mteb 2.7.20__py3-none-any.whl → 2.7.22__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (49) hide show
  1. mteb/abstasks/regression.py +0 -1
  2. mteb/models/model_implementations/{nvidia_llama_nemoretriever_colemb.py → nvidia_nemotron_colembed_vl.py} +46 -20
  3. mteb/tasks/clustering/deu/ten_k_gnad_clustering_p2p.py +9 -7
  4. mteb/tasks/clustering/deu/ten_k_gnad_clustering_s2s.py +13 -11
  5. mteb/tasks/clustering/fra/hal_clustering_s2s.py +1 -1
  6. mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
  7. mteb/tasks/clustering/nob/vg_clustering.py +1 -1
  8. mteb/tasks/clustering/rom/romani_bible_clustering.py +1 -1
  9. mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
  10. mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
  11. mteb/tasks/pair_classification/multilingual/indic_xnli_pair_classification.py +1 -1
  12. mteb/tasks/pair_classification/pol/polish_pc.py +2 -2
  13. mteb/tasks/retrieval/eng/cqa_dupstack_android_retrieval.py +1 -1
  14. mteb/tasks/retrieval/eng/cqa_dupstack_english_retrieval.py +1 -1
  15. mteb/tasks/retrieval/eng/cqa_dupstack_gaming_retrieval.py +1 -1
  16. mteb/tasks/retrieval/eng/cqa_dupstack_gis_retrieval.py +1 -1
  17. mteb/tasks/retrieval/eng/cqa_dupstack_mathematica_retrieval.py +1 -1
  18. mteb/tasks/retrieval/eng/cqa_dupstack_physics_retrieval.py +1 -1
  19. mteb/tasks/retrieval/eng/cqa_dupstack_programmers_retrieval.py +1 -1
  20. mteb/tasks/retrieval/eng/cqa_dupstack_stats_retrieval.py +1 -1
  21. mteb/tasks/retrieval/eng/cqa_dupstack_tex_retrieval.py +1 -1
  22. mteb/tasks/retrieval/eng/cqa_dupstack_unix_retrieval.py +1 -1
  23. mteb/tasks/retrieval/eng/cqa_dupstack_webmasters_retrieval.py +1 -1
  24. mteb/tasks/retrieval/eng/cqa_dupstack_wordpress_retrieval.py +1 -1
  25. mteb/tasks/retrieval/eng/fever_retrieval.py +1 -1
  26. mteb/tasks/retrieval/eng/fi_qa2018_retrieval.py +1 -1
  27. mteb/tasks/retrieval/eng/msmarc_ov2_retrieval.py +1 -1
  28. mteb/tasks/retrieval/eng/msmarco_retrieval.py +2 -2
  29. mteb/tasks/retrieval/eng/nf_corpus_retrieval.py +6 -6
  30. mteb/tasks/retrieval/eng/nq_retrieval.py +8 -8
  31. mteb/tasks/retrieval/eng/quora_retrieval.py +1 -1
  32. mteb/tasks/retrieval/fas/beir_fa.py +43 -36
  33. mteb/tasks/retrieval/fas/fa_mteb_retrieval.py +12 -5
  34. mteb/tasks/retrieval/fra/alloprof_retrieval.py +1 -1
  35. mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
  36. mteb/tasks/retrieval/pol/fi_qapl_retrieval.py +1 -1
  37. mteb/tasks/retrieval/pol/nqpl_retrieval.py +5 -5
  38. mteb/tasks/sts/eng/biosses_sts.py +1 -1
  39. mteb/tasks/sts/eng/humests_benchmark.py +1 -1
  40. mteb/tasks/sts/eng/sts_benchmark_sts.py +1 -1
  41. mteb/tasks/sts/fin/fin_para_sts.py +1 -1
  42. mteb/tasks/sts/kor/klue_sts.py +1 -1
  43. mteb/tasks/sts/ron/ron_sts.py +1 -1
  44. {mteb-2.7.20.dist-info → mteb-2.7.22.dist-info}/METADATA +11 -1
  45. {mteb-2.7.20.dist-info → mteb-2.7.22.dist-info}/RECORD +49 -49
  46. {mteb-2.7.20.dist-info → mteb-2.7.22.dist-info}/WHEEL +0 -0
  47. {mteb-2.7.20.dist-info → mteb-2.7.22.dist-info}/entry_points.txt +0 -0
  48. {mteb-2.7.20.dist-info → mteb-2.7.22.dist-info}/licenses/LICENSE +0 -0
  49. {mteb-2.7.20.dist-info → mteb-2.7.22.dist-info}/top_level.txt +0 -0
@@ -93,7 +93,6 @@ class AbsTaskRegression(AbsTaskClassification):
93
93
  n_samples: Number of samples to use for training the regression model. If the dataset has fewer samples than n_samples, all samples are used.
94
94
  abstask_prompt: Prompt to use for the task for instruction model if not prompt is provided in TaskMetadata.prompt.
95
95
  evaluator_model: The model to use for evaluation. Can be any sklearn compatible model. Default is `LinearRegression`.
96
-
97
96
  """
98
97
 
99
98
  evaluator: type[SklearnEvaluator] = SklearnEvaluator
@@ -7,6 +7,7 @@ from packaging.specifiers import SpecifierSet
7
7
  from torch.utils.data import DataLoader
8
8
  from transformers import __version__ as transformers_version
9
9
 
10
+ from mteb._requires_package import requires_package
10
11
  from mteb.models.abs_encoder import AbsEncoder
11
12
  from mteb.models.model_meta import ModelMeta
12
13
 
@@ -24,27 +25,51 @@ LLAMA_NEMORETRIEVER_CITATION = """@misc{xu2025llamanemoretrievercolembedtopperfo
24
25
  url={https://arxiv.org/abs/2507.05513}
25
26
  }"""
26
27
 
28
+ # Transformers version constraints per extra.
29
+ # Keep in sync with pyproject.toml [project.optional-dependencies]
30
+ #
31
+ # Note: The extra name reflects the transformers version requirement, not the model version.
32
+ # For example, llama-nemotron-colembed-vl-3b-v2 uses "llama-nemotron-colembed-vl" because it
33
+ # requires transformers==4.49.0, even though it's a "v2" model by name.
34
+ _TRANSFORMERS_CONSTRAINTS: dict[str, str] = {
35
+ "llama-nemotron-colembed-vl": "==4.49.0", # llama-nemoretriever-colembed-*
36
+ "nemotron-colembed-vl-v2": "==5.0.0rc0", # nemotron-colembed-vl-4b-v2, nemotron-colembed-vl-8b-v2
37
+ }
38
+
39
+
40
+ class NemotronColEmbedVL(AbsEncoder):
41
+ """Encoder for the NemotronColEmbedVL family of models."""
27
42
 
28
- class LlamaNemoretrieverColembed(AbsEncoder):
29
43
  def __init__(
30
44
  self,
31
45
  model_name_or_path: str,
32
46
  revision: str,
33
47
  trust_remote_code: bool,
34
- transformers_version_constraint: str | None = None,
48
+ extra_name: str = "llama-nemotron-colembed-vl",
35
49
  device_map="cuda",
36
50
  torch_dtype=torch.bfloat16,
37
51
  attn_implementation="flash_attention_2",
38
52
  **kwargs,
39
53
  ):
40
- if transformers_version_constraint is not None:
41
- spec = SpecifierSet(transformers_version_constraint)
42
- if transformers_version not in spec:
43
- raise RuntimeError(
44
- f"Model `{model_name_or_path}` requires transformers{transformers_version_constraint}, "
45
- f"but {transformers_version} is installed. "
46
- f"Run: pip install 'transformers{transformers_version_constraint}'"
47
- )
54
+ install_hint = f"pip install 'mteb[{extra_name}]'"
55
+
56
+ # Check transformers version
57
+ constraint = _TRANSFORMERS_CONSTRAINTS.get(extra_name)
58
+ if constraint is None:
59
+ raise ValueError(
60
+ f"Unknown extra_name '{extra_name}'. "
61
+ f"Must be one of: {list(_TRANSFORMERS_CONSTRAINTS.keys())}"
62
+ )
63
+ if transformers_version not in SpecifierSet(constraint):
64
+ raise RuntimeError(
65
+ f"Model `{model_name_or_path}` requires transformers{constraint}, "
66
+ f"but {transformers_version} is installed. "
67
+ f"Run: {install_hint}"
68
+ )
69
+
70
+ # Check required packages
71
+ for package in ("torchvision", "accelerate", "flash_attn"):
72
+ requires_package(self, package, model_name_or_path, install_hint)
48
73
 
49
74
  from transformers import AutoModel
50
75
 
@@ -166,10 +191,10 @@ TRAINING_DATA_v2 = {
166
191
  }
167
192
 
168
193
  llama_nemoretriever_colembed_1b_v1 = ModelMeta(
169
- loader=LlamaNemoretrieverColembed,
194
+ loader=NemotronColEmbedVL,
170
195
  loader_kwargs=dict(
196
+ extra_name="llama-nemotron-colembed-vl",
171
197
  trust_remote_code=True,
172
- transformers_version_constraint="==4.49.0",
173
198
  ),
174
199
  name="nvidia/llama-nemoretriever-colembed-1b-v1",
175
200
  model_type=["late-interaction"],
@@ -195,10 +220,10 @@ llama_nemoretriever_colembed_1b_v1 = ModelMeta(
195
220
  )
196
221
 
197
222
  llama_nemoretriever_colembed_3b_v1 = ModelMeta(
198
- loader=LlamaNemoretrieverColembed,
223
+ loader=NemotronColEmbedVL,
199
224
  loader_kwargs=dict(
225
+ extra_name="llama-nemotron-colembed-vl",
200
226
  trust_remote_code=True,
201
- transformers_version_constraint="==4.49.0",
202
227
  ),
203
228
  name="nvidia/llama-nemoretriever-colembed-3b-v1",
204
229
  model_type=["late-interaction"],
@@ -224,10 +249,10 @@ llama_nemoretriever_colembed_3b_v1 = ModelMeta(
224
249
  )
225
250
 
226
251
  llama_nemotron_colembed_vl_3b_v2 = ModelMeta(
227
- loader=LlamaNemoretrieverColembed,
252
+ loader=NemotronColEmbedVL,
228
253
  loader_kwargs=dict(
254
+ extra_name="llama-nemotron-colembed-vl",
229
255
  trust_remote_code=True,
230
- transformers_version_constraint="==4.49.0",
231
256
  ),
232
257
  name="nvidia/llama-nemotron-colembed-vl-3b-v2",
233
258
  model_type=["late-interaction"],
@@ -251,11 +276,12 @@ llama_nemotron_colembed_vl_3b_v2 = ModelMeta(
251
276
  citation=LLAMA_NEMORETRIEVER_CITATION,
252
277
  )
253
278
 
279
+
254
280
  nemotron_colembed_vl_4b_v2 = ModelMeta(
255
- loader=LlamaNemoretrieverColembed,
281
+ loader=NemotronColEmbedVL,
256
282
  loader_kwargs=dict(
283
+ extra_name="nemotron-colembed-vl-v2",
257
284
  trust_remote_code=True,
258
- transformers_version_constraint="==5.0.0rc0",
259
285
  ),
260
286
  name="nvidia/nemotron-colembed-vl-4b-v2",
261
287
  revision="823b1625c15fe3da73fa094205e538a7a2301a2a",
@@ -280,10 +306,10 @@ nemotron_colembed_vl_4b_v2 = ModelMeta(
280
306
 
281
307
 
282
308
  nemotron_colembed_vl_8b_v2 = ModelMeta(
283
- loader=LlamaNemoretrieverColembed,
309
+ loader=NemotronColEmbedVL,
284
310
  loader_kwargs=dict(
311
+ extra_name="nemotron-colembed-vl-v2",
285
312
  trust_remote_code=True,
286
- transformers_version_constraint="==5.0.0rc0",
287
313
  ),
288
314
  name="nvidia/nemotron-colembed-vl-8b-v2",
289
315
  revision="6cbe43579dda6237768fc373768ad372cc5cdfec",
@@ -18,14 +18,17 @@ class TenKGnadClusteringP2P(AbsTaskClusteringLegacy):
18
18
  eval_splits=["test"],
19
19
  eval_langs=["deu-Latn"],
20
20
  main_score="v_measure",
21
- date=None,
21
+ date=(
22
+ "2000-01-01",
23
+ "2020-12-31",
24
+ ), # since it is news it is guessed that it is from 2000 to 2020
22
25
  domains=["Web", "Written"],
23
26
  task_subtypes=[],
24
27
  license="cc-by-nc-sa-4.0",
25
- annotations_creators=None,
28
+ annotations_creators="derived",
26
29
  dialect=[],
27
30
  sample_creation="found",
28
- bibtex_citation=None,
31
+ bibtex_citation="", # none found
29
32
  superseded_by="TenKGnadClusteringP2P.v2",
30
33
  )
31
34
 
@@ -36,7 +39,7 @@ class TenKGnadClusteringP2PFast(AbsTaskClustering):
36
39
 
37
40
  metadata = TaskMetadata(
38
41
  name="TenKGnadClusteringP2P.v2",
39
- description="Clustering of news article titles+subheadings+texts. Clustering of 10 splits on the news article category.",
42
+ description="Clustering of news article titles+subheadings+texts. Clustering of 10 splits on the news article category. v2 uses a faster evaluation method used in the MMTEB paper, which allow for notably faster evaluation.",
40
43
  reference="https://tblock.github.io/10kGNAD/",
41
44
  dataset={
42
45
  "path": "slvnwhrl/tenkgnad-clustering-p2p",
@@ -53,13 +56,12 @@ class TenKGnadClusteringP2PFast(AbsTaskClustering):
53
56
  "2020-12-31",
54
57
  ), # since it is news it is guessed that it is from 2000 to 2020
55
58
  domains=["News", "Non-fiction", "Written"],
56
- task_subtypes=None,
59
+ task_subtypes=["Thematic clustering"],
57
60
  license="cc-by-sa-4.0",
58
61
  annotations_creators="derived",
59
62
  dialect=[],
60
63
  sample_creation="found",
61
- bibtex_citation=None, # none found
62
- # due to duplicates
64
+ bibtex_citation="", # none found
63
65
  adapted_from=["TenKGnadClusteringP2P"],
64
66
  )
65
67
 
@@ -18,14 +18,17 @@ class TenKGnadClusteringS2S(AbsTaskClusteringLegacy):
18
18
  eval_splits=["test"],
19
19
  eval_langs=["deu-Latn"],
20
20
  main_score="v_measure",
21
- date=None,
21
+ date=(
22
+ "2000-01-01",
23
+ "2020-12-31",
24
+ ), # since it is news it is guessed that it is from 2000 to 2020
22
25
  domains=["News", "Non-fiction", "Written"],
23
- task_subtypes=["Topic classification"],
24
- license=None,
25
- annotations_creators=None,
26
- dialect=None,
27
- sample_creation=None,
28
- bibtex_citation=None,
26
+ task_subtypes=["Thematic clustering"],
27
+ license="cc-by-nc-sa-4.0",
28
+ annotations_creators="derived",
29
+ dialect=[],
30
+ sample_creation="found",
31
+ bibtex_citation="", # none found
29
32
  superseded_by="TenKGnadClusteringS2S.v2",
30
33
  )
31
34
 
@@ -36,7 +39,7 @@ class TenKGnadClusteringS2SFast(AbsTaskClustering):
36
39
 
37
40
  metadata = TaskMetadata(
38
41
  name="TenKGnadClusteringS2S.v2",
39
- description="Clustering of news article titles. Clustering of 10 splits on the news article category.",
42
+ description="Clustering of news article titles. Clustering of 10 splits on the news article category. v2 uses a faster evaluation method used in the MMTEB paper, which allow for notably faster evaluation.",
40
43
  reference="https://tblock.github.io/10kGNAD/",
41
44
  dataset={
42
45
  "path": "slvnwhrl/tenkgnad-clustering-s2s",
@@ -53,13 +56,12 @@ class TenKGnadClusteringS2SFast(AbsTaskClustering):
53
56
  "2020-12-31",
54
57
  ), # since it is news it is guessed that it is from 2000 to 2020
55
58
  domains=["News", "Non-fiction", "Written"],
56
- task_subtypes=["Topic classification"],
59
+ task_subtypes=["Thematic clustering"],
57
60
  license="cc-by-sa-4.0",
58
61
  annotations_creators="derived",
59
62
  dialect=[],
60
63
  sample_creation="found",
61
- bibtex_citation=None, # none found
62
- # due to duplicates
64
+ bibtex_citation="", # none found
63
65
  adapted_from=["TenKGnadClusteringS2S"],
64
66
  )
65
67
 
@@ -33,7 +33,7 @@ class HALClusteringS2S(AbsTaskClusteringLegacy):
33
33
  task_subtypes=["Thematic clustering"],
34
34
  license="apache-2.0",
35
35
  annotations_creators="human-annotated",
36
- dialect=None,
36
+ dialect=[],
37
37
  sample_creation="found",
38
38
  bibtex_citation=r"""
39
39
  @misc{ciancone2024extending,
@@ -47,7 +47,7 @@ class WikiClusteringP2P(AbsTaskClusteringLegacy):
47
47
  annotations_creators="derived",
48
48
  dialect=[],
49
49
  sample_creation="created",
50
- bibtex_citation=None, # None exists
50
+ bibtex_citation="", # None exists
51
51
  superseded_by="WikiClusteringP2P.v2",
52
52
  )
53
53
 
@@ -42,7 +42,7 @@ class VGClustering(AbsTaskClusteringLegacy):
42
42
  main_score="v_measure",
43
43
  date=("2020-01-01", "2024-12-31"), # best guess
44
44
  domains=["News", "Non-fiction", "Written"],
45
- license=None,
45
+ license="not specified",
46
46
  annotations_creators="derived",
47
47
  dialect=[],
48
48
  task_subtypes=["Thematic clustering"],
@@ -24,5 +24,5 @@ class RomaniBibleClustering(AbsTaskClusteringLegacy):
24
24
  annotations_creators="derived",
25
25
  dialect=["Kalderash"],
26
26
  sample_creation="human-translated and localized",
27
- bibtex_citation=None,
27
+ bibtex_citation="",
28
28
  )
@@ -17,7 +17,7 @@ class TwitterSemEval2015PC(AbsTaskPairClassification):
17
17
  eval_splits=["test"],
18
18
  eval_langs=["eng-Latn"],
19
19
  main_score="max_ap",
20
- date=None,
20
+ date=("2015-01-01", "2015-12-31"), # publication year
21
21
  domains=["Social", "Written"],
22
22
  task_subtypes=[],
23
23
  license="not specified",
@@ -17,7 +17,7 @@ class TwitterURLCorpus(AbsTaskPairClassification):
17
17
  eval_splits=["test"],
18
18
  eval_langs=["eng-Latn"],
19
19
  main_score="max_ap",
20
- date=None,
20
+ date=("2017-01-01", "2017-12-31"), # publication year
21
21
  domains=["Social", "Written"],
22
22
  task_subtypes=[],
23
23
  license="not specified",
@@ -41,7 +41,7 @@ class IndicXnliPairClassification(AbsTaskPairClassification):
41
41
  main_score="max_ap",
42
42
  date=("2022-04-22", "2022-10-06"),
43
43
  domains=["Non-fiction", "Fiction", "Government", "Written"],
44
- task_subtypes=None,
44
+ task_subtypes=[],
45
45
  license="cc-by-4.0",
46
46
  annotations_creators="derived",
47
47
  dialect=[],
@@ -77,7 +77,7 @@ class PpcPC(AbsTaskPairClassification):
77
77
  eval_splits=["test"],
78
78
  eval_langs=["pol-Latn"],
79
79
  main_score="max_ap",
80
- date=None,
80
+ date=("2022-01-01", "2022-12-31"), # publication year
81
81
  domains=[
82
82
  "Fiction",
83
83
  "Non-fiction",
@@ -125,7 +125,7 @@ class CdscePC(AbsTaskPairClassification):
125
125
  eval_splits=["test"],
126
126
  eval_langs=["pol-Latn"],
127
127
  main_score="max_ap",
128
- date=None,
128
+ date=("2017-01-01", "2017-12-31"), # publication year
129
129
  domains=["Written"],
130
130
  task_subtypes=[],
131
131
  license="cc-by-nc-sa-4.0",
@@ -17,7 +17,7 @@ class CQADupstackAndroidRetrieval(AbsTaskRetrieval):
17
17
  eval_splits=["test"],
18
18
  eval_langs=["eng-Latn"],
19
19
  main_score="ndcg_at_10",
20
- date=None,
20
+ date=("2015-01-01", "2015-12-31"), # publication year
21
21
  domains=["Programming", "Web", "Written", "Non-fiction"],
22
22
  task_subtypes=["Question answering", "Duplicate Detection"],
23
23
  license="apache-2.0",
@@ -17,7 +17,7 @@ class CQADupstackEnglishRetrieval(AbsTaskRetrieval):
17
17
  eval_splits=["test"],
18
18
  eval_langs=["eng-Latn"],
19
19
  main_score="ndcg_at_10",
20
- date=None,
20
+ date=("2015-01-01", "2015-12-31"), # publication year
21
21
  domains=["Written"],
22
22
  task_subtypes=["Question answering", "Duplicate Detection"],
23
23
  license="apache-2.0",
@@ -17,7 +17,7 @@ class CQADupstackGamingRetrieval(AbsTaskRetrieval):
17
17
  eval_splits=["test"],
18
18
  eval_langs=["eng-Latn"],
19
19
  main_score="ndcg_at_10",
20
- date=None,
20
+ date=("2015-01-01", "2015-12-31"), # publication year
21
21
  domains=["Web", "Written"],
22
22
  task_subtypes=["Question answering", "Duplicate Detection"],
23
23
  license="apache-2.0",
@@ -17,7 +17,7 @@ class CQADupstackGisRetrieval(AbsTaskRetrieval):
17
17
  eval_splits=["test"],
18
18
  eval_langs=["eng-Latn"],
19
19
  main_score="ndcg_at_10",
20
- date=None,
20
+ date=("2015-01-01", "2015-12-31"), # publication year
21
21
  domains=["Written", "Non-fiction"],
22
22
  task_subtypes=["Question answering", "Duplicate Detection"],
23
23
  license="apache-2.0",
@@ -17,7 +17,7 @@ class CQADupstackMathematicaRetrieval(AbsTaskRetrieval):
17
17
  eval_splits=["test"],
18
18
  eval_langs=["eng-Latn"],
19
19
  main_score="ndcg_at_10",
20
- date=None,
20
+ date=("2015-01-01", "2015-12-31"), # publication year
21
21
  domains=["Written", "Academic", "Non-fiction"],
22
22
  task_subtypes=["Question answering", "Duplicate Detection"],
23
23
  license="apache-2.0",
@@ -17,7 +17,7 @@ class CQADupstackPhysicsRetrieval(AbsTaskRetrieval):
17
17
  eval_splits=["test"],
18
18
  eval_langs=["eng-Latn"],
19
19
  main_score="ndcg_at_10",
20
- date=None,
20
+ date=("2015-01-01", "2015-12-31"), # publication year
21
21
  domains=["Written", "Academic", "Non-fiction"],
22
22
  task_subtypes=["Question answering", "Duplicate Detection"],
23
23
  license="apache-2.0",
@@ -17,7 +17,7 @@ class CQADupstackProgrammersRetrieval(AbsTaskRetrieval):
17
17
  eval_splits=["test"],
18
18
  eval_langs=["eng-Latn"],
19
19
  main_score="ndcg_at_10",
20
- date=None,
20
+ date=("2015-01-01", "2015-12-31"), # publication year
21
21
  domains=["Programming", "Written", "Non-fiction"],
22
22
  task_subtypes=[],
23
23
  license="apache-2.0",
@@ -17,7 +17,7 @@ class CQADupstackStatsRetrieval(AbsTaskRetrieval):
17
17
  eval_splits=["test"],
18
18
  eval_langs=["eng-Latn"],
19
19
  main_score="ndcg_at_10",
20
- date=None,
20
+ date=("2015-01-01", "2015-12-31"), # publication year
21
21
  domains=["Written", "Academic", "Non-fiction"],
22
22
  task_subtypes=["Question answering", "Duplicate Detection"],
23
23
  license="apache-2.0",
@@ -17,7 +17,7 @@ class CQADupstackTexRetrieval(AbsTaskRetrieval):
17
17
  eval_splits=["test"],
18
18
  eval_langs=["eng-Latn"],
19
19
  main_score="ndcg_at_10",
20
- date=None,
20
+ date=("2015-01-01", "2015-12-31"), # publication year
21
21
  domains=["Written", "Non-fiction"],
22
22
  task_subtypes=["Question answering", "Duplicate Detection"],
23
23
  license="apache-2.0",
@@ -17,7 +17,7 @@ class CQADupstackUnixRetrieval(AbsTaskRetrieval):
17
17
  eval_splits=["test"],
18
18
  eval_langs=["eng-Latn"],
19
19
  main_score="ndcg_at_10",
20
- date=None,
20
+ date=("2015-01-01", "2015-12-31"), # publication year
21
21
  domains=["Written", "Web", "Programming"],
22
22
  task_subtypes=["Question answering", "Duplicate Detection"],
23
23
  license="apache-2.0",
@@ -17,7 +17,7 @@ class CQADupstackWebmastersRetrieval(AbsTaskRetrieval):
17
17
  eval_splits=["test"],
18
18
  eval_langs=["eng-Latn"],
19
19
  main_score="ndcg_at_10",
20
- date=None,
20
+ date=("2015-01-01", "2015-12-31"), # publication year
21
21
  domains=["Written", "Web"],
22
22
  task_subtypes=["Question answering"],
23
23
  license="apache-2.0",
@@ -17,7 +17,7 @@ class CQADupstackWordpressRetrieval(AbsTaskRetrieval):
17
17
  eval_splits=["test"],
18
18
  eval_langs=["eng-Latn"],
19
19
  main_score="ndcg_at_10",
20
- date=None,
20
+ date=("2015-01-01", "2015-12-31"), # publication year
21
21
  domains=["Written", "Web", "Programming"],
22
22
  task_subtypes=["Question answering"],
23
23
  license="apache-2.0",
@@ -9,7 +9,7 @@ _fever_metadata = dict(
9
9
  eval_splits=["test"],
10
10
  eval_langs=["eng-Latn"],
11
11
  main_score="ndcg_at_10",
12
- date=None,
12
+ date=("2018-01-01", "2018-12-31"), # publication year
13
13
  domains=["Encyclopaedic", "Written"],
14
14
  task_subtypes=["Claim verification"],
15
15
  license="cc-by-nc-sa-3.0",
@@ -19,7 +19,7 @@ class FiQA2018(AbsTaskRetrieval):
19
19
  eval_splits=["test"],
20
20
  eval_langs=["eng-Latn"],
21
21
  main_score="ndcg_at_10",
22
- date=None,
22
+ date=("2018-01-01", "2018-12-31"), # publication year
23
23
  domains=["Written", "Financial"],
24
24
  task_subtypes=["Question answering"],
25
25
  license="not specified",
@@ -17,7 +17,7 @@ class MSMARCOv2(AbsTaskRetrieval):
17
17
  eval_splits=["train", "dev", "dev2"],
18
18
  eval_langs=["eng-Latn"],
19
19
  main_score="ndcg_at_10",
20
- date=None,
20
+ date=("2016-01-01", "2016-12-31"), # publication year
21
21
  domains=[
22
22
  "Encyclopaedic",
23
23
  "Academic",
@@ -19,7 +19,7 @@ class MSMARCO(AbsTaskRetrieval):
19
19
  eval_splits=["dev"],
20
20
  eval_langs=["eng-Latn"],
21
21
  main_score="ndcg_at_10",
22
- date=None,
22
+ date=("2016-01-01", "2016-12-31"), # publication year
23
23
  domains=[
24
24
  "Encyclopaedic",
25
25
  "Academic",
@@ -81,7 +81,7 @@ class MSMARCOHardNegatives(AbsTaskRetrieval):
81
81
  eval_splits=["test"],
82
82
  eval_langs=["eng-Latn"],
83
83
  main_score="ndcg_at_10",
84
- date=None,
84
+ date=("2016-01-01", "2016-12-31"), # publication year
85
85
  domains=[
86
86
  "Encyclopaedic",
87
87
  "Academic",
@@ -17,13 +17,13 @@ class NFCorpus(AbsTaskRetrieval):
17
17
  eval_splits=["test"],
18
18
  eval_langs=["eng-Latn"],
19
19
  main_score="ndcg_at_10",
20
- date=None,
20
+ date=("2016-01-01", "2016-12-31"), # publication year
21
21
  domains=["Medical", "Academic", "Written"],
22
- task_subtypes=None,
23
- license=None,
24
- annotations_creators=None,
25
- dialect=None,
26
- sample_creation=None,
22
+ task_subtypes=[],
23
+ license="not specified",
24
+ annotations_creators="derived",
25
+ dialect=[],
26
+ sample_creation="found",
27
27
  bibtex_citation=r"""
28
28
  @inproceedings{boteva2016,
29
29
  author = {Boteva, Vera and Gholipour, Demian and Sokolov, Artem and Riezler, Stefan},
@@ -17,7 +17,7 @@ class NQ(AbsTaskRetrieval):
17
17
  eval_splits=["test"],
18
18
  eval_langs=["eng-Latn"],
19
19
  main_score="ndcg_at_10",
20
- date=None,
20
+ date=("2019-01-01", "2019-12-31"), # publication year
21
21
  domains=["Written", "Encyclopaedic"],
22
22
  task_subtypes=["Question answering"],
23
23
  license="cc-by-nc-sa-3.0",
@@ -57,13 +57,13 @@ class NQHardNegatives(AbsTaskRetrieval):
57
57
  eval_splits=["test"],
58
58
  eval_langs=["eng-Latn"],
59
59
  main_score="ndcg_at_10",
60
- date=None,
61
- domains=None,
62
- task_subtypes=None,
63
- license=None,
64
- annotations_creators=None,
65
- dialect=None,
66
- sample_creation=None,
60
+ date=("2019-01-01", "2019-12-31"), # publication year
61
+ domains=["Written", "Encyclopaedic"],
62
+ task_subtypes=["Question answering"],
63
+ license="cc-by-nc-sa-3.0",
64
+ annotations_creators="human-annotated",
65
+ dialect=[],
66
+ sample_creation="found",
67
67
  bibtex_citation=r"""
68
68
  @article{47761,
69
69
  author = {Tom Kwiatkowski and Jennimaria Palomaki and Olivia Redfield and Michael Collins and Ankur Parikh
@@ -9,7 +9,7 @@ _quora_metadata = dict(
9
9
  eval_splits=["test"],
10
10
  eval_langs=["eng-Latn"],
11
11
  main_score="ndcg_at_10",
12
- date=None,
12
+ date=("2017-01-01", "2017-12-31"), # original publication year
13
13
  domains=["Written", "Web", "Blog"],
14
14
  task_subtypes=["Question answering"],
15
15
  license="not specified",