
976
|
+
bool strip_comments=False,
|
|
977
|
+
bool ignore_last_generators=False,
|
|
978
|
+
bool overwrite=False,
|
|
979
|
+
bool reverse_block=True,
|
|
980
|
+
):
|
|
981
|
+
"""
|
|
982
|
+
TODO: function-simplextree, from squeezed
|
|
983
|
+
"""
|
|
984
|
+
from os.path import exists
|
|
985
|
+
from os import remove
|
|
986
|
+
if exists(path):
|
|
987
|
+
if not(overwrite):
|
|
988
|
+
raise Exception(f"The file {path} already exists. Use the `overwrite` flag if you want to overwrite.")
|
|
989
|
+
remove(path)
|
|
990
|
+
stuff = simplextree2scc(self)
|
|
991
|
+
if reverse_block: stuff.reverse()
|
|
992
|
+
with open(path, "w") as f:
|
|
993
|
+
f.write("scc2020\n") if not rivet_compatible else f.write("firep\n")
|
|
994
|
+
if not strip_comments and not rivet_compatible: f.write("# Number of parameters\n")
|
|
995
|
+
num_parameters = self.num_parameters
|
|
996
|
+
if rivet_compatible:
|
|
997
|
+
assert num_parameters == 2
|
|
998
|
+
f.write("Filtration 1\n")
|
|
999
|
+
f.write("Filtration 2\n")
|
|
1000
|
+
else:
|
|
1001
|
+
f.write(f"{num_parameters}\n")
|
|
1002
|
+
|
|
1003
|
+
if not strip_comments: f.write("# Sizes of generating sets\n")
|
|
1004
|
+
for block in stuff: f.write(f"{len(block[1])} ")
|
|
1005
|
+
f.write("\n")
|
|
1006
|
+
|
|
1007
|
+
for i,block in enumerate(stuff):
|
|
1008
|
+
if (rivet_compatible or ignore_last_generators) and i == len(stuff)-1: continue
|
|
1009
|
+
if not strip_comments: f.write(f"# Block of dimension {len(stuff)-i}\n")
|
|
1010
|
+
for boundary, filtration in zip(*block):
|
|
1011
|
+
line = " ".join([str(x) for x in filtration]) + " ; " + " ".join([str(x) for x in boundary]) +"\n"
|
|
1012
|
+
f.write(line)
|
|
1013
|
+
def to_scc_function_st(self,
|
|
1014
|
+
path="scc_dataset.scc",
|
|
1015
|
+
bool rivet_compatible=False,
|
|
1016
|
+
bool strip_comments=False,
|
|
1017
|
+
bool ignore_last_generators=False,
|
|
1018
|
+
bool overwrite=False,
|
|
1019
|
+
bool reverse_block=True,
|
|
1020
|
+
):
|
|
1021
|
+
from warnings import warn
|
|
1022
|
+
warn("This function is not tested yet.")
|
|
1023
|
+
from os.path import exists
|
|
1024
|
+
from os import remove
|
|
1025
|
+
if exists(path):
|
|
1026
|
+
if not(overwrite):
|
|
1027
|
+
raise Exception(f"The file {path} already exists. Use the `overwrite` flag if you want to overwrite.")
|
|
1028
|
+
remove(path)
|
|
1029
|
+
stuff = simplextree2scc(self)
|
|
1030
|
+
if reverse_block: stuff.reverse()
|
|
1031
|
+
with open(path, "w") as f:
|
|
1032
|
+
f.write("scc2020\n") if not rivet_compatible else f.write("firep\n")
|
|
1033
|
+
if not strip_comments and not rivet_compatible: f.write("# Number of parameters\n")
|
|
1034
|
+
num_parameters = self.num_parameters
|
|
1035
|
+
if rivet_compatible:
|
|
1036
|
+
assert num_parameters == 2
|
|
1037
|
+
f.write("Filtration 1\n")
|
|
1038
|
+
f.write("Filtration 2\n")
|
|
1039
|
+
else:
|
|
1040
|
+
f.write(f"{num_parameters}\n")
|
|
1041
|
+
|
|
1042
|
+
if not strip_comments: f.write("# Sizes of generating sets\n")
|
|
1043
|
+
for block in stuff: f.write(f"{len(block[1])} ")
|
|
1044
|
+
f.write("\n")
|
|
1045
|
+
|
|
1046
|
+
for i,block in enumerate(stuff):
|
|
1047
|
+
if (rivet_compatible or ignore_last_generators) and i == len(stuff)-1: continue
|
|
1048
|
+
if not strip_comments: f.write(f"# Block of dimension {len(stuff)-i}\n")
|
|
1049
|
+
for boundary, filtration in zip(*block):
|
|
1050
|
+
line = " ".join([str(i)+" " + str(x) for i,x in enumerate(filtration)]) + " ; " + " ".join([str(x) for x in boundary]) +"\n"
|
|
1051
|
+
f.write(line)
|
|
1052
|
+
def to_scc(self,**kwargs):
|
|
1053
|
+
if self._is_function_simplextree:
|
|
1054
|
+
return self.to_scc_function_st(**kwargs)
|
|
1055
|
+
else:
|
|
1056
|
+
return self.to_scc_kcritical(**kwargs)
|
|
1057
|
+
|
|
1058
|
+
def to_rivet(self, path="rivet_dataset.txt", degree:int|None = None, progress:bool=False, overwrite:bool=False, xbins:int|None=None, ybins:int|None=None)->None:
|
|
1059
|
+
""" Create a file that can be imported by rivet, representing the filtration of the simplextree.
|
|
1060
|
+
|
|
1061
|
+
Parameters
|
|
1062
|
+
----------
|
|
1063
|
+
path:str
|
|
1064
|
+
path of the file.
|
|
1065
|
+
degree:int
|
|
1066
|
+
The homological degree to ask rivet to compute.
|
|
1067
|
+
progress:bool = True
|
|
1068
|
+
Shows the progress bar.
|
|
1069
|
+
overwrite:bool = False
|
|
1070
|
+
If true, will overwrite the previous file if it already exists.
|
|
1071
|
+
Returns
|
|
1072
|
+
-------
|
|
1073
|
+
Nothing
|
|
1074
|
+
"""
|
|
1075
|
+
...
|
|
1076
|
+
from os.path import exists
|
|
1077
|
+
from os import remove
|
|
1078
|
+
if exists(path):
|
|
1079
|
+
if not(overwrite):
|
|
1080
|
+
print(f"The file {path} already exists. Use the `overwrite` flag if you want to overwrite.")
|
|
1081
|
+
return
|
|
1082
|
+
remove(path)
|
|
1083
|
+
file = open(path, "a")
|
|
1084
|
+
file.write("# This file was generated by multipers.\n")
|
|
1085
|
+
file.write("--datatype bifiltration\n")
|
|
1086
|
+
file.write(f"--homology {degree}\n") if degree is not None else None
|
|
1087
|
+
file.write(f"-x {xbins}\n") if xbins is not None else None
|
|
1088
|
+
file.write(f"-y {ybins}\n") if ybins is not None else None
|
|
1089
|
+
file.write("--xlabel time of appearance\n")
|
|
1090
|
+
file.write("--ylabel density\n\n")
|
|
1091
|
+
from tqdm import tqdm
|
|
1092
|
+
with tqdm(total=self.num_simplices, position=0, disable = not(progress), desc="Writing simplex to file") as bar:
|
|
1093
|
+
for dim in range(0,self.dimension+1): # Not sure if dimension sort is necessary for rivet. Check ?
|
|
1094
|
+
file.write(f"# block of dimension {dim}\n")
|
|
1095
|
+
for s,F in self.get_skeleton(dim):
|
|
1096
|
+
if len(s) != dim+1: continue
|
|
1097
|
+
for i in s:
|
|
1098
|
+
file.write(str(i) + " ")
|
|
1099
|
+
file.write("; ")
|
|
1100
|
+
for f in F:
|
|
1101
|
+
file.write(str(f) + " ")
|
|
1102
|
+
file.write("\n")
|
|
1103
|
+
bar.update(1)
|
|
1104
|
+
file.close()
|
|
1105
|
+
return
|
|
1106
|
+
|
|
1107
|
+
|
|
1108
|
+
|
|
1109
|
+
def _get_filtration_values(self, vector[int] degrees, bool inf_to_nan:bool=False)->Iterable[np.ndarray]:
|
|
1110
|
+
# cdef vector[int] c_degrees = degrees
|
|
1111
|
+
cdef intptr_t ptr = self.thisptr
|
|
1112
|
+
cdef vector[vector[vector[value_type]]] out
|
|
1113
|
+
with nogil:
|
|
1114
|
+
out = get_filtration_values_from_ptr(ptr, degrees)
|
|
1115
|
+
filtrations_values = [np.asarray(filtration) for filtration in out]
|
|
1116
|
+
# Removes infs
|
|
1117
|
+
if inf_to_nan:
|
|
1118
|
+
for i,f in enumerate(filtrations_values):
|
|
1119
|
+
filtrations_values[i][f == np.inf] = np.nan
|
|
1120
|
+
filtrations_values[i][f == - np.inf] = np.nan
|
|
1121
|
+
return filtrations_values
|
|
1122
|
+
|
|
1123
|
+
@staticmethod
|
|
1124
|
+
def _reduce_grid(filtrations_values,resolutions=None, strategy:_available_strategies="exact", bool unique=True, some_float _q_factor=1., drop_quantiles=[0,0]):
|
|
1125
|
+
num_parameters = len(filtrations_values)
|
|
1126
|
+
if resolutions is None and strategy not in ["exact", "precomputed"]:
|
|
1127
|
+
raise ValueError("Resolutions must be provided for this strategy.")
|
|
1128
|
+
elif resolutions is not None:
|
|
1129
|
+
try:
|
|
1130
|
+
int(resolutions)
|
|
1131
|
+
resolutions = [resolutions]*num_parameters
|
|
1132
|
+
except:
|
|
1133
|
+
pass
|
|
1134
|
+
try:
|
|
1135
|
+
a,b=drop_quantiles
|
|
1136
|
+
except:
|
|
1137
|
+
a,b=drop_quantiles,drop_quantiles
|
|
1138
|
+
|
|
1139
|
+
if a != 0 or b != 0:
|
|
1140
|
+
boxes = np.asarray([np.quantile(filtration, [a, b], axis=1, method='closest_observation') for filtration in filtrations_values])
|
|
1141
|
+
min_filtration, max_filtration = np.min(boxes, axis=(0,1)), np.max(boxes, axis=(0,1)) # box, birth/death, filtration
|
|
1142
|
+
filtrations_values = [
|
|
1143
|
+
filtration[(m<filtration) * (filtration <M)]
|
|
1144
|
+
for filtration, m,M in zip(filtrations_values, min_filtration, max_filtration)
|
|
1145
|
+
]
|
|
1146
|
+
|
|
1147
|
+
## match doesn't work with cython BUG
|
|
1148
|
+
if strategy == "exact":
|
|
1149
|
+
to_unique = lambda f : np.unique(f) if isinstance(f,np.ndarray) else f.unique()
|
|
1150
|
+
F=[to_unique(f) for f in filtrations_values]
|
|
1151
|
+
elif strategy == "quantile":
|
|
1152
|
+
F = [f.unique() for f in filtrations_values]
|
|
1153
|
+
max_resolution = [min(len(f),r) for f,r in zip(F,resolutions)]
|
|
1154
|
+
F = [np.quantile(f, q=np.linspace(0,1,num=int(r*_q_factor)), axis=0, method='closest_observation') for f,r in zip(F, resolutions)]
|
|
1155
|
+
if unique:
|
|
1156
|
+
F = [np.unique(f) for f in F]
|
|
1157
|
+
if np.all(np.asarray(max_resolution) > np.asarray([len(f) for f in F])):
|
|
1158
|
+
return SimplexTreeMulti._reduce_grid(filtrations_values=filtrations_values, resolutions=resolutions, strategy="quantile",_q_factor=1.5*_q_factor)
|
|
1159
|
+
elif strategy == "regular":
|
|
1160
|
+
F = [np.linspace(f.min(),f.max(),num=r) for f,r in zip(filtrations_values, resolutions)]
|
|
1161
|
+
elif strategy == "regular_closest":
|
|
1162
|
+
F = [_todo_regular_closest(f,r, unique) for f,r in zip(filtrations_values, resolutions)]
|
|
1163
|
+
elif strategy == "torch_regular_closest":
|
|
1164
|
+
F = [_torch_regular_closest(f,r, unique) for f,r in zip(filtrations_values, resolutions)]
|
|
1165
|
+
elif strategy == "partition":
|
|
1166
|
+
F = [_todo_partition(f,r, unique) for f,r in zip(filtrations_values, resolutions)]
|
|
1167
|
+
elif strategy == "precomputed":
|
|
1168
|
+
F=filtrations_values
|
|
1169
|
+
else:
|
|
1170
|
+
raise Exception("Invalid strategy. Pick either regular, regular_closest, partition, quantile, precomputed or exact.")
|
|
1171
|
+
|
|
1172
|
+
return F
|
|
1173
|
+
|
|
1174
|
+
def get_filtration_grid(self, resolution:Iterable[int]|None=None, degrees:Iterable[int]|None=None, drop_quantiles:float|tuple=0, grid_strategy:_available_strategies="exact")->Iterable[np.ndarray]:
|
|
1175
|
+
"""
|
|
1176
|
+
Returns a grid over the n-filtration, from the simplextree. Usefull for grid_squeeze. TODO : multicritical
|
|
1177
|
+
|
|
1178
|
+
Parameters
|
|
1179
|
+
----------
|
|
1180
|
+
resolution: list[int]
|
|
1181
|
+
resolution of the grid, for each parameter
|
|
1182
|
+
box=None : pair[list[float]]
|
|
1183
|
+
Grid bounds. format : [low bound, high bound]
|
|
1184
|
+
If None is given, will use the filtration bounds of the simplextree.
|
|
1185
|
+
grid_strategy="regular" : string
|
|
1186
|
+
Either "regular", "quantile", or "exact".
|
|
1187
|
+
Returns
|
|
1188
|
+
-------
|
|
1189
|
+
List of filtration values, for each parameter, defining the grid.
|
|
1190
|
+
"""
|
|
1191
|
+
if degrees is None:
|
|
1192
|
+
degrees = range(self.dimension+1)
|
|
1193
|
+
|
|
1194
|
+
|
|
1195
|
+
## preprocesses the filtration values:
|
|
1196
|
+
filtrations_values = np.concatenate(self._get_filtration_values(degrees, inf_to_nan=True), axis=1)
|
|
1197
|
+
# removes duplicate + sort (nan at the end)
|
|
1198
|
+
filtrations_values = [np.unique(filtration) for filtration in filtrations_values]
|
|
1199
|
+
# removes nan
|
|
1200
|
+
filtrations_values = [filtration[:-1] if np.isnan(filtration[-1]) else filtration for filtration in filtrations_values]
|
|
1201
|
+
|
|
1202
|
+
return self._reduce_grid(filtrations_values=filtrations_values, resolutions=resolution,strategy=grid_strategy,drop_quantiles=drop_quantiles)
|
|
1203
|
+
|
|
1204
|
+
|
|
1205
|
+
|
|
1206
|
+
def grid_squeeze(self, filtration_grid:np.ndarray|list|None=None, bool coordinate_values=True, force=False, grid_strategy:_available_strategies = "exact", **filtration_grid_kwargs)->SimplexTreeMulti:
|
|
1207
|
+
"""
|
|
1208
|
+
Fit the filtration of the simplextree to a grid.
|
|
1209
|
+
|
|
1210
|
+
:param filtration_grid: The grid on which to squeeze. An example of grid can be given by the `get_filtration_grid` method.
|
|
1211
|
+
:type filtration_grid: list[list[float]]
|
|
1212
|
+
:param coordinate_values: If true, the filtrations values of the simplices will be set to the coordinate of the filtration grid.
|
|
1213
|
+
:type coordinate_values: bool
|
|
1214
|
+
"""
|
|
1215
|
+
if not force and self._is_squeezed:
|
|
1216
|
+
raise Exception("SimplexTree already squeezed, use `force=True` if that's really what you want to do.")
|
|
1217
|
+
#TODO : multi-critical
|
|
1218
|
+
if filtration_grid is None:
|
|
1219
|
+
filtration_grid = self.get_filtration_grid(grid_strategy=grid_strategy, **filtration_grid_kwargs)
|
|
1220
|
+
cdef vector[vector[value_type]] c_filtration_grid = filtration_grid
|
|
1221
|
+
cdef intptr_t ptr = self.thisptr
|
|
1222
|
+
if coordinate_values:
|
|
1223
|
+
self.filtration_grid = filtration_grid
|
|
1224
|
+
with nogil:
|
|
1225
|
+
squeeze_filtration_from_ptr(ptr, c_filtration_grid, coordinate_values)
|
|
1226
|
+
return self
|
|
1227
|
+
|
|
1228
|
+
@property
|
|
1229
|
+
def _is_squeezed(self)->bool:
|
|
1230
|
+
return self.num_vertices > 0 and len(self.filtration_grid[0]) > 0
|
|
1231
|
+
|
|
1232
|
+
def filtration_bounds(self, degrees:Iterable[int]|None=None, q:float|tuple=0, split_dimension:bool=False)->np.ndarray:
|
|
1233
|
+
"""
|
|
1234
|
+
Returns the filtrations bounds of the finite filtration values.
|
|
1235
|
+
"""
|
|
1236
|
+
try:
|
|
1237
|
+
a,b =q
|
|
1238
|
+
except:
|
|
1239
|
+
a,b,=q,q
|
|
1240
|
+
degrees = range(self.dimension+1) if degrees is None else degrees
|
|
1241
|
+
filtrations_values = self._get_filtration_values(degrees, inf_to_nan=True) ## degree, parameter, pt
|
|
1242
|
+
boxes = np.array([np.nanquantile(filtration, [a, 1-b], axis=1) for filtration in filtrations_values],dtype=float)
|
|
1243
|
+
if split_dimension: return boxes
|
|
1244
|
+
return np.asarray([np.nanmin(boxes, axis=(0,1)), np.nanmax(boxes, axis=(0,1))]) # box, birth/death, filtration
|
|
1245
|
+
|
|
1246
|
+
|
|
1247
|
+
|
|
1248
|
+
|
|
1249
|
+
def fill_lowerstar(self, vector[value_type] F, int parameter)->SimplexTreeMulti:
|
|
1250
|
+
""" Fills the `dimension`th filtration by the lower-star filtration defined by F.
|
|
1251
|
+
|
|
1252
|
+
Parameters
|
|
1253
|
+
----------
|
|
1254
|
+
F:1d array
|
|
1255
|
+
The density over the vertices, that induces a lowerstar filtration.
|
|
1256
|
+
parameter:int
|
|
1257
|
+
Which filtration parameter to fill. /!\ python starts at 0.
|
|
1258
|
+
|
|
1259
|
+
Returns
|
|
1260
|
+
-------
|
|
1261
|
+
self:SimplexTreeMulti
|
|
1262
|
+
"""
|
|
1263
|
+
# for s, sf in self.get_simplices():
|
|
1264
|
+
# self.assign_filtration(s, [f if i != dimension else np.max(np.array(F)[s]) for i,f in enumerate(sf)])
|
|
1265
|
+
# cdef int c_parameter = parameter
|
|
1266
|
+
# cdef vector[value_type] c_F = np.asarray(F, dtype=np.float32)
|
|
1267
|
+
with nogil:
|
|
1268
|
+
self.get_ptr().fill_lowerstar(F, parameter)
|
|
1269
|
+
return self
|
|
1270
|
+
|
|
1271
|
+
|
|
1272
|
+
def project_on_line(self, parameter:int=0, basepoint:None|list|np.ndarray= None)->SimplexTree:
|
|
1273
|
+
"""Converts an multi simplextree to a gudhi simplextree.
|
|
1274
|
+
Parameters
|
|
1275
|
+
----------
|
|
1276
|
+
parameter:int = 0
|
|
1277
|
+
The parameter to keep. WARNING will crash if the multi simplextree is not well filled.
|
|
1278
|
+
basepoint:None
|
|
1279
|
+
Instead of keeping a single parameter, will consider the filtration defined by the diagonal line crossing the basepoint.
|
|
1280
|
+
WARNING
|
|
1281
|
+
-------
|
|
1282
|
+
There are no safeguard yet, it WILL crash if asking for a parameter that is not filled.
|
|
1283
|
+
Returns
|
|
1284
|
+
-------
|
|
1285
|
+
A SimplexTree with chosen 1D filtration.
|
|
1286
|
+
"""
|
|
1287
|
+
# FIXME : deal with multicritical filtrations
|
|
1288
|
+
import gudhi as gd
|
|
1289
|
+
new_simplextree = gd.SimplexTree()
|
|
1290
|
+
assert parameter < self.get_ptr().get_number_of_parameters()
|
|
1291
|
+
cdef int c_parameter = parameter
|
|
1292
|
+
cdef intptr_t old_ptr = self.thisptr
|
|
1293
|
+
cdef intptr_t new_ptr = new_simplextree.thisptr
|
|
1294
|
+
cdef vector[value_type] c_basepoint = [] if basepoint is None else basepoint
|
|
1295
|
+
if basepoint is None:
|
|
1296
|
+
with nogil:
|
|
1297
|
+
flatten_from_ptr(old_ptr, new_ptr, c_parameter)
|
|
1298
|
+
else:
|
|
1299
|
+
with nogil:
|
|
1300
|
+
flatten_diag_from_ptr(old_ptr, new_ptr, c_basepoint, c_parameter)
|
|
1301
|
+
return new_simplextree
|
|
1302
|
+
|
|
1303
|
+
def linear_projections(self, linear_forms:np.ndarray)->Iterable[SimplexTree]:
|
|
1304
|
+
"""
|
|
1305
|
+
Compute the 1-parameter projections, w.r.t. given the linear forms, of this simplextree.
|
|
1306
|
+
|
|
1307
|
+
Input
|
|
1308
|
+
-----
|
|
1309
|
+
- Array of shape (num_linear_forms, num_parameters)
|
|
1310
|
+
|
|
1311
|
+
Output
|
|
1312
|
+
------
|
|
1313
|
+
- List of projected (gudhi) simplextrees.
|
|
1314
|
+
"""
|
|
1315
|
+
cdef Py_ssize_t num_projections = linear_forms.shape[0]
|
|
1316
|
+
cdef Py_ssize_t num_parameters = linear_forms.shape[1]
|
|
1317
|
+
if num_projections == 0: return []
|
|
1318
|
+
cdef vector[vector[value_type]] c_linear_forms = linear_forms
|
|
1319
|
+
assert num_parameters==self.num_parameters, f"The linear forms has to have the same number of parameter as the simplextree ({self.num_parameters})."
|
|
1320
|
+
|
|
1321
|
+
# Gudhi copies are faster than inserting simplices one by one
|
|
1322
|
+
import gudhi as gd
|
|
1323
|
+
flattened_simplextree = gd.SimplexTree()
|
|
1324
|
+
cdef intptr_t multi_prt = self.thisptr
|
|
1325
|
+
cdef intptr_t flattened_ptr = flattened_simplextree.thisptr
|
|
1326
|
+
with nogil:
|
|
1327
|
+
flatten_from_ptr(multi_prt, flattened_ptr, num_parameters)
|
|
1328
|
+
out = [flattened_simplextree] + [gd.SimplexTree(flattened_simplextree) for _ in range(num_projections-1)]
|
|
1329
|
+
|
|
1330
|
+
# Fills the 1-parameter simplextrees.
|
|
1331
|
+
cdef vector[intptr_t] out_ptrs = [st.thisptr for st in out]
|
|
1332
|
+
with nogil:
|
|
1333
|
+
for i in range(num_projections):
|
|
1334
|
+
linear_projection_from_ptr(out_ptrs[i], multi_prt, c_linear_forms[i])
|
|
1335
|
+
return out
|
|
1336
|
+
|
|
1337
|
+
|
|
1338
|
+
def set_num_parameter(self, num:int):
|
|
1339
|
+
"""
|
|
1340
|
+
Sets the numbers of parameters.
|
|
1341
|
+
WARNING : it will resize all the filtrations to this size.
|
|
1342
|
+
"""
|
|
1343
|
+
self.get_ptr().resize_all_filtrations(num)
|
|
1344
|
+
self.get_ptr().set_number_of_parameters(num)
|
|
1345
|
+
return
|
|
1346
|
+
|
|
1347
|
+
def __eq__(self, other:SimplexTreeMulti):
|
|
1348
|
+
"""Test for structural equality
|
|
1349
|
+
:returns: True if the 2 simplex trees are equal, False otherwise.
|
|
1350
|
+
:rtype: bool
|
|
1351
|
+
"""
|
|
1352
|
+
return dereference(self.get_ptr()) == dereference(other.get_ptr())
|
|
1353
|
+
|
|
1354
|
+
cdef intptr_t _get_copy_intptr(SimplexTreeMulti stree) nogil:
|
|
1355
|
+
return <intptr_t>(new Simplex_tree_multi_interface(dereference(stree.get_ptr())))
|
|
1356
|
+
|
|
1357
|
+
|
|
1358
|
+
def _todo_regular_closest(cnp.ndarray[some_float,ndim=1] f, int r, bool unique):
|
|
1359
|
+
f_regular = np.linspace(f.min(),f.max(),num=r)
|
|
1360
|
+
f_regular_closest = np.asarray([f[np.argmin(np.abs(f-x))] for x in f_regular])
|
|
1361
|
+
if unique: f_regular_closest = np.unique(f_regular_closest)
|
|
1362
|
+
return f_regular_closest
|
|
1363
|
+
|
|
1364
|
+
def _torch_regular_closest(f, int r, bool unique=True):
|
|
1365
|
+
import torch
|
|
1366
|
+
f_regular = torch.linspace(f.min(),f.max(), r)
|
|
1367
|
+
f_regular_closest =torch.tensor([f[(f-x).abs().argmin()] for x in f_regular])
|
|
1368
|
+
if unique: f_regular_closest = f_regular_closest.unique()
|
|
1369
|
+
return f_regular_closest
|
|
1370
|
+
|
|
1371
|
+
def _todo_partition(cnp.ndarray[some_float,ndim=1] data,int resolution, bool unique):
|
|
1372
|
+
if data.shape[0] < resolution: resolution=data.shape[0]
|
|
1373
|
+
k = data.shape[0] // resolution
|
|
1374
|
+
partitions = np.partition(data, k)
|
|
1375
|
+
f = partitions[[i*k for i in range(resolution)]]
|
|
1376
|
+
if unique: f= np.unique(f)
|
|
1377
|
+
return f
|
|
1378
|
+
|
|
1379
|
+
|
|
1380
|
+
|
|
1381
|
+
def _simplextree_multify(simplextree:SimplexTree, int num_parameters, default_values=[])->SimplexTreeMulti:
|
|
1382
|
+
"""Converts a gudhi simplextree to a multi simplextree.
|
|
1383
|
+
Parameters
|
|
1384
|
+
----------
|
|
1385
|
+
parameters:int = 2
|
|
1386
|
+
The number of filtrations
|
|
1387
|
+
Returns
|
|
1388
|
+
-------
|
|
1389
|
+
A multi simplextree, with first filtration value being the one from the original simplextree.
|
|
1390
|
+
"""
|
|
1391
|
+
if isinstance(simplextree, SimplexTreeMulti):
|
|
1392
|
+
return simplextree
|
|
1393
|
+
st = SimplexTreeMulti(num_parameters=num_parameters)
|
|
1394
|
+
cdef intptr_t old_ptr = simplextree.thisptr
|
|
1395
|
+
cdef intptr_t new_ptr = st.thisptr
|
|
1396
|
+
cdef vector[value_type] c_default_values=default_values
|
|
1397
|
+
with nogil:
|
|
1398
|
+
multify_from_ptr(old_ptr, new_ptr, num_parameters, c_default_values)
|
|
1399
|
+
return st
|
|
1400
|
+
|
|
1401
|
+
def _safe_simplextree_multify(simplextree:SimplexTree,int num_parameters=2, cnp.ndarray default_values=np.array(-np.inf))->SimplexTreeMulti:
|
|
1402
|
+
if isinstance(simplextree, SimplexTreeMulti):
|
|
1403
|
+
return simplextree
|
|
1404
|
+
simplices = [[] for _ in range(simplextree.dimension()+1)]
|
|
1405
|
+
filtration_values = [[] for _ in range(simplextree.dimension()+1)]
|
|
1406
|
+
st_multi = SimplexTreeMulti(num_parameters=1)
|
|
1407
|
+
if num_parameters > 1:
|
|
1408
|
+
st_multi.set_num_parameter(num_parameters)
|
|
1409
|
+
if default_values.squeeze().ndim == 0:
|
|
1410
|
+
default_values = np.zeros(num_parameters-1) + default_values
|
|
1411
|
+
|
|
1412
|
+
for s,f in simplextree.get_simplices():
|
|
1413
|
+
filtration_values[len(s)-1].append(np.concatenate([[f],default_values]))
|
|
1414
|
+
simplices[len(s)-1].append(s)
|
|
1415
|
+
for batch_simplices, batch_filtrations in zip(simplices,filtration_values):
|
|
1416
|
+
st_multi.insert_batch(np.asarray(batch_simplices).T, np.asarray(batch_filtrations))
|
|
1417
|
+
return st_multi
|