mteb 2.7.20__py3-none-any.whl → 2.7.22__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/abstasks/regression.py +0 -1
- mteb/models/model_implementations/{nvidia_llama_nemoretriever_colemb.py → nvidia_nemotron_colembed_vl.py} +46 -20
- mteb/tasks/clustering/deu/ten_k_gnad_clustering_p2p.py +9 -7
- mteb/tasks/clustering/deu/ten_k_gnad_clustering_s2s.py +13 -11
- mteb/tasks/clustering/fra/hal_clustering_s2s.py +1 -1
- mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nob/vg_clustering.py +1 -1
- mteb/tasks/clustering/rom/romani_bible_clustering.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
- mteb/tasks/pair_classification/multilingual/indic_xnli_pair_classification.py +1 -1
- mteb/tasks/pair_classification/pol/polish_pc.py +2 -2
- mteb/tasks/retrieval/eng/cqa_dupstack_android_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_english_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_gaming_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_gis_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_mathematica_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_physics_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_programmers_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_stats_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_tex_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_unix_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_webmasters_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_wordpress_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fi_qa2018_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/msmarc_ov2_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/msmarco_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/nf_corpus_retrieval.py +6 -6
- mteb/tasks/retrieval/eng/nq_retrieval.py +8 -8
- mteb/tasks/retrieval/eng/quora_retrieval.py +1 -1
- mteb/tasks/retrieval/fas/beir_fa.py +43 -36
- mteb/tasks/retrieval/fas/fa_mteb_retrieval.py +12 -5
- mteb/tasks/retrieval/fra/alloprof_retrieval.py +1 -1
- mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
- mteb/tasks/retrieval/pol/fi_qapl_retrieval.py +1 -1
- mteb/tasks/retrieval/pol/nqpl_retrieval.py +5 -5
- mteb/tasks/sts/eng/biosses_sts.py +1 -1
- mteb/tasks/sts/eng/humests_benchmark.py +1 -1
- mteb/tasks/sts/eng/sts_benchmark_sts.py +1 -1
- mteb/tasks/sts/fin/fin_para_sts.py +1 -1
- mteb/tasks/sts/kor/klue_sts.py +1 -1
- mteb/tasks/sts/ron/ron_sts.py +1 -1
- {mteb-2.7.20.dist-info → mteb-2.7.22.dist-info}/METADATA +11 -1
- {mteb-2.7.20.dist-info → mteb-2.7.22.dist-info}/RECORD +49 -49
- {mteb-2.7.20.dist-info → mteb-2.7.22.dist-info}/WHEEL +0 -0
- {mteb-2.7.20.dist-info → mteb-2.7.22.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.20.dist-info → mteb-2.7.22.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.20.dist-info → mteb-2.7.22.dist-info}/top_level.txt +0 -0
mteb/abstasks/regression.py
CHANGED
|
@@ -93,7 +93,6 @@ class AbsTaskRegression(AbsTaskClassification):
|
|
|
93
93
|
n_samples: Number of samples to use for training the regression model. If the dataset has fewer samples than n_samples, all samples are used.
|
|
94
94
|
abstask_prompt: Prompt to use for the task for instruction model if not prompt is provided in TaskMetadata.prompt.
|
|
95
95
|
evaluator_model: The model to use for evaluation. Can be any sklearn compatible model. Default is `LinearRegression`.
|
|
96
|
-
|
|
97
96
|
"""
|
|
98
97
|
|
|
99
98
|
evaluator: type[SklearnEvaluator] = SklearnEvaluator
|
|
@@ -7,6 +7,7 @@ from packaging.specifiers import SpecifierSet
|
|
|
7
7
|
from torch.utils.data import DataLoader
|
|
8
8
|
from transformers import __version__ as transformers_version
|
|
9
9
|
|
|
10
|
+
from mteb._requires_package import requires_package
|
|
10
11
|
from mteb.models.abs_encoder import AbsEncoder
|
|
11
12
|
from mteb.models.model_meta import ModelMeta
|
|
12
13
|
|
|
@@ -24,27 +25,51 @@ LLAMA_NEMORETRIEVER_CITATION = """@misc{xu2025llamanemoretrievercolembedtopperfo
|
|
|
24
25
|
url={https://arxiv.org/abs/2507.05513}
|
|
25
26
|
}"""
|
|
26
27
|
|
|
28
|
+
# Transformers version constraints per extra.
|
|
29
|
+
# Keep in sync with pyproject.toml [project.optional-dependencies]
|
|
30
|
+
#
|
|
31
|
+
# Note: The extra name reflects the transformers version requirement, not the model version.
|
|
32
|
+
# For example, llama-nemotron-colembed-vl-3b-v2 uses "llama-nemotron-colembed-vl" because it
|
|
33
|
+
# requires transformers==4.49.0, even though it's a "v2" model by name.
|
|
34
|
+
_TRANSFORMERS_CONSTRAINTS: dict[str, str] = {
|
|
35
|
+
"llama-nemotron-colembed-vl": "==4.49.0", # llama-nemoretriever-colembed-*
|
|
36
|
+
"nemotron-colembed-vl-v2": "==5.0.0rc0", # nemotron-colembed-vl-4b-v2, nemotron-colembed-vl-8b-v2
|
|
37
|
+
}
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
class NemotronColEmbedVL(AbsEncoder):
|
|
41
|
+
"""Encoder for the NemotronColEmbedVL family of models."""
|
|
27
42
|
|
|
28
|
-
class LlamaNemoretrieverColembed(AbsEncoder):
|
|
29
43
|
def __init__(
|
|
30
44
|
self,
|
|
31
45
|
model_name_or_path: str,
|
|
32
46
|
revision: str,
|
|
33
47
|
trust_remote_code: bool,
|
|
34
|
-
|
|
48
|
+
extra_name: str = "llama-nemotron-colembed-vl",
|
|
35
49
|
device_map="cuda",
|
|
36
50
|
torch_dtype=torch.bfloat16,
|
|
37
51
|
attn_implementation="flash_attention_2",
|
|
38
52
|
**kwargs,
|
|
39
53
|
):
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
)
|
|
54
|
+
install_hint = f"pip install 'mteb[{extra_name}]'"
|
|
55
|
+
|
|
56
|
+
# Check transformers version
|
|
57
|
+
constraint = _TRANSFORMERS_CONSTRAINTS.get(extra_name)
|
|
58
|
+
if constraint is None:
|
|
59
|
+
raise ValueError(
|
|
60
|
+
f"Unknown extra_name '{extra_name}'. "
|
|
61
|
+
f"Must be one of: {list(_TRANSFORMERS_CONSTRAINTS.keys())}"
|
|
62
|
+
)
|
|
63
|
+
if transformers_version not in SpecifierSet(constraint):
|
|
64
|
+
raise RuntimeError(
|
|
65
|
+
f"Model `{model_name_or_path}` requires transformers{constraint}, "
|
|
66
|
+
f"but {transformers_version} is installed. "
|
|
67
|
+
f"Run: {install_hint}"
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
# Check required packages
|
|
71
|
+
for package in ("torchvision", "accelerate", "flash_attn"):
|
|
72
|
+
requires_package(self, package, model_name_or_path, install_hint)
|
|
48
73
|
|
|
49
74
|
from transformers import AutoModel
|
|
50
75
|
|
|
@@ -166,10 +191,10 @@ TRAINING_DATA_v2 = {
|
|
|
166
191
|
}
|
|
167
192
|
|
|
168
193
|
llama_nemoretriever_colembed_1b_v1 = ModelMeta(
|
|
169
|
-
loader=
|
|
194
|
+
loader=NemotronColEmbedVL,
|
|
170
195
|
loader_kwargs=dict(
|
|
196
|
+
extra_name="llama-nemotron-colembed-vl",
|
|
171
197
|
trust_remote_code=True,
|
|
172
|
-
transformers_version_constraint="==4.49.0",
|
|
173
198
|
),
|
|
174
199
|
name="nvidia/llama-nemoretriever-colembed-1b-v1",
|
|
175
200
|
model_type=["late-interaction"],
|
|
@@ -195,10 +220,10 @@ llama_nemoretriever_colembed_1b_v1 = ModelMeta(
|
|
|
195
220
|
)
|
|
196
221
|
|
|
197
222
|
llama_nemoretriever_colembed_3b_v1 = ModelMeta(
|
|
198
|
-
loader=
|
|
223
|
+
loader=NemotronColEmbedVL,
|
|
199
224
|
loader_kwargs=dict(
|
|
225
|
+
extra_name="llama-nemotron-colembed-vl",
|
|
200
226
|
trust_remote_code=True,
|
|
201
|
-
transformers_version_constraint="==4.49.0",
|
|
202
227
|
),
|
|
203
228
|
name="nvidia/llama-nemoretriever-colembed-3b-v1",
|
|
204
229
|
model_type=["late-interaction"],
|
|
@@ -224,10 +249,10 @@ llama_nemoretriever_colembed_3b_v1 = ModelMeta(
|
|
|
224
249
|
)
|
|
225
250
|
|
|
226
251
|
llama_nemotron_colembed_vl_3b_v2 = ModelMeta(
|
|
227
|
-
loader=
|
|
252
|
+
loader=NemotronColEmbedVL,
|
|
228
253
|
loader_kwargs=dict(
|
|
254
|
+
extra_name="llama-nemotron-colembed-vl",
|
|
229
255
|
trust_remote_code=True,
|
|
230
|
-
transformers_version_constraint="==4.49.0",
|
|
231
256
|
),
|
|
232
257
|
name="nvidia/llama-nemotron-colembed-vl-3b-v2",
|
|
233
258
|
model_type=["late-interaction"],
|
|
@@ -251,11 +276,12 @@ llama_nemotron_colembed_vl_3b_v2 = ModelMeta(
|
|
|
251
276
|
citation=LLAMA_NEMORETRIEVER_CITATION,
|
|
252
277
|
)
|
|
253
278
|
|
|
279
|
+
|
|
254
280
|
nemotron_colembed_vl_4b_v2 = ModelMeta(
|
|
255
|
-
loader=
|
|
281
|
+
loader=NemotronColEmbedVL,
|
|
256
282
|
loader_kwargs=dict(
|
|
283
|
+
extra_name="nemotron-colembed-vl-v2",
|
|
257
284
|
trust_remote_code=True,
|
|
258
|
-
transformers_version_constraint="==5.0.0rc0",
|
|
259
285
|
),
|
|
260
286
|
name="nvidia/nemotron-colembed-vl-4b-v2",
|
|
261
287
|
revision="823b1625c15fe3da73fa094205e538a7a2301a2a",
|
|
@@ -280,10 +306,10 @@ nemotron_colembed_vl_4b_v2 = ModelMeta(
|
|
|
280
306
|
|
|
281
307
|
|
|
282
308
|
nemotron_colembed_vl_8b_v2 = ModelMeta(
|
|
283
|
-
loader=
|
|
309
|
+
loader=NemotronColEmbedVL,
|
|
284
310
|
loader_kwargs=dict(
|
|
311
|
+
extra_name="nemotron-colembed-vl-v2",
|
|
285
312
|
trust_remote_code=True,
|
|
286
|
-
transformers_version_constraint="==5.0.0rc0",
|
|
287
313
|
),
|
|
288
314
|
name="nvidia/nemotron-colembed-vl-8b-v2",
|
|
289
315
|
revision="6cbe43579dda6237768fc373768ad372cc5cdfec",
|
|
@@ -18,14 +18,17 @@ class TenKGnadClusteringP2P(AbsTaskClusteringLegacy):
|
|
|
18
18
|
eval_splits=["test"],
|
|
19
19
|
eval_langs=["deu-Latn"],
|
|
20
20
|
main_score="v_measure",
|
|
21
|
-
date=
|
|
21
|
+
date=(
|
|
22
|
+
"2000-01-01",
|
|
23
|
+
"2020-12-31",
|
|
24
|
+
), # since it is news it is guessed that it is from 2000 to 2020
|
|
22
25
|
domains=["Web", "Written"],
|
|
23
26
|
task_subtypes=[],
|
|
24
27
|
license="cc-by-nc-sa-4.0",
|
|
25
|
-
annotations_creators=
|
|
28
|
+
annotations_creators="derived",
|
|
26
29
|
dialect=[],
|
|
27
30
|
sample_creation="found",
|
|
28
|
-
bibtex_citation=
|
|
31
|
+
bibtex_citation="", # none found
|
|
29
32
|
superseded_by="TenKGnadClusteringP2P.v2",
|
|
30
33
|
)
|
|
31
34
|
|
|
@@ -36,7 +39,7 @@ class TenKGnadClusteringP2PFast(AbsTaskClustering):
|
|
|
36
39
|
|
|
37
40
|
metadata = TaskMetadata(
|
|
38
41
|
name="TenKGnadClusteringP2P.v2",
|
|
39
|
-
description="Clustering of news article titles+subheadings+texts. Clustering of 10 splits on the news article category.",
|
|
42
|
+
description="Clustering of news article titles+subheadings+texts. Clustering of 10 splits on the news article category. v2 uses a faster evaluation method used in the MMTEB paper, which allow for notably faster evaluation.",
|
|
40
43
|
reference="https://tblock.github.io/10kGNAD/",
|
|
41
44
|
dataset={
|
|
42
45
|
"path": "slvnwhrl/tenkgnad-clustering-p2p",
|
|
@@ -53,13 +56,12 @@ class TenKGnadClusteringP2PFast(AbsTaskClustering):
|
|
|
53
56
|
"2020-12-31",
|
|
54
57
|
), # since it is news it is guessed that it is from 2000 to 2020
|
|
55
58
|
domains=["News", "Non-fiction", "Written"],
|
|
56
|
-
task_subtypes=
|
|
59
|
+
task_subtypes=["Thematic clustering"],
|
|
57
60
|
license="cc-by-sa-4.0",
|
|
58
61
|
annotations_creators="derived",
|
|
59
62
|
dialect=[],
|
|
60
63
|
sample_creation="found",
|
|
61
|
-
bibtex_citation=
|
|
62
|
-
# due to duplicates
|
|
64
|
+
bibtex_citation="", # none found
|
|
63
65
|
adapted_from=["TenKGnadClusteringP2P"],
|
|
64
66
|
)
|
|
65
67
|
|
|
@@ -18,14 +18,17 @@ class TenKGnadClusteringS2S(AbsTaskClusteringLegacy):
|
|
|
18
18
|
eval_splits=["test"],
|
|
19
19
|
eval_langs=["deu-Latn"],
|
|
20
20
|
main_score="v_measure",
|
|
21
|
-
date=
|
|
21
|
+
date=(
|
|
22
|
+
"2000-01-01",
|
|
23
|
+
"2020-12-31",
|
|
24
|
+
), # since it is news it is guessed that it is from 2000 to 2020
|
|
22
25
|
domains=["News", "Non-fiction", "Written"],
|
|
23
|
-
task_subtypes=["
|
|
24
|
-
license=
|
|
25
|
-
annotations_creators=
|
|
26
|
-
dialect=
|
|
27
|
-
sample_creation=
|
|
28
|
-
bibtex_citation=
|
|
26
|
+
task_subtypes=["Thematic clustering"],
|
|
27
|
+
license="cc-by-nc-sa-4.0",
|
|
28
|
+
annotations_creators="derived",
|
|
29
|
+
dialect=[],
|
|
30
|
+
sample_creation="found",
|
|
31
|
+
bibtex_citation="", # none found
|
|
29
32
|
superseded_by="TenKGnadClusteringS2S.v2",
|
|
30
33
|
)
|
|
31
34
|
|
|
@@ -36,7 +39,7 @@ class TenKGnadClusteringS2SFast(AbsTaskClustering):
|
|
|
36
39
|
|
|
37
40
|
metadata = TaskMetadata(
|
|
38
41
|
name="TenKGnadClusteringS2S.v2",
|
|
39
|
-
description="Clustering of news article titles. Clustering of 10 splits on the news article category.",
|
|
42
|
+
description="Clustering of news article titles. Clustering of 10 splits on the news article category. v2 uses a faster evaluation method used in the MMTEB paper, which allow for notably faster evaluation.",
|
|
40
43
|
reference="https://tblock.github.io/10kGNAD/",
|
|
41
44
|
dataset={
|
|
42
45
|
"path": "slvnwhrl/tenkgnad-clustering-s2s",
|
|
@@ -53,13 +56,12 @@ class TenKGnadClusteringS2SFast(AbsTaskClustering):
|
|
|
53
56
|
"2020-12-31",
|
|
54
57
|
), # since it is news it is guessed that it is from 2000 to 2020
|
|
55
58
|
domains=["News", "Non-fiction", "Written"],
|
|
56
|
-
task_subtypes=["
|
|
59
|
+
task_subtypes=["Thematic clustering"],
|
|
57
60
|
license="cc-by-sa-4.0",
|
|
58
61
|
annotations_creators="derived",
|
|
59
62
|
dialect=[],
|
|
60
63
|
sample_creation="found",
|
|
61
|
-
bibtex_citation=
|
|
62
|
-
# due to duplicates
|
|
64
|
+
bibtex_citation="", # none found
|
|
63
65
|
adapted_from=["TenKGnadClusteringS2S"],
|
|
64
66
|
)
|
|
65
67
|
|
|
@@ -33,7 +33,7 @@ class HALClusteringS2S(AbsTaskClusteringLegacy):
|
|
|
33
33
|
task_subtypes=["Thematic clustering"],
|
|
34
34
|
license="apache-2.0",
|
|
35
35
|
annotations_creators="human-annotated",
|
|
36
|
-
dialect=
|
|
36
|
+
dialect=[],
|
|
37
37
|
sample_creation="found",
|
|
38
38
|
bibtex_citation=r"""
|
|
39
39
|
@misc{ciancone2024extending,
|
|
@@ -42,7 +42,7 @@ class VGClustering(AbsTaskClusteringLegacy):
|
|
|
42
42
|
main_score="v_measure",
|
|
43
43
|
date=("2020-01-01", "2024-12-31"), # best guess
|
|
44
44
|
domains=["News", "Non-fiction", "Written"],
|
|
45
|
-
license=
|
|
45
|
+
license="not specified",
|
|
46
46
|
annotations_creators="derived",
|
|
47
47
|
dialect=[],
|
|
48
48
|
task_subtypes=["Thematic clustering"],
|
|
@@ -17,7 +17,7 @@ class TwitterSemEval2015PC(AbsTaskPairClassification):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="max_ap",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Social", "Written"],
|
|
22
22
|
task_subtypes=[],
|
|
23
23
|
license="not specified",
|
|
@@ -17,7 +17,7 @@ class TwitterURLCorpus(AbsTaskPairClassification):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="max_ap",
|
|
20
|
-
date=
|
|
20
|
+
date=("2017-01-01", "2017-12-31"), # publication year
|
|
21
21
|
domains=["Social", "Written"],
|
|
22
22
|
task_subtypes=[],
|
|
23
23
|
license="not specified",
|
|
@@ -41,7 +41,7 @@ class IndicXnliPairClassification(AbsTaskPairClassification):
|
|
|
41
41
|
main_score="max_ap",
|
|
42
42
|
date=("2022-04-22", "2022-10-06"),
|
|
43
43
|
domains=["Non-fiction", "Fiction", "Government", "Written"],
|
|
44
|
-
task_subtypes=
|
|
44
|
+
task_subtypes=[],
|
|
45
45
|
license="cc-by-4.0",
|
|
46
46
|
annotations_creators="derived",
|
|
47
47
|
dialect=[],
|
|
@@ -77,7 +77,7 @@ class PpcPC(AbsTaskPairClassification):
|
|
|
77
77
|
eval_splits=["test"],
|
|
78
78
|
eval_langs=["pol-Latn"],
|
|
79
79
|
main_score="max_ap",
|
|
80
|
-
date=
|
|
80
|
+
date=("2022-01-01", "2022-12-31"), # publication year
|
|
81
81
|
domains=[
|
|
82
82
|
"Fiction",
|
|
83
83
|
"Non-fiction",
|
|
@@ -125,7 +125,7 @@ class CdscePC(AbsTaskPairClassification):
|
|
|
125
125
|
eval_splits=["test"],
|
|
126
126
|
eval_langs=["pol-Latn"],
|
|
127
127
|
main_score="max_ap",
|
|
128
|
-
date=
|
|
128
|
+
date=("2017-01-01", "2017-12-31"), # publication year
|
|
129
129
|
domains=["Written"],
|
|
130
130
|
task_subtypes=[],
|
|
131
131
|
license="cc-by-nc-sa-4.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackAndroidRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Programming", "Web", "Written", "Non-fiction"],
|
|
22
22
|
task_subtypes=["Question answering", "Duplicate Detection"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackEnglishRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Written"],
|
|
22
22
|
task_subtypes=["Question answering", "Duplicate Detection"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackGamingRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Web", "Written"],
|
|
22
22
|
task_subtypes=["Question answering", "Duplicate Detection"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackGisRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Written", "Non-fiction"],
|
|
22
22
|
task_subtypes=["Question answering", "Duplicate Detection"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackMathematicaRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Written", "Academic", "Non-fiction"],
|
|
22
22
|
task_subtypes=["Question answering", "Duplicate Detection"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackPhysicsRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Written", "Academic", "Non-fiction"],
|
|
22
22
|
task_subtypes=["Question answering", "Duplicate Detection"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackProgrammersRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Programming", "Written", "Non-fiction"],
|
|
22
22
|
task_subtypes=[],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackStatsRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Written", "Academic", "Non-fiction"],
|
|
22
22
|
task_subtypes=["Question answering", "Duplicate Detection"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackTexRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Written", "Non-fiction"],
|
|
22
22
|
task_subtypes=["Question answering", "Duplicate Detection"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackUnixRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Written", "Web", "Programming"],
|
|
22
22
|
task_subtypes=["Question answering", "Duplicate Detection"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackWebmastersRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Written", "Web"],
|
|
22
22
|
task_subtypes=["Question answering"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackWordpressRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Written", "Web", "Programming"],
|
|
22
22
|
task_subtypes=["Question answering"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -9,7 +9,7 @@ _fever_metadata = dict(
|
|
|
9
9
|
eval_splits=["test"],
|
|
10
10
|
eval_langs=["eng-Latn"],
|
|
11
11
|
main_score="ndcg_at_10",
|
|
12
|
-
date=
|
|
12
|
+
date=("2018-01-01", "2018-12-31"), # publication year
|
|
13
13
|
domains=["Encyclopaedic", "Written"],
|
|
14
14
|
task_subtypes=["Claim verification"],
|
|
15
15
|
license="cc-by-nc-sa-3.0",
|
|
@@ -19,7 +19,7 @@ class FiQA2018(AbsTaskRetrieval):
|
|
|
19
19
|
eval_splits=["test"],
|
|
20
20
|
eval_langs=["eng-Latn"],
|
|
21
21
|
main_score="ndcg_at_10",
|
|
22
|
-
date=
|
|
22
|
+
date=("2018-01-01", "2018-12-31"), # publication year
|
|
23
23
|
domains=["Written", "Financial"],
|
|
24
24
|
task_subtypes=["Question answering"],
|
|
25
25
|
license="not specified",
|
|
@@ -19,7 +19,7 @@ class MSMARCO(AbsTaskRetrieval):
|
|
|
19
19
|
eval_splits=["dev"],
|
|
20
20
|
eval_langs=["eng-Latn"],
|
|
21
21
|
main_score="ndcg_at_10",
|
|
22
|
-
date=
|
|
22
|
+
date=("2016-01-01", "2016-12-31"), # publication year
|
|
23
23
|
domains=[
|
|
24
24
|
"Encyclopaedic",
|
|
25
25
|
"Academic",
|
|
@@ -81,7 +81,7 @@ class MSMARCOHardNegatives(AbsTaskRetrieval):
|
|
|
81
81
|
eval_splits=["test"],
|
|
82
82
|
eval_langs=["eng-Latn"],
|
|
83
83
|
main_score="ndcg_at_10",
|
|
84
|
-
date=
|
|
84
|
+
date=("2016-01-01", "2016-12-31"), # publication year
|
|
85
85
|
domains=[
|
|
86
86
|
"Encyclopaedic",
|
|
87
87
|
"Academic",
|
|
@@ -17,13 +17,13 @@ class NFCorpus(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2016-01-01", "2016-12-31"), # publication year
|
|
21
21
|
domains=["Medical", "Academic", "Written"],
|
|
22
|
-
task_subtypes=
|
|
23
|
-
license=
|
|
24
|
-
annotations_creators=
|
|
25
|
-
dialect=
|
|
26
|
-
sample_creation=
|
|
22
|
+
task_subtypes=[],
|
|
23
|
+
license="not specified",
|
|
24
|
+
annotations_creators="derived",
|
|
25
|
+
dialect=[],
|
|
26
|
+
sample_creation="found",
|
|
27
27
|
bibtex_citation=r"""
|
|
28
28
|
@inproceedings{boteva2016,
|
|
29
29
|
author = {Boteva, Vera and Gholipour, Demian and Sokolov, Artem and Riezler, Stefan},
|
|
@@ -17,7 +17,7 @@ class NQ(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2019-01-01", "2019-12-31"), # publication year
|
|
21
21
|
domains=["Written", "Encyclopaedic"],
|
|
22
22
|
task_subtypes=["Question answering"],
|
|
23
23
|
license="cc-by-nc-sa-3.0",
|
|
@@ -57,13 +57,13 @@ class NQHardNegatives(AbsTaskRetrieval):
|
|
|
57
57
|
eval_splits=["test"],
|
|
58
58
|
eval_langs=["eng-Latn"],
|
|
59
59
|
main_score="ndcg_at_10",
|
|
60
|
-
date=
|
|
61
|
-
domains=
|
|
62
|
-
task_subtypes=
|
|
63
|
-
license=
|
|
64
|
-
annotations_creators=
|
|
65
|
-
dialect=
|
|
66
|
-
sample_creation=
|
|
60
|
+
date=("2019-01-01", "2019-12-31"), # publication year
|
|
61
|
+
domains=["Written", "Encyclopaedic"],
|
|
62
|
+
task_subtypes=["Question answering"],
|
|
63
|
+
license="cc-by-nc-sa-3.0",
|
|
64
|
+
annotations_creators="human-annotated",
|
|
65
|
+
dialect=[],
|
|
66
|
+
sample_creation="found",
|
|
67
67
|
bibtex_citation=r"""
|
|
68
68
|
@article{47761,
|
|
69
69
|
author = {Tom Kwiatkowski and Jennimaria Palomaki and Olivia Redfield and Michael Collins and Ankur Parikh
|
|
@@ -9,7 +9,7 @@ _quora_metadata = dict(
|
|
|
9
9
|
eval_splits=["test"],
|
|
10
10
|
eval_langs=["eng-Latn"],
|
|
11
11
|
main_score="ndcg_at_10",
|
|
12
|
-
date=
|
|
12
|
+
date=("2017-01-01", "2017-12-31"), # original publication year
|
|
13
13
|
domains=["Written", "Web", "Blog"],
|
|
14
14
|
task_subtypes=["Question answering"],
|
|
15
15
|
license="not specified",
|