multipers 1.0__cp311-cp311-manylinux_2_34_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (56) hide show
  1. multipers/__init__.py +4 -0
  2. multipers/_old_rank_invariant.pyx +328 -0
  3. multipers/_signed_measure_meta.py +72 -0
  4. multipers/data/MOL2.py +350 -0
  5. multipers/data/UCR.py +18 -0
  6. multipers/data/__init__.py +1 -0
  7. multipers/data/graphs.py +272 -0
  8. multipers/data/immuno_regions.py +27 -0
  9. multipers/data/minimal_presentation_to_st_bf.py +0 -0
  10. multipers/data/pytorch2simplextree.py +91 -0
  11. multipers/data/shape3d.py +101 -0
  12. multipers/data/synthetic.py +68 -0
  13. multipers/distances.py +100 -0
  14. multipers/euler_characteristic.cpython-311-x86_64-linux-gnu.so +0 -0
  15. multipers/euler_characteristic.pyx +132 -0
  16. multipers/function_rips.cpython-311-x86_64-linux-gnu.so +0 -0
  17. multipers/function_rips.pyx +101 -0
  18. multipers/hilbert_function.cpython-311-x86_64-linux-gnu.so +0 -0
  19. multipers/hilbert_function.pyi +46 -0
  20. multipers/hilbert_function.pyx +145 -0
  21. multipers/ml/__init__.py +0 -0
  22. multipers/ml/accuracies.py +61 -0
  23. multipers/ml/convolutions.py +384 -0
  24. multipers/ml/invariants_with_persistable.py +79 -0
  25. multipers/ml/kernels.py +128 -0
  26. multipers/ml/mma.py +422 -0
  27. multipers/ml/one.py +472 -0
  28. multipers/ml/point_clouds.py +191 -0
  29. multipers/ml/signed_betti.py +50 -0
  30. multipers/ml/signed_measures.py +1046 -0
  31. multipers/ml/sliced_wasserstein.py +313 -0
  32. multipers/ml/tools.py +99 -0
  33. multipers/multiparameter_edge_collapse.py +29 -0
  34. multipers/multiparameter_module_approximation.cpython-311-x86_64-linux-gnu.so +0 -0
  35. multipers/multiparameter_module_approximation.pxd +147 -0
  36. multipers/multiparameter_module_approximation.pyi +439 -0
  37. multipers/multiparameter_module_approximation.pyx +931 -0
  38. multipers/pickle.py +53 -0
  39. multipers/plots.py +207 -0
  40. multipers/point_measure_integration.cpython-311-x86_64-linux-gnu.so +0 -0
  41. multipers/point_measure_integration.pyx +59 -0
  42. multipers/rank_invariant.cpython-311-x86_64-linux-gnu.so +0 -0
  43. multipers/rank_invariant.pyx +154 -0
  44. multipers/simplex_tree_multi.cpython-311-x86_64-linux-gnu.so +0 -0
  45. multipers/simplex_tree_multi.pxd +121 -0
  46. multipers/simplex_tree_multi.pyi +715 -0
  47. multipers/simplex_tree_multi.pyx +1284 -0
  48. multipers/tensor.pxd +13 -0
  49. multipers/test.pyx +44 -0
  50. multipers-1.0.dist-info/LICENSE +21 -0
  51. multipers-1.0.dist-info/METADATA +9 -0
  52. multipers-1.0.dist-info/RECORD +56 -0
  53. multipers-1.0.dist-info/WHEEL +5 -0
  54. multipers-1.0.dist-info/top_level.txt +1 -0
  55. multipers.libs/libtbb-5d1cde94.so.12.10 +0 -0
  56. multipers.libs/libtbbmalloc-5e0a3d4c.so.2.10 +0 -0
@@ -0,0 +1,91 @@
1
+ from tqdm import tqdm
2
+ import numpy as np
3
+ from torch_geometric.data.data import Data
4
+ import networkx as nx
5
+ from sklearn.base import BaseEstimator, TransformerMixin
6
+ from typing import Iterable
7
+
8
+
9
+ def modelnet2pts2gs(train_dataset, test_dataset , nbr_size = 8, exp_flag = True, labels_only = False,n=100, n_jobs=1, random=False):
10
+ from sklearn.neighbors import kneighbors_graph
11
+ """
12
+ sample points and create neighborhoold graph
13
+ """
14
+ dataset = train_dataset + test_dataset
15
+ indices = np.random.choice(range(len(dataset)),replace=False, size=n) if random else range(n)
16
+
17
+ dataset:list[Data] = [dataset[i] for i in indices]
18
+ _,labels = torch_geometric_2nx(dataset, labels_only=True)
19
+ if labels_only: return labels
20
+
21
+ def data2graph(data:Data):
22
+ pos = data.pos.numpy()
23
+ adj = kneighbors_graph(pos, nbr_size, mode='distance', n_jobs=n_jobs)
24
+ g = nx.from_scipy_sparse_array(adj, edge_attribute= 'weight')
25
+ if exp_flag:
26
+ for u, v in g.edges(): # TODO optimize
27
+ g[u][v]['weight'] = np.exp(-g[u][v]['weight'])
28
+ return g
29
+ #TODO : nx.set_edge_attributes()
30
+
31
+ return [data2graph(data) for data in dataset], labels
32
+ def torch_geometric_2nx(dataset, labels_only = False, print_flag = False, weight_flag = False):
33
+ """
34
+ :param dataset:
35
+ :param labels_only: return labels only
36
+ :param print_flag:
37
+ :param weight_flag: whether computing distance as weights or not
38
+ :return:
39
+ """
40
+ if labels_only:
41
+ return None, [int(data.y) for data in dataset]
42
+ def data2graph(data:Data):
43
+ edges = np.unique(data.edge_index.numpy().T, axis=0)
44
+ g = nx.from_edgelist(edges)
45
+ edge_filtration = {(u,v):np.linalg.norm(data.pos[u] - data.pos[v]) for u,v in g.edges}
46
+ nx.set_node_attributes(g,{node:0 for node in g.nodes}, "geodesic")
47
+ nx.set_edge_attributes(g, edge_filtration, "geodesic")
48
+ return g
49
+ return [data2graph(data) for data in tqdm(dataset, desc="Turning Data to graphs")], [int(data.y) for data in dataset]
50
+
51
+
52
+ def modelnet2graphs(version = '10', print_flag = False, labels_only = False, a = 0, b = 10, weight_flag = False):
53
+ """ load modelnet 10 or 40 and convert to graphs"""
54
+ from torch_geometric.transforms import FaceToEdge
55
+ from .shape3d import load_modelnet
56
+ train_dataset, test_dataset = load_modelnet(version, point_flag = False)
57
+ dataset = train_dataset + test_dataset
58
+ if b>0: dataset = [dataset[i] for i in range(a,b)]
59
+ if labels_only:
60
+ return torch_geometric_2nx(dataset, labels_only=True)
61
+ dataset = [FaceToEdge(remove_faces=False)(data) for data in dataset]
62
+ graphs, labels = torch_geometric_2nx(dataset, print_flag=print_flag, weight_flag= weight_flag)
63
+ return graphs, labels
64
+
65
+
66
+
67
+
68
+ class Torch2SimplexTree(BaseEstimator,TransformerMixin):
69
+ """
70
+ WARNING : build in progress
71
+ PyTorch Data-like to simplextree.
72
+
73
+ Input
74
+ -----
75
+ Class having `pos`, `edges`, `faces` methods
76
+
77
+ Filtrations
78
+ -----------
79
+ - Geodesic (geodesic rips)
80
+ - eccentricity
81
+ """
82
+ import multipers as mp
83
+
84
+ def __init__(self, filtrations:Iterable[str]=[]):
85
+ super().__init__()
86
+
87
+ def fit(self, X, y=None):
88
+ return self
89
+
90
+ def transform(self,X:list[nx.Graph]):
91
+ return
@@ -0,0 +1,101 @@
1
+ import numpy as np
2
+ from os.path import expanduser
3
+ from torch_geometric.datasets import ModelNet
4
+
5
+ DATASET_PATH = expanduser("~/Datasets/")
6
+ import os
7
+
8
+
9
+ ####################### MODELNET
10
+ def load_modelnet(version='10', sample_points = False, reset:bool=False, remove_faces=False):
11
+ from torch_geometric.transforms import FaceToEdge, SamplePoints
12
+ """
13
+ :param point_flag: Sample points if point_flag true. Otherwise load mesh
14
+ :return: train_dataset, test_dataset
15
+ """
16
+ assert version in ['10', '40']
17
+ if sample_points:
18
+ pre_transform, transform = FaceToEdge(remove_faces=remove_faces), SamplePoints(num=sample_points)
19
+ else:
20
+ pre_transform, transform = FaceToEdge(remove_faces=remove_faces), None
21
+ path = f"{DATASET_PATH}/ModelNet{version}"
22
+ if reset:
23
+ # print(f"rm -rf {path}")
24
+ os.system(f"rm -rf {path+'/processed/'}")
25
+ train_dataset = ModelNet(path, name=version, train=True, transform=transform, pre_transform=pre_transform)
26
+ test_dataset = ModelNet(path, name=version, train=False, transform=transform, pre_transform=pre_transform)
27
+ return train_dataset, test_dataset
28
+
29
+
30
+ def get_ModelNet(dataset, num_graph, seed):
31
+ train,test = load_modelnet(version=dataset[8:])
32
+ test_size = len(test) / len(train)
33
+ if num_graph >0:
34
+ np.random.seed(seed)
35
+ indices = np.random.choice(len(train), num_graph, replace=False)
36
+ train = train[indices]
37
+ indices = np.random.choice(len(test), int(num_graph*test_size), replace=False)
38
+ test = test[indices]
39
+ np.random.seed() # resets seed
40
+ return train, test
41
+
42
+
43
+ def get(dataset:str, num_graph=0, seed=0, node_per_graph=0):
44
+ if dataset.startswith("ModelNet"):
45
+ return get_ModelNet(dataset=dataset, num_graph=num_graph, seed=seed)
46
+ datasets = get_(dataset=dataset, num_sample=num_graph)
47
+ graphs = []
48
+ labels = []
49
+ np.random.seed(seed)
50
+ for data, ls in datasets:
51
+ nodes = np.random.choice(range(len(data.pos)), replace=False, size=node_per_graph)
52
+ for i,node in enumerate(nodes):
53
+ data_ = data # if i == 0 else None # prevents doing copies
54
+ graphs.append([data_, node])
55
+ labels.append(ls[node])
56
+ return graphs, labels
57
+
58
+
59
+ def get_(dataset:str, dataset_num:int|None=None, num_sample:int=0, DATASET_PATH = expanduser("~/Datasets/")):
60
+ from torch_geometric.io import read_off
61
+ if dataset.startswith("3dshapes/"):
62
+ dataset_ = dataset[len("3dshapes/"):]
63
+ else:
64
+ dataset_ = dataset
65
+ if dataset_num is None and "/" in dataset_:
66
+ position = dataset_.rfind("/")
67
+ dataset_num = int(dataset_[position+1:-4]) # cuts the "<dataset>/" and the ".off"
68
+ dataset_ = dataset_[:position]
69
+
70
+ if dataset_num is None: # gets a random (available) number for this dataset
71
+ from os import listdir
72
+ from random import choice
73
+ files = listdir(DATASET_PATH+f"3dshapes/{dataset_}")
74
+ if num_sample <= 0:
75
+ files = [file for file in files if "label" not in file]
76
+ else:
77
+ files = np.random.choice([file for file in files if "label" not in file], replace=False, size=num_sample)
78
+ dataset_nums = np.sort([int("".join([char for char in file if char.isnumeric()])) for file in files])
79
+
80
+ print("Dataset nums : ", *dataset_nums)
81
+ out = [get_(dataset_, dataset_num=num) for num in dataset_nums]
82
+ return out
83
+
84
+ path = DATASET_PATH+f"3dshapes/{dataset_}/{dataset_num}.off"
85
+ data = read_off(path)
86
+ faces = data.face.numpy().T
87
+ # data = FaceToEdge(remove_faces=remove_faces)(data)
88
+ #labels
89
+ label_path = path.split(".")[0] + "_labels.txt"
90
+ f = open(label_path, "r")
91
+ labels = np.zeros(len(data.pos), dtype="<U10") # Assumes labels are of size at most 10 chars
92
+ current_label=""
93
+ for i, line in enumerate(f.readlines()):
94
+ if i % 2 == 0:
95
+ current_label = line.strip()
96
+ continue
97
+ faces_of_label = np.array(line.strip().split(" "), dtype=int) -1 # this starts at 1, python starts at 0
98
+ # print(faces_of_label.min())
99
+ nodes_of_label = np.unique(faces[faces_of_label].flatten())
100
+ labels[nodes_of_label] = current_label # les labels sont sur les faces
101
+ return data, labels
@@ -0,0 +1,68 @@
1
+ import numpy as np
2
+ from sklearn.preprocessing import LabelEncoder
3
+ def noisy_annulus(n1:int=1000,n2:int=200, r1:float=1, r2:float=2, dim:int=2, center:np.ndarray|list|None=None, **kwargs)->np.ndarray:
4
+ """Generates a noisy annulus dataset.
5
+
6
+ Parameters
7
+ ----------
8
+ r1 : float.
9
+ Lower radius of the annulus.
10
+ r2 : float.
11
+ Upper radius of the annulus.
12
+ n1 : int
13
+ Number of points in the annulus.
14
+ n2 : int
15
+ Number of points in the square.
16
+ dim : int
17
+ Dimension of the annulus.
18
+ center: list or array
19
+ center of the annulus.
20
+
21
+ Returns
22
+ -------
23
+ numpy array
24
+ Dataset. size : (n1+n2) x dim
25
+
26
+ """
27
+ from numpy.random import uniform
28
+ from numpy.linalg import norm
29
+
30
+ set =[]
31
+ while len(set)<n1:
32
+ draw=uniform(low=-r2, high=r2, size=dim)
33
+ if norm(draw) > r1 and norm(draw) < r2:
34
+ set.append(draw)
35
+ annulus = np.array(set) if center == None else np.array(set) + np.array(center)
36
+ diffuse_noise = uniform(size=(n2,dim), low=-1.1*r2,high=1.1*r2)
37
+ if center is not None: diffuse_noise += np.array(center)
38
+ return np.vstack([annulus, diffuse_noise])
39
+
40
+
41
+ def three_annulus(num_pts:int=500,num_outliers:int=500):
42
+ X = np.block([
43
+ [np.random.uniform(low=-2,high=2,size=(num_outliers,2))],
44
+ [np.array(noisy_annulus(r1=0.6,r2=0.9,n1=(int)(num_pts*1/3), n2=0, center = [1,-0.2]))],
45
+ [np.array(noisy_annulus(r1=0.4,r2=0.55,n1=(int)(num_pts*1/3), n2=0, center = [-1.2,-1]))],
46
+ [np.array(noisy_annulus(r1=0.3,r2=0.4,n1=(int)(num_pts*1/3), n2=0, center = [-0.7,1.1]))],
47
+ ])
48
+ return X
49
+
50
+ def orbit(n:int=1000, r:float=1., x0=[]):
51
+ point_list=[]
52
+ if len(x0) != 2:
53
+ x,y=np.random.uniform(size=2)
54
+ else:
55
+ x,y = x0
56
+ point_list.append([x,y])
57
+ for _ in range(n-1):
58
+ x = (x + r*y*(1-y)) %1
59
+ y = (y + r*x*(1-x)) %1
60
+ point_list.append([x,y])
61
+ return np.asarray(point_list, dtype=float)
62
+
63
+ def get_orbit5k(num_pts = 1000, num_data=5000):
64
+ rs = [2.5, 3.5, 4, 4.1, 4.3]
65
+ labels = np.random.choice(rs, size=num_data, replace=True)
66
+ X = [orbit(n=num_pts, r=r) for r in labels]
67
+ labels = LabelEncoder().fit_transform(labels)
68
+ return X, labels
multipers/distances.py ADDED
@@ -0,0 +1,100 @@
1
+ import torch
2
+ import ot
3
+ import numpy as np
4
+ from multipers.simplex_tree_multi import SimplexTreeMulti
5
+ from multipers.multiparameter_module_approximation import PyMultiDiagrams, PyModule
6
+
7
+ def sm2diff(sm1,sm2):
8
+ if isinstance(sm1[0],np.ndarray):
9
+ backend_concatenate = lambda a,b : np.concatenate([a,b], axis=0)
10
+ backend_tensor = lambda x : np.asarray(x, dtype=int)
11
+ elif isinstance(sm1[0],torch.Tensor):
12
+ backend_concatenate = lambda a,b : torch.concatenate([a,b], dim=0)
13
+ backend_tensor = lambda x :torch.tensor(x).type(torch.int)
14
+ else:
15
+ raise Exception("Invalid backend. Numpy or torch.")
16
+ pts1,w1 = sm1
17
+ pts2,w2 = sm2
18
+ pos_indices1 = backend_tensor([i for i,w in enumerate(w1) for _ in range(w) if w>0])
19
+ pos_indices2 = backend_tensor([i for i,w in enumerate(w2) for _ in range(w) if w>0])
20
+ neg_indices1 = backend_tensor([i for i,w in enumerate(w1) for _ in range(-w) if w<0])
21
+ neg_indices2 = backend_tensor([i for i,w in enumerate(w2) for _ in range(-w) if w<0])
22
+ x = backend_concatenate(pts1[pos_indices1],pts2[neg_indices2])
23
+ y = backend_concatenate(pts1[neg_indices1],pts2[pos_indices2])
24
+ return x,y
25
+
26
+ def sm_distance(sm1,sm2, reg=0,reg_m=0, numItermax=10000, p=1):
27
+ x,y = sm2diff(sm1,sm2)
28
+ loss = ot.dist(x,y, metric='sqeuclidean', p=2) # only euc + sqeuclidian are implemented in pot for the moment with torch backend # TODO : check later
29
+ if isinstance(x,np.ndarray):
30
+ empty_tensor = np.array([]) # uniform weights
31
+ elif isinstance(x,torch.Tensor):
32
+ empty_tensor = torch.tensor([]) # uniform weights
33
+
34
+ if reg == 0:
35
+ return ot.lp.emd2(empty_tensor,empty_tensor,M=loss)*len(x)
36
+ if reg_m == 0:
37
+ return ot.sinkhorn2(a=empty_tensor,b=empty_tensor,M=loss,reg=reg, numItermax=numItermax)
38
+ return ot.sinkhorn_unbalanced2(a=empty_tensor,b=empty_tensor,M=loss,reg=reg, reg_m=reg_m, numItermax=numItermax)
39
+ # return ot.sinkhorn2(a=onesx,b=onesy,M=loss,reg=reg, numItermax=numItermax)
40
+ # return ot.bregman.empirical_sinkhorn2(x,y,reg=reg)
41
+
42
+
43
+
44
+
45
+
46
+
47
+
48
+ def estimate_matching(b1:PyMultiDiagrams, b2:PyMultiDiagrams):
49
+ assert(len(b1) == len(b2))
50
+ from gudhi.bottleneck import bottleneck_distance
51
+ def get_bc(b:PyMultiDiagrams, i:int)->np.ndarray:
52
+ temp = b[i].get_points()
53
+ out = np.array(temp)[:,:,0] if len(temp) >0 else np.empty((0,2)) # GUDHI FIX
54
+ return out
55
+ return max((bottleneck_distance(get_bc(b1,i), get_bc(b2,i)) for i in range(len(b1))))
56
+
57
+
58
+ #### Functions to estimate precision
59
+ def estimate_error(st:SimplexTreeMulti, module:PyModule, degree:int, nlines:int = 100, verbose:bool =False):
60
+ """
61
+ Given an MMA SimplexTree and PyModule, estimates the bottleneck distance using barcodes given by gudhi.
62
+
63
+ Parameters
64
+ ----------
65
+ st:SimplexTree
66
+ The simplextree representing the n-filtered complex. Used to define the gudhi simplextrees on different lines.
67
+ module:PyModule
68
+ The module on which to estimate approximation error, w.r.t. the original simplextree st.
69
+ degree: The homology degree to consider
70
+
71
+ Returns
72
+ -------
73
+ The estimation of the matching distance, i.e., the maximum of the sampled bottleneck distances.
74
+
75
+ """
76
+ from time import perf_counter
77
+ parameter = 0
78
+
79
+ def _get_bc_ST(st, basepoint, degree:int):
80
+ """
81
+ Slices an mma simplextree to a gudhi simplextree, and compute its persistence on the diagonal line crossing the given basepoint.
82
+ """
83
+ gst = st.project_on_line(basepoint=basepoint, parameter=parameter) # we consider only the 1rst coordinate (as )
84
+ gst.compute_persistence()
85
+ return gst.persistence_intervals_in_dimension(degree)
86
+ from gudhi.bottleneck import bottleneck_distance
87
+ low, high = module.get_box()
88
+ nfiltration = len(low)
89
+ basepoints = np.random.uniform(low=low, high=high, size=(nlines,nfiltration))
90
+ # barcodes from module
91
+ print("Computing mma barcodes...", flush=1, end="") if verbose else None
92
+ time = perf_counter()
93
+ bcs_from_mod = module.barcodes(degree=degree, basepoints = basepoints).get_points()
94
+ print(f"Done. {perf_counter() - time}s.") if verbose else None
95
+ clean = lambda dgm : np.array([[birth[parameter], death[parameter]] for birth,death in dgm if len(birth) > 0 and birth[parameter] != np.inf])
96
+ bcs_from_mod = [clean(dgm) for dgm in bcs_from_mod] # we only consider the 1st coordinate of the barcode
97
+ # Computes gudhi barcodes
98
+ from tqdm import tqdm
99
+ bcs_from_gudhi = [_get_bc_ST(st,basepoint=basepoint, degree=degree) for basepoint in tqdm(basepoints, disable= not verbose, desc = "Computing gudhi barcodes")]
100
+ return max((bottleneck_distance(a,b) for a,b in tqdm(zip(bcs_from_mod, bcs_from_gudhi), disable = not verbose, total=nlines, desc="Computing bottleneck distances")))
@@ -0,0 +1,132 @@
1
+ # cimport multipers.tensor as mt
2
+ from libc.stdint cimport intptr_t, uint16_t, uint32_t, int32_t
3
+ from libcpp.vector cimport vector
4
+ from libcpp cimport bool, int, float
5
+ from libcpp.utility cimport pair
6
+ from typing import Optional,Iterable,Callable
7
+
8
+ import numpy as np
9
+ cimport numpy as cnp
10
+ cnp.import_array()
11
+
12
+ ctypedef float value_type
13
+ python_value_type=np.float32
14
+
15
+ ctypedef int32_t indices_type # uint fails for some reason
16
+ python_indices_type=np.int32
17
+
18
+ ctypedef int32_t tensor_dtype
19
+ python_tensor_dtype = np.int32
20
+
21
+
22
+ ctypedef pair[vector[vector[indices_type]], vector[tensor_dtype]] signed_measure_type
23
+
24
+ cdef extern from "multi_parameter_rank_invariant/euler_characteristic.h" namespace "Gudhi::multiparameter::euler_characteristic":
25
+ void get_euler_surface_python(const intptr_t, tensor_dtype*, const vector[indices_type], bool, bool, bool) except + nogil
26
+ signed_measure_type get_euler_signed_measure(const intptr_t, tensor_dtype* , const vector[indices_type], bool, bool) except + nogil
27
+
28
+ def euler_signed_measure(simplextree, mass_default=None, bool verbose=False, bool plot=False):
29
+ """
30
+ Computes the signed measures given by the decomposition of the hilbert function.
31
+
32
+ Input
33
+ -----
34
+ - simplextree:SimplexTreeMulti, the multifiltered simplicial complex
35
+ - mass_default: Either None, or 'auto' or 'inf', or array-like of floats. Where to put the default mass to get a zero-mass measure.
36
+ - plot:bool, plots the computed measures if true.
37
+ - n_jobs:int, number of jobs. Defaults to #cpu, but when doing parallel computations of signed measures, we recommend setting this to 1.
38
+ - verbose:bool, prints c++ logs.
39
+
40
+ Output
41
+ ------
42
+ `[signed_measure_of_degree for degree in degrees]`
43
+ with `signed_measure_of_degree` of the form `(dirac location, dirac weights)`.
44
+ """
45
+ assert len(simplextree.filtration_grid[0]) > 0, "Squeeze grid first."
46
+ cdef bool zero_pad = mass_default is not None
47
+ grid_conversion = [np.asarray(f) for f in simplextree.filtration_grid]
48
+ # assert simplextree.num_parameters == 2
49
+ grid_shape = np.array([len(f) for f in grid_conversion])
50
+
51
+ # match mass_default: ## Cython bug
52
+ # case None:
53
+ # pass
54
+ # case "inf":
55
+ # mass_default = np.array([np.inf]*simplextree.num_parameters)
56
+ # case "auto":
57
+ # mass_default = np.array([1.1*np.max(f) - 0.1*np.min(f) for f in grid_conversion])
58
+ # case _:
59
+ # mass_default = np.asarray(mass_default)
60
+ # assert mass_default.ndim == 1 and mass_default.shape[0] == simplextree.num_parameters
61
+ if mass_default is None:
62
+ mass_default = mass_default
63
+ else:
64
+ mass_default = np.asarray(mass_default)
65
+ assert mass_default.ndim == 1 and mass_default.shape[0] == simplextree.num_parameters
66
+ if zero_pad:
67
+ for i, _ in enumerate(grid_shape):
68
+ grid_shape[i] += 1 # adds a 0
69
+ for i,f in enumerate(grid_conversion):
70
+ grid_conversion[i] = np.concatenate([f, [mass_default[i]]])
71
+ assert len(grid_shape) == simplextree.num_parameters, "Grid shape size has to be the number of parameters."
72
+ container_array = np.ascontiguousarray(np.zeros(grid_shape, dtype=python_tensor_dtype).flatten())
73
+ assert len(container_array) < np.iinfo(python_indices_type).max, "Too large container. Raise an issue on github if you encounter this issue. (Due to tensor's operator[])"
74
+ cdef intptr_t simplextree_ptr = simplextree.thisptr
75
+ cdef vector[indices_type] c_grid_shape = grid_shape
76
+ cdef tensor_dtype[::1] container = container_array
77
+ cdef tensor_dtype* container_ptr = &container[0]
78
+ cdef signed_measure_type out
79
+ with nogil:
80
+ out = get_euler_signed_measure(simplextree_ptr, container_ptr, c_grid_shape, zero_pad, verbose)
81
+ pts, weights = np.asarray(out.first, dtype=int).reshape(-1, simplextree.num_parameters), np.asarray(out.second, dtype=int)
82
+ # return pts, weights
83
+
84
+ coords = np.empty(shape=pts.shape, dtype=float)
85
+ for i in range(coords.shape[1]):
86
+ coords[:,i] = grid_conversion[i][pts[:,i]]
87
+ sm =(coords, weights)
88
+ if plot:
89
+ from multipers.plots import plot_signed_measures
90
+ plot_signed_measures([sm])
91
+ return sm
92
+
93
+
94
+ def euler_surface(simplextree, bool mobius_inversion=False, bool zero_pad=False, plot=False, bool verbose=False):
95
+ """
96
+ Computes the hilbert function.
97
+
98
+ Input
99
+ -----
100
+ - simplextree:SimplexTreeMulti, the multifiltered simplicial complex
101
+ - degrees:array-like of ints, the degrees to compute
102
+ - mass_default: Either None, or 'auto' or 'inf', or array-like of floats. Where to put the default mass to get a zero-mass measure.
103
+ - plot:bool, plots the computed measures if true.
104
+ - n_jobs:int, number of jobs. Defaults to #cpu, but when doing parallel computations of signed measures, we recommend setting this to 1.
105
+ - verbose:bool, prints c++ logs.
106
+
107
+ Output
108
+ ------
109
+ Integer array of the form `(num_degrees, num_filtration_values_of_parameter 1, ..., num_filtration_values_of_parameter n)`
110
+ """
111
+ assert len(simplextree.filtration_grid[0]) > 0, "Squeeze grid first."
112
+ grid_conversion = [np.asarray(f) for f in simplextree.filtration_grid] if len(simplextree.filtration_grid[0]) > 0 else None
113
+ # assert simplextree.num_parameters == 2
114
+ grid_shape = [len(f) for f in grid_conversion]
115
+ assert len(grid_shape) == simplextree.num_parameters
116
+ container_array = np.ascontiguousarray(np.zeros(grid_shape, dtype=python_tensor_dtype).flatten())
117
+ cdef intptr_t simplextree_ptr = simplextree.thisptr
118
+ cdef vector[indices_type] c_grid_shape = grid_shape
119
+ cdef tensor_dtype[::1] container = container_array
120
+ cdef tensor_dtype* container_ptr = &container[0]
121
+ # cdef signed_measure_type out
122
+ # cdef indices_type i = 0
123
+ # cdef indices_type j = 1
124
+ # cdef vector[indices_type] fixed_values = np.asarray([0,0], dtype=int)
125
+ with nogil:
126
+ get_euler_surface_python(simplextree_ptr, container_ptr, c_grid_shape, mobius_inversion, zero_pad, verbose)
127
+ out = (grid_conversion, container_array.reshape(grid_shape))
128
+ if plot:
129
+ from multipers.plots import plot_surface
130
+ plot_surface(*out)
131
+ return out
132
+
@@ -0,0 +1,101 @@
1
+ # cimport multipers.tensor as mt
2
+ from libc.stdint cimport intptr_t, uint16_t, uint32_t, int32_t
3
+ from libcpp.vector cimport vector
4
+ from libcpp cimport bool, int, float
5
+ from libcpp.utility cimport pair, tuple
6
+ from typing import Optional,Iterable,Callable
7
+
8
+ import numpy as np
9
+ cimport numpy as cnp
10
+ cnp.import_array()
11
+
12
+ ctypedef float value_type
13
+ python_value_type=np.float32
14
+
15
+ ctypedef int32_t indices_type # uint fails for some reason
16
+ python_indices_type=np.int32
17
+
18
+ ctypedef int32_t tensor_dtype
19
+ python_tensor_dtype = np.int32
20
+
21
+ ctypedef pair[vector[vector[indices_type]], vector[tensor_dtype]] signed_measure_type
22
+
23
+
24
+ from multipers.simplex_tree_multi import SimplexTreeMulti
25
+
26
+ cdef extern from "multi_parameter_rank_invariant/function_rips.h" namespace "Gudhi::multiparameter::function_rips":
27
+ void compute_function_rips_surface_python(const intptr_t, tensor_dtype* , const vector[indices_type], indices_type,indices_type, bool, bool, indices_type) except + nogil
28
+ signed_measure_type compute_function_rips_signed_measure_python(const intptr_t, tensor_dtype* , const vector[indices_type], indices_type,indices_type, bool, bool, indices_type) except + nogil
29
+ pair[vector[value_type],int] get_degree_rips_st_python(const intptr_t,const intptr_t, const vector[int]) except + nogil
30
+
31
+
32
+
33
+
34
+
35
+ def get_degree_rips(st, vector[int] degrees, grid_strategy="exact", resolution=0):
36
+ assert st.dimension() == 1
37
+ degree_rips_st = SimplexTreeMulti(num_parameters=degrees.size())
38
+ cdef intptr_t simplextree_ptr = st.thisptr
39
+ cdef intptr_t st_multi_ptr = degree_rips_st.thisptr
40
+ cdef pair[vector[value_type],int] out
41
+ with nogil:
42
+ out = get_degree_rips_st_python(simplextree_ptr, st_multi_ptr, degrees)
43
+ filtrations = np.asarray(out.first)
44
+ cdef int max_degree = out.second
45
+ cdef bool inf_flag = filtrations[-1] == np.inf
46
+ if inf_flag:
47
+ filtrations = filtrations[:-1]
48
+ filtrations, = degree_rips_st._reduce_grid([filtrations],strategy=grid_strategy,resolutions=resolution)
49
+ if inf_flag:
50
+ filtrations = np.concatenate([filtrations, [np.inf]])
51
+ degree_rips_st.grid_squeeze([filtrations]*degree_rips_st.num_parameters)
52
+ degree_rips_st.filtration_grid = [filtrations, np.asarray(degrees)[::-1]]
53
+ return degree_rips_st,max_degree
54
+
55
+ def function_rips_surface(st_multi, vector[indices_type] homological_degrees, bool mobius_inversion=True, bool zero_pad=False, indices_type n_jobs=0):
56
+ assert st_multi._is_squeezed, "Squeeze first !"
57
+ cdef intptr_t st_multi_ptr = st_multi.thisptr
58
+ cdef indices_type I = len(st_multi.filtration_grid[0])
59
+ cdef indices_type J = st_multi.num_parameters
60
+ container_shape = (homological_degrees.size(),I,J)
61
+ container_array = np.ascontiguousarray(np.zeros(container_shape, dtype=python_tensor_dtype).flatten())
62
+ assert len(container_array) < np.iinfo(np.uint32).max, "Too large container. Raise an issue on github if you encounter this issue. (Due to tensor's operator[])"
63
+ cdef tensor_dtype[::1] container = container_array
64
+ cdef tensor_dtype* container_ptr = &container[0]
65
+ with nogil:
66
+ compute_function_rips_surface_python(st_multi_ptr,container_ptr, homological_degrees, I,J, mobius_inversion, zero_pad, n_jobs)
67
+ filtration_grid = st_multi.filtration_grid
68
+ if filtration_grid[0][-1] == np.inf:
69
+ filtration_grid[0][-1] = filtration_grid[0][-2]
70
+ return filtration_grid, container_array.reshape(container_shape)
71
+
72
+
73
+
74
+ def function_rips_signed_measure(st_multi, vector[indices_type] homological_degrees, bool mobius_inversion=True, bool zero_pad=False, indices_type n_jobs=0, bool reconvert = True):
75
+ assert st_multi._is_squeezed
76
+ cdef intptr_t st_multi_ptr = st_multi.thisptr
77
+ cdef indices_type I = len(st_multi.filtration_grid[0])
78
+ cdef indices_type J = st_multi.num_parameters
79
+ container_shape = (homological_degrees.size(),I,J)
80
+ container_array = np.ascontiguousarray(np.zeros(container_shape, dtype=python_tensor_dtype).flatten())
81
+ assert len(container_array) < np.iinfo(np.uint32).max, "Too large container. Raise an issue on github if you encounter this issue. (Due to tensor's operator[])"
82
+ cdef tensor_dtype[::1] container = container_array
83
+ cdef tensor_dtype* container_ptr = &container[0]
84
+ cdef signed_measure_type out
85
+ # TODO nogil
86
+ with nogil:
87
+ out = compute_function_rips_signed_measure_python(st_multi_ptr,container_ptr, homological_degrees, I,J, mobius_inversion, zero_pad, n_jobs)
88
+ pts, weights = np.asarray(out.first, dtype=int).reshape(-1, 3), np.asarray(out.second, dtype=int)
89
+
90
+ degree_indices = [np.argwhere(pts[:,0] == degree_index).flatten() for degree_index, degree in enumerate(homological_degrees)] ## TODO : maybe optimize
91
+ sms = [(pts[id,1:],weights[id]) for id in degree_indices]
92
+ if not reconvert: return sms
93
+
94
+ grid_conversion = st_multi.filtration_grid
95
+ for degree_index,(pts,weights) in enumerate(sms):
96
+ coords = np.empty(shape=pts.shape, dtype=float)
97
+ for i in range(coords.shape[1]):
98
+ coords[:,i] = np.asarray(grid_conversion[i])[pts[:,i]]
99
+ sms[degree_index]=(coords, weights)
100
+
101
+ return sms
@@ -0,0 +1,46 @@
1
+ # cimport multipers.tensor as mt
2
+ from libc.stdint cimport intptr_t, uint16_t, uint32_t, int32_t
3
+ from libcpp.vector cimport vector
4
+ from libcpp cimport bool, int, float
5
+ from libcpp.utility cimport pair
6
+ from typing import Optional,Iterable,Callable
7
+
8
+ def hilbert_signed_measure(simplextree, degrees, mass_default=None, plot=False, n_jobs=0, verbose=False):
9
+ """
10
+ Computes the signed measures given by the decomposition of the hilbert function.
11
+
12
+ Input
13
+ -----
14
+ - simplextree:SimplexTreeMulti, the multifiltered simplicial complex
15
+ - degrees:array-like of ints, the degrees to compute
16
+ - mass_default: Either None, or 'auto' or 'inf', or array-like of floats. Where to put the default mass to get a zero-mass measure.
17
+ - plot:bool, plots the computed measures if true.
18
+ - n_jobs:int, number of jobs. Defaults to #cpu, but when doing parallel computations of signed measures, we recommend setting this to 1.
19
+ - verbose:bool, prints c++ logs.
20
+
21
+ Output
22
+ ------
23
+ `[signed_measure_of_degree for degree in degrees]`
24
+ with `signed_measure_of_degree` of the form `(dirac location, dirac weights)`.
25
+ """
26
+ pass
27
+
28
+
29
+ def hilbert_function(simplextree, degrees, zero_pad=False, plot=False, n_jobs=0):
30
+ """
31
+ Computes the hilbert function.
32
+
33
+ Input
34
+ -----
35
+ - simplextree:SimplexTreeMulti, the multifiltered simplicial complex
36
+ - degrees:array-like of ints, the degrees to compute
37
+ - mass_default: Either None, or 'auto' or 'inf', or array-like of floats. Where to put the default mass to get a zero-mass measure.
38
+ - plot:bool, plots the computed measures if true.
39
+ - n_jobs:int, number of jobs. Defaults to #cpu, but when doing parallel computations of signed measures, we recommend setting this to 1.
40
+ - verbose:bool, prints c++ logs.
41
+
42
+ Output
43
+ ------
44
+ Integer array of the form `(num_degrees, num_filtration_values_of_parameter 1, ..., num_filtration_values_of_parameter n)`
45
+ """
46
+ pass