mteb 2.7.10__py3-none-any.whl → 2.7.12__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/abstasks/abstask.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +1 -0
- mteb/tasks/bitext_mining/multilingual/bible_nlp_bitext_mining.py +1 -1
- mteb/tasks/classification/ben/bengali_document_classification.py +2 -2
- mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py +1 -1
- mteb/tasks/classification/multilingual/hin_dialect_classification.py +1 -1
- mteb/tasks/classification/multilingual/indic_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/indic_sentiment_classification.py +1 -1
- mteb/tasks/classification/multilingual/language_classification.py +1 -1
- mteb/tasks/classification/multilingual/south_african_lang_classification.py +1 -1
- mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/swa/swahili_news_classification.py +2 -2
- mteb/tasks/clustering/deu/ten_k_gnad_clustering_p2p.py +1 -1
- mteb/tasks/clustering/deu/ten_k_gnad_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nob/vg_hierarchical_clustering.py +2 -2
- mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py +1 -1
- mteb/tasks/pair_classification/multilingual/pub_chem_wiki_pair_classification.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +4 -4
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +1 -1
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +1 -1
- mteb/tasks/retrieval/nob/norquad.py +1 -1
- mteb/tasks/retrieval/nob/snl_retrieval.py +1 -1
- mteb/tasks/sts/multilingual/sem_rel24_sts.py +1 -1
- mteb/tasks/sts/multilingual/sts_benchmark_multilingual_sts.py +1 -1
- mteb/tasks/sts/por/assin2_sts.py +1 -1
- {mteb-2.7.10.dist-info → mteb-2.7.12.dist-info}/METADATA +1 -1
- {mteb-2.7.10.dist-info → mteb-2.7.12.dist-info}/RECORD +33 -33
- {mteb-2.7.10.dist-info → mteb-2.7.12.dist-info}/WHEEL +1 -1
- {mteb-2.7.10.dist-info → mteb-2.7.12.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.10.dist-info → mteb-2.7.12.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.10.dist-info → mteb-2.7.12.dist-info}/top_level.txt +0 -0
mteb/abstasks/abstask.py
CHANGED
|
@@ -116,7 +116,7 @@ class AbsTask(ABC):
|
|
|
116
116
|
logger.warning(msg)
|
|
117
117
|
warnings.warn(msg)
|
|
118
118
|
|
|
119
|
-
def dataset_transform(self, num_proc: int = 1):
|
|
119
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs: Any) -> None:
|
|
120
120
|
"""A transform operations applied to the dataset after loading.
|
|
121
121
|
|
|
122
122
|
This method is useful when the dataset from Huggingface is not in an `mteb` compatible format.
|
|
@@ -124,6 +124,7 @@ class AbsTask(ABC):
|
|
|
124
124
|
|
|
125
125
|
Args:
|
|
126
126
|
num_proc: Number of processes to use for the transformation.
|
|
127
|
+
kwargs: Additional keyword arguments passed to the load_dataset function. Keep for forward compatibility.
|
|
127
128
|
"""
|
|
128
129
|
pass
|
|
129
130
|
|
|
@@ -914,7 +914,7 @@ class BibleNLPBitextMining(AbsTaskBitextMining):
|
|
|
914
914
|
self.dataset_transform()
|
|
915
915
|
self.data_loaded = True
|
|
916
916
|
|
|
917
|
-
def dataset_transform(self) -> None:
|
|
917
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
918
918
|
# Convert to standard format
|
|
919
919
|
for lang in self.hf_subsets:
|
|
920
920
|
l1, l2 = (l.split("_")[0] for l in lang.split("-"))
|
|
@@ -43,7 +43,7 @@ Islam, Tanvir},
|
|
|
43
43
|
superseded_by="BengaliDocumentClassification.v2",
|
|
44
44
|
)
|
|
45
45
|
|
|
46
|
-
def dataset_transform(self) -> None:
|
|
46
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
47
47
|
self.dataset = self.dataset.rename_columns(
|
|
48
48
|
{"article": "text", "category": "label"}
|
|
49
49
|
)
|
|
@@ -92,7 +92,7 @@ Islam, Tanvir},
|
|
|
92
92
|
""",
|
|
93
93
|
)
|
|
94
94
|
|
|
95
|
-
def dataset_transform(self) -> None:
|
|
95
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
96
96
|
self.dataset = self.stratified_subsampling(
|
|
97
97
|
self.dataset, seed=self.seed, splits=["test"]
|
|
98
98
|
)
|
|
@@ -46,7 +46,7 @@ Montoyo, Andres},
|
|
|
46
46
|
)
|
|
47
47
|
samples_per_label = 16
|
|
48
48
|
|
|
49
|
-
def dataset_transform(self) -> None:
|
|
49
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
50
50
|
self.dataset = self.dataset.rename_columns(
|
|
51
51
|
{"comment": "text", "rating_str": "label"}
|
|
52
52
|
)
|
|
@@ -99,7 +99,7 @@ Montoyo, Andres},
|
|
|
99
99
|
)
|
|
100
100
|
samples_per_label = 16
|
|
101
101
|
|
|
102
|
-
def dataset_transform(self) -> None:
|
|
102
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
103
103
|
self.dataset = self.stratified_subsampling(
|
|
104
104
|
self.dataset, seed=self.seed, splits=["test"]
|
|
105
105
|
)
|
|
@@ -46,7 +46,7 @@ Montoyo, Andres},
|
|
|
46
46
|
)
|
|
47
47
|
samples_per_label = 16
|
|
48
48
|
|
|
49
|
-
def dataset_transform(self) -> None:
|
|
49
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
50
50
|
self.dataset = self.dataset.rename_columns(
|
|
51
51
|
{"comment": "text", "sentiment_int": "label"}
|
|
52
52
|
)
|
|
@@ -60,7 +60,7 @@ class HinDialectClassification(AbsTaskClassification):
|
|
|
60
60
|
""",
|
|
61
61
|
)
|
|
62
62
|
|
|
63
|
-
def dataset_transform(self) -> None:
|
|
63
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
64
64
|
self.dataset = self.dataset.rename_columns(
|
|
65
65
|
{"folksong": "text", "language": "label"}
|
|
66
66
|
)
|
|
@@ -137,6 +137,6 @@ Okazaki, Naoaki},
|
|
|
137
137
|
self.dataset_transform()
|
|
138
138
|
self.data_loaded = True
|
|
139
139
|
|
|
140
|
-
def dataset_transform(self) -> None:
|
|
140
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
141
141
|
self.dataset = self.dataset.remove_columns(["language", "script"])
|
|
142
142
|
self.dataset = self.dataset.rename_columns({"native sentence": "text"})
|
|
@@ -52,7 +52,7 @@ class IndicSentimentClassification(AbsTaskClassification):
|
|
|
52
52
|
""",
|
|
53
53
|
)
|
|
54
54
|
|
|
55
|
-
def dataset_transform(self) -> None:
|
|
55
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
56
56
|
label_map = {"Negative": 0, "Positive": 1}
|
|
57
57
|
# Convert to standard format
|
|
58
58
|
for lang in self.hf_subsets:
|
|
@@ -66,7 +66,7 @@ in Natural Language Processing},
|
|
|
66
66
|
""",
|
|
67
67
|
)
|
|
68
68
|
|
|
69
|
-
def dataset_transform(self) -> None:
|
|
69
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
70
70
|
self.dataset = self.dataset.rename_columns({"labels": "label"})
|
|
71
71
|
self.dataset = self.stratified_subsampling(
|
|
72
72
|
self.dataset, seed=self.seed, splits=["test"]
|
|
@@ -49,7 +49,7 @@ class SouthAfricanLangClassification(AbsTaskClassification):
|
|
|
49
49
|
""",
|
|
50
50
|
)
|
|
51
51
|
|
|
52
|
-
def dataset_transform(self) -> None:
|
|
52
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
53
53
|
self.dataset = self.dataset.rename_columns(
|
|
54
54
|
{" text": "text", "lang_id": "label"}
|
|
55
55
|
)
|
|
@@ -35,7 +35,7 @@ class SlovakMovieReviewSentimentClassification(AbsTaskClassification):
|
|
|
35
35
|
superseded_by="SlovakMovieReviewSentimentClassification.v2",
|
|
36
36
|
)
|
|
37
37
|
|
|
38
|
-
def dataset_transform(self) -> None:
|
|
38
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
39
39
|
self.dataset = self.dataset.rename_columns({"comment": "text"})
|
|
40
40
|
|
|
41
41
|
self.dataset = self.stratified_subsampling(
|
|
@@ -76,7 +76,7 @@ class SlovakMovieReviewSentimentClassificationV2(AbsTaskClassification):
|
|
|
76
76
|
adapted_from=["SlovakMovieReviewSentimentClassification"],
|
|
77
77
|
)
|
|
78
78
|
|
|
79
|
-
def dataset_transform(self) -> None:
|
|
79
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
80
80
|
self.dataset = self.stratified_subsampling(
|
|
81
81
|
self.dataset, seed=self.seed, splits=["test"]
|
|
82
82
|
)
|
|
@@ -37,7 +37,7 @@ class SwahiliNewsClassification(AbsTaskClassification):
|
|
|
37
37
|
superseded_by="SwahiliNewsClassification.v2",
|
|
38
38
|
)
|
|
39
39
|
|
|
40
|
-
def dataset_transform(self) -> None:
|
|
40
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
41
41
|
self.dataset = self.dataset.rename_columns(
|
|
42
42
|
{"content": "text", "category": "label"}
|
|
43
43
|
)
|
|
@@ -81,7 +81,7 @@ class SwahiliNewsClassificationV2(AbsTaskClassification):
|
|
|
81
81
|
adapted_from=["SwahiliNewsClassification"],
|
|
82
82
|
)
|
|
83
83
|
|
|
84
|
-
def dataset_transform(self) -> None:
|
|
84
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
85
85
|
self.dataset = self.stratified_subsampling(
|
|
86
86
|
self.dataset, seed=self.seed, splits=["train"]
|
|
87
87
|
)
|
|
@@ -63,7 +63,7 @@ class TenKGnadClusteringP2PFast(AbsTaskClustering):
|
|
|
63
63
|
adapted_from=["TenKGnadClusteringP2P"],
|
|
64
64
|
)
|
|
65
65
|
|
|
66
|
-
def dataset_transform(self) -> None:
|
|
66
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
67
67
|
ds = _convert_to_fast(
|
|
68
68
|
self.dataset, self.input_column_name, self.label_column_name, self.seed
|
|
69
69
|
)
|
|
@@ -63,7 +63,7 @@ class TenKGnadClusteringS2SFast(AbsTaskClustering):
|
|
|
63
63
|
adapted_from=["TenKGnadClusteringS2S"],
|
|
64
64
|
)
|
|
65
65
|
|
|
66
|
-
def dataset_transform(self) -> None:
|
|
66
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
67
67
|
ds = _convert_to_fast(
|
|
68
68
|
self.dataset, self.input_column_name, self.label_column_name, self.seed
|
|
69
69
|
)
|
|
@@ -45,7 +45,7 @@ class VGHierarchicalClusteringP2P(AbsTaskClustering):
|
|
|
45
45
|
prompt="Identify the categories (e.g. sports) of given articles in Norwegian",
|
|
46
46
|
)
|
|
47
47
|
|
|
48
|
-
def dataset_transform(self) -> None:
|
|
48
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
49
49
|
self.dataset = self.dataset.rename_columns(
|
|
50
50
|
{"article": "sentences", "classes": "labels"}
|
|
51
51
|
)
|
|
@@ -92,7 +92,7 @@ class VGHierarchicalClusteringS2S(AbsTaskClustering):
|
|
|
92
92
|
prompt="Identify the categories (e.g. sports) of given articles in Norwegian",
|
|
93
93
|
)
|
|
94
94
|
|
|
95
|
-
def dataset_transform(self) -> None:
|
|
95
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
96
96
|
self.dataset = self.dataset.rename_columns(
|
|
97
97
|
{"ingress": "sentences", "classes": "labels"}
|
|
98
98
|
)
|
|
@@ -60,7 +60,7 @@ class PubChemWikiPairClassification(AbsTaskPairClassification):
|
|
|
60
60
|
""",
|
|
61
61
|
)
|
|
62
62
|
|
|
63
|
-
def dataset_transform(self) -> None:
|
|
63
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
64
64
|
_dataset = {}
|
|
65
65
|
for lang in self.hf_subsets:
|
|
66
66
|
_dataset[lang] = {}
|
|
@@ -59,7 +59,7 @@ class CodeRAGProgrammingSolutionsRetrieval(AbsTaskRetrieval):
|
|
|
59
59
|
self.dataset_transform()
|
|
60
60
|
self.data_loaded = True
|
|
61
61
|
|
|
62
|
-
def dataset_transform(self) -> None:
|
|
62
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
63
63
|
"""And transform to a retrieval dataset, which have the following attributes
|
|
64
64
|
|
|
65
65
|
self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document data like title and text
|
|
@@ -116,7 +116,7 @@ class CodeRAGOnlineTutorialsRetrieval(AbsTaskRetrieval):
|
|
|
116
116
|
self.dataset_transform()
|
|
117
117
|
self.data_loaded = True
|
|
118
118
|
|
|
119
|
-
def dataset_transform(self) -> None:
|
|
119
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
120
120
|
"""And transform to a retrieval dataset, which have the following attributes
|
|
121
121
|
|
|
122
122
|
self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document data like title and text
|
|
@@ -176,7 +176,7 @@ class CodeRAGLibraryDocumentationSolutionsRetrieval(AbsTaskRetrieval):
|
|
|
176
176
|
self.dataset_transform()
|
|
177
177
|
self.data_loaded = True
|
|
178
178
|
|
|
179
|
-
def dataset_transform(self) -> None:
|
|
179
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
180
180
|
"""And transform to a retrieval dataset, which have the following attributes
|
|
181
181
|
|
|
182
182
|
self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document data like title and text
|
|
@@ -233,7 +233,7 @@ class CodeRAGStackoverflowPostsRetrieval(AbsTaskRetrieval):
|
|
|
233
233
|
self.dataset_transform()
|
|
234
234
|
self.data_loaded = True
|
|
235
235
|
|
|
236
|
-
def dataset_transform(self) -> None:
|
|
236
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
237
237
|
"""And transform to a retrieval dataset, which have the following attributes
|
|
238
238
|
|
|
239
239
|
self.corpus = Dict[doc_id, Dict[str, str]] #id => dict with document data like title and text
|
|
@@ -55,7 +55,7 @@ Derczynski, Leon},
|
|
|
55
55
|
self.dataset_transform()
|
|
56
56
|
self.data_loaded = True
|
|
57
57
|
|
|
58
|
-
def dataset_transform(self) -> None:
|
|
58
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
59
59
|
"""And transform to a retrieval dataset, which have the following attributes
|
|
60
60
|
|
|
61
61
|
self.corpus = dict[doc_id, dict[str, str]] #id => dict with document data like title and text
|
|
@@ -68,7 +68,7 @@ Piperidis, Stelios},
|
|
|
68
68
|
self.dataset_transform()
|
|
69
69
|
self.data_loaded = True
|
|
70
70
|
|
|
71
|
-
def dataset_transform(self) -> None:
|
|
71
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
72
72
|
"""And transform to a retrieval dataset, which have the following attributes
|
|
73
73
|
|
|
74
74
|
self.corpus = dict[doc_id, dict[str, str]] #id => dict with document data like title and text
|
|
@@ -44,7 +44,7 @@ class TwitterHjerneRetrieval(AbsTaskRetrieval):
|
|
|
44
44
|
self.dataset_transform()
|
|
45
45
|
self.data_loaded = True
|
|
46
46
|
|
|
47
|
-
def dataset_transform(self) -> None:
|
|
47
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
48
48
|
"""And transform to a retrieval dataset, which have the following attributes
|
|
49
49
|
|
|
50
50
|
self.corpus = dict[doc_id, dict[str, str]] #id => dict with document data like title and text
|
|
@@ -58,7 +58,7 @@ Fishel, Mark},
|
|
|
58
58
|
self.dataset_transform()
|
|
59
59
|
self.data_loaded = True
|
|
60
60
|
|
|
61
|
-
def dataset_transform(self) -> None:
|
|
61
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
62
62
|
"""And transform to a retrieval dataset, which have the following attributes
|
|
63
63
|
|
|
64
64
|
self.corpus = dict[doc_id, dict[str, str]] #id => dict with document data like title and text
|
|
@@ -45,7 +45,7 @@ class SNLRetrieval(AbsTaskRetrieval):
|
|
|
45
45
|
self.dataset_transform()
|
|
46
46
|
self.data_loaded = True
|
|
47
47
|
|
|
48
|
-
def dataset_transform(self) -> None:
|
|
48
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
49
49
|
"""And transform to a retrieval dataset, which have the following attributes
|
|
50
50
|
|
|
51
51
|
self.corpus = dict[doc_id, dict[str, str]] #id => dict with document data like title and text
|
|
@@ -66,6 +66,6 @@ Seid Muhie Yimam and Saif M. Mohammad},
|
|
|
66
66
|
min_score = 0
|
|
67
67
|
max_score = 1
|
|
68
68
|
|
|
69
|
-
def dataset_transform(self) -> None:
|
|
69
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
70
70
|
for lang, subset in self.dataset.items():
|
|
71
71
|
self.dataset[lang] = subset.rename_column("label", "score")
|
|
@@ -56,6 +56,6 @@ class STSBenchmarkMultilingualSTS(AbsTaskSTS):
|
|
|
56
56
|
min_score = 0
|
|
57
57
|
max_score = 5
|
|
58
58
|
|
|
59
|
-
def dataset_transform(self) -> None:
|
|
59
|
+
def dataset_transform(self, num_proc: int = 1, **kwargs) -> None:
|
|
60
60
|
for lang, subset in self.dataset.items():
|
|
61
61
|
self.dataset[lang] = subset.rename_column("similarity_score", "score")
|
mteb/tasks/sts/por/assin2_sts.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mteb
|
|
3
|
-
Version: 2.7.
|
|
3
|
+
Version: 2.7.12
|
|
4
4
|
Summary: Massive Text Embedding Benchmark
|
|
5
5
|
Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
|
|
6
6
|
Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
|
|
@@ -32,7 +32,7 @@ mteb/_evaluators/text/summarization_evaluator.py,sha256=ZHn3kIFGJ1XzgbI21jEeTnP5
|
|
|
32
32
|
mteb/abstasks/__init__.py,sha256=1iAwpYTWX7U-goak2KMmacPFCzxPchLQAmZ_uI0t-p0,1130
|
|
33
33
|
mteb/abstasks/_statistics_calculation.py,sha256=4opttohaS6LV5K0zQIqfG2IGIzQAdKAaLTpSTQ6auBc,5988
|
|
34
34
|
mteb/abstasks/_stratification.py,sha256=GnqYRtkFYsB-412EvMR2iMqIinFr98NCSmxHeCXctlw,14347
|
|
35
|
-
mteb/abstasks/abstask.py,sha256=
|
|
35
|
+
mteb/abstasks/abstask.py,sha256=9bpPnrwwGBWE--MGoTOb-J-RtOnoo0YUaAjAPv7JC1g,26831
|
|
36
36
|
mteb/abstasks/aggregate_task_metadata.py,sha256=WXYY_DUU55s4PkxMVz7lwbdZarq6QznhbvJYdSTYZZI,5846
|
|
37
37
|
mteb/abstasks/aggregated_task.py,sha256=8NY_vaqmMuYNxuB05YjU4W6aEipyKrF2iDFS3m-eXNc,6167
|
|
38
38
|
mteb/abstasks/classification.py,sha256=zSA9nTplwspktPnZiN_RQrPvOgEKYxeQASm_Q1lb3ww,14052
|
|
@@ -1500,7 +1500,7 @@ mteb/models/model_implementations/andersborges.py,sha256=au-947iRW4F6aq57QoYWZwQ
|
|
|
1500
1500
|
mteb/models/model_implementations/ara_models.py,sha256=b-Qa5q3O8M5XbkauVm7I6D6aZSU1cd9XePT6ZVvSBtk,1517
|
|
1501
1501
|
mteb/models/model_implementations/arctic_models.py,sha256=MfYvAkcGcb3FdbvieYmiekSvZREwu2pRJ_2sbbcUIPk,11051
|
|
1502
1502
|
mteb/models/model_implementations/b1ade_models.py,sha256=-czgy_Ym5LHAX4-f-F7YaUGqTkfwsKmTL-tiCiihLnU,1705
|
|
1503
|
-
mteb/models/model_implementations/bedrock_models.py,sha256=
|
|
1503
|
+
mteb/models/model_implementations/bedrock_models.py,sha256=tqfQofVHbKGY163x46CPtrLiyjpyHXf6JLNIjcmCXw4,9072
|
|
1504
1504
|
mteb/models/model_implementations/bge_models.py,sha256=JuO1FRWrsqlsM_jslQ96oVsD3FeWVD_uHBnMv8JJyNA,28033
|
|
1505
1505
|
mteb/models/model_implementations/bica_model.py,sha256=Yx3iZrXF6ZMJS9SH5lbzNHoUWGNH3dypRtZ7dX5o7rA,1305
|
|
1506
1506
|
mteb/models/model_implementations/blip2_models.py,sha256=C6egwozJthHmv92I0SWID3-sQCPROPJP0TzfQVKNzlo,7898
|
|
@@ -1655,7 +1655,7 @@ mteb/tasks/bitext_mining/fas/fa_mteb_summary_retrieval.py,sha256=lXCOsUs8vNfS3I-
|
|
|
1655
1655
|
mteb/tasks/bitext_mining/kat/__init__.py,sha256=a-KcFJ3Ol7R8yq02RcGjaOxEfqnwJeo7AAib-RU-JFw,116
|
|
1656
1656
|
mteb/tasks/bitext_mining/kat/tbilisi_city_hall_bitext_mining.py,sha256=xVCxpJr7UW2KadNdn7Gsw-wZ65uz5vhRDhQZ7eILokQ,1918
|
|
1657
1657
|
mteb/tasks/bitext_mining/multilingual/__init__.py,sha256=LcPygeOuvrka67aDkktT-2lSqcxpWPSMmd_BaxIsl24,2012
|
|
1658
|
-
mteb/tasks/bitext_mining/multilingual/bible_nlp_bitext_mining.py,sha256=
|
|
1658
|
+
mteb/tasks/bitext_mining/multilingual/bible_nlp_bitext_mining.py,sha256=uhpDmX6gPhL_RFEYpwuU3RVV4nJUUga_t3UZV5zge-w,29111
|
|
1659
1659
|
mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py,sha256=E74rYz32fFuEWrV0O_7zfI7l2Z3h7jnrxoifRhWsFKc,2892
|
|
1660
1660
|
mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining_fast.py,sha256=P_UHMWh2gKG6CloXmP5J2kjrCTQwoJAU1MKdLl6JFKc,1836
|
|
1661
1661
|
mteb/tasks/bitext_mining/multilingual/danish_medicines_agency_bitext_mining.py,sha256=5iengckKv1NCHILjrX6WDEgBNJlmbSV5y-WWdaLZYrs,1703
|
|
@@ -1689,15 +1689,15 @@ mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py,sha2
|
|
|
1689
1689
|
mteb/tasks/classification/ara/tweet_emotion_classification.py,sha256=MpLxj0WOuHYV6LIaAwBg__jcOmzsApPxPRBKgkO3RhA,3258
|
|
1690
1690
|
mteb/tasks/classification/ara/tweet_sarcasm_classification.py,sha256=fU5Bsv1NlukvLPGiWD-L5mrC9vTGMOYvSBIPmbI-47Q,3957
|
|
1691
1691
|
mteb/tasks/classification/ben/__init__.py,sha256=j_vQLxEOUKR8hLBgTe2sSzvLyoVXRByF0g_f5-i1mRQ,592
|
|
1692
|
-
mteb/tasks/classification/ben/bengali_document_classification.py,sha256=
|
|
1692
|
+
mteb/tasks/classification/ben/bengali_document_classification.py,sha256=JV-O7KHOHkfIlpx7I_EP3q_edQXjvM7wRs8QEGAolmI,3694
|
|
1693
1693
|
mteb/tasks/classification/ben/bengali_hate_speech_classification.py,sha256=B69ZwZyzBGdfZvLFhjDGYF7TnwXBrWqOkmAD0x439CE,3369
|
|
1694
1694
|
mteb/tasks/classification/ben/bengali_sentiment_analysis.py,sha256=hBR5KOwrjVolFHsE7VWNMxykdIZy7sWmfJuhv7n_Gtc,2997
|
|
1695
1695
|
mteb/tasks/classification/bul/__init__.py,sha256=2-wLDHKcyykalSp9zWCgOaqMh4nnDo92lYdiUgJIP04,170
|
|
1696
1696
|
mteb/tasks/classification/bul/bulgarian_store_review_sentiment_classfication.py,sha256=osa2K_eQDMV0WJIC3CoXRugt5S3ALLIOwgVYrRlKvfo,1862
|
|
1697
1697
|
mteb/tasks/classification/ces/__init__.py,sha256=0vuGRyaBaW-V6_3pdGGLIEwQh3uB5UpewY6NdJZ3vrw,860
|
|
1698
1698
|
mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py,sha256=ioYXVOYvEoOYw5QEZic4wClYUKksdNvCOVDHchabzBs,3580
|
|
1699
|
-
mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py,sha256=
|
|
1700
|
-
mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py,sha256=
|
|
1699
|
+
mteb/tasks/classification/ces/czech_product_review_sentiment_classification.py,sha256=r2B4x0w2DiKr4aBy-ZxxqjMlCBEUc30Y3SDztDlCqrM,4177
|
|
1700
|
+
mteb/tasks/classification/ces/czech_so_me_sentiment_classification.py,sha256=Npi545LwJbbcoATiKHHTHXpIvJSLdm3smiqc78XC7nM,3647
|
|
1701
1701
|
mteb/tasks/classification/ces/czech_subjectivity_classification.py,sha256=31lTpWh0adXA8C6TY64NbSKi4pVbnH7ocEDEQCd5JEA,1520
|
|
1702
1702
|
mteb/tasks/classification/dan/__init__.py,sha256=edrG5UqewQ_YfQD3KtCTs9GU5z1jo4wjlkSEHuQg1ww,864
|
|
1703
1703
|
mteb/tasks/classification/dan/angry_tweets_classification.py,sha256=GmNu5-ec_6ebMCxKIgDU54ZfaM0xFV_tYE6hYLN8ItM,3154
|
|
@@ -1828,12 +1828,12 @@ mteb/tasks/classification/multilingual/amazon_counterfactual_classification.py,s
|
|
|
1828
1828
|
mteb/tasks/classification/multilingual/amazon_reviews_classification.py,sha256=ZmJqujSsL34RrVLYI9_hlzDTR57r44-FB1yqL3pggoA,1639
|
|
1829
1829
|
mteb/tasks/classification/multilingual/catalonia_tweet_classification.py,sha256=zJQopR6Zj_UOOhPGTZaChxASXSARG0j8TLXpCrD8Mpk,2833
|
|
1830
1830
|
mteb/tasks/classification/multilingual/cyrillic_turkic_lang_classification.py,sha256=AbqslsX2RnRpOPspzxv6vQXjs8QV393bWfpEpnS6nrU,1912
|
|
1831
|
-
mteb/tasks/classification/multilingual/hin_dialect_classification.py,sha256=
|
|
1831
|
+
mteb/tasks/classification/multilingual/hin_dialect_classification.py,sha256=B5uIp5SgcXXeWePMSc7GfffG7TVjdhYi-aoDDzxyDfE,2305
|
|
1832
1832
|
mteb/tasks/classification/multilingual/hume_multilingual_sentiment_classification.py,sha256=-EmXnWOuBbVdiuM3kjgo41EkRuOtMsrSTr-HAglsoJA,2130
|
|
1833
|
-
mteb/tasks/classification/multilingual/indic_lang_classification.py,sha256=
|
|
1833
|
+
mteb/tasks/classification/multilingual/indic_lang_classification.py,sha256=c3Qn7MShSaKBBjEihXUnwWZqYOhBuAOWxruvXyD2KYs,5036
|
|
1834
1834
|
mteb/tasks/classification/multilingual/indic_nlp_news_classification.py,sha256=Mmdm6pONBDWHZmKsSYYnUDO55n-XnT0mL3p6pwVbGrI,2242
|
|
1835
|
-
mteb/tasks/classification/multilingual/indic_sentiment_classification.py,sha256=
|
|
1836
|
-
mteb/tasks/classification/multilingual/language_classification.py,sha256=
|
|
1835
|
+
mteb/tasks/classification/multilingual/indic_sentiment_classification.py,sha256=2UeLO4iz0wRqNQuU720myvzr1HnCb6ut-0Zf50EFRh4,2559
|
|
1836
|
+
mteb/tasks/classification/multilingual/language_classification.py,sha256=xs8iMoNKbsuWrn2u_B1KPSRBvyI_fa73Ob9vlz264l8,2145
|
|
1837
1837
|
mteb/tasks/classification/multilingual/masakha_news_classification.py,sha256=tRcA1GZo3fNkkf_u0o74Z63KsIHodKY1wInAtSFvITM,3334
|
|
1838
1838
|
mteb/tasks/classification/multilingual/massive_intent_classification.py,sha256=Reze-3PuQvCKg6t7V8n9WcWoIuU10Ne9cu_Xm0pxhUY,3006
|
|
1839
1839
|
mteb/tasks/classification/multilingual/massive_scenario_classification.py,sha256=2GnRe2D2ZXLWLdulPAJIusOo-_gK8BoAiyhTfUq0aeE,3014
|
|
@@ -1851,7 +1851,7 @@ mteb/tasks/classification/multilingual/ru_sci_bench_classification.py,sha256=K2t
|
|
|
1851
1851
|
mteb/tasks/classification/multilingual/scala_classification.py,sha256=aXE0-R_vecN0RhnHPm3qP6ZmwX4sKmh5C8vyuqIl1Tk,2551
|
|
1852
1852
|
mteb/tasks/classification/multilingual/scandi_sent_classification.py,sha256=yNZ-Jb97GOsKtQ5GskT4F_opOATyQ3HqKL2pHAv_n5E,1812
|
|
1853
1853
|
mteb/tasks/classification/multilingual/sib200_classification.py,sha256=GbPoN90a2Hw-20QWhQ_QKqUa9m660KsOM14JMcxGVsE,8082
|
|
1854
|
-
mteb/tasks/classification/multilingual/south_african_lang_classification.py,sha256=
|
|
1854
|
+
mteb/tasks/classification/multilingual/south_african_lang_classification.py,sha256=Is02vKeHFWuezaXaOKL5o69FZoIrGvGR_ddNM5awA54,1819
|
|
1855
1855
|
mteb/tasks/classification/multilingual/swiss_judgement_classification.py,sha256=vcPSMLduwmvt0VpAFN0dlA2DnobTlqR0wqI1ZxLN7rU,1513
|
|
1856
1856
|
mteb/tasks/classification/multilingual/turkic_classification.py,sha256=53cSlnIWhNzc0qMSvbpLw_UwCA3i8hrJ3ll47ikROOQ,2385
|
|
1857
1857
|
mteb/tasks/classification/multilingual/tweet_sentiment_classification.py,sha256=mLhgGAzq-DHe5GM1XqS7t7mtojDI3kHWrlaLg2t7UEE,2091
|
|
@@ -1901,7 +1901,7 @@ mteb/tasks/classification/sin/sinhala_news_source_classification.py,sha256=0a8qw
|
|
|
1901
1901
|
mteb/tasks/classification/slk/__init__.py,sha256=UJKOGK5cfdo3Qd2e769ghbphpPE9aK1ZG4NZpcZmDGI,726
|
|
1902
1902
|
mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py,sha256=JjkPAeijUYMoPkj7ORYg3zTaZPnYtZWTEWVivgHoQL4,3612
|
|
1903
1903
|
mteb/tasks/classification/slk/slovak_hate_speech_classification.py,sha256=C7I1PtNkw9TOSlhf5Zc_Bq_WKpLsjhtz0DS4yLbtbcw,2349
|
|
1904
|
-
mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py,sha256=
|
|
1904
|
+
mteb/tasks/classification/slk/slovak_movie_review_sentiment_classification.py,sha256=HKyfUgziqQzxXnqwwPhNbLNRmN-AVqO23rmFkiNnrKg,3372
|
|
1905
1905
|
mteb/tasks/classification/slv/__init__.py,sha256=BwsXnZBq2EudbPz0AGUnonVe4bmNUHSeIfEIyTVQXcg,148
|
|
1906
1906
|
mteb/tasks/classification/slv/frenk_sl_classification.py,sha256=eGzRFGzffM1rhLWVNcCCvQW90dxUcZNbwHSvctG8rU4,3046
|
|
1907
1907
|
mteb/tasks/classification/spa/__init__.py,sha256=-FRjuZqV_8uVdnL9GmzTP3Y7zr7ktkHE9ugsTMgZqC8,394
|
|
@@ -1910,7 +1910,7 @@ mteb/tasks/classification/spa/spanish_sentiment_classification.py,sha256=dayQOZF
|
|
|
1910
1910
|
mteb/tasks/classification/ssw/__init__.py,sha256=4PzlaxBkbg2yMqJBmkBZVO1ArZQoefiFLx03rJNU6TQ,181
|
|
1911
1911
|
mteb/tasks/classification/ssw/siswati_news_classification.py,sha256=fJqM22y53xInELhvSPXy1KC2jkNXkGE46UGeT6HYw5Q,3078
|
|
1912
1912
|
mteb/tasks/classification/swa/__init__.py,sha256=gIM7OBbNAWRJUa7_ElWc4EHEvVX2TUrs0jXYxnKETPY,181
|
|
1913
|
-
mteb/tasks/classification/swa/swahili_news_classification.py,sha256=
|
|
1913
|
+
mteb/tasks/classification/swa/swahili_news_classification.py,sha256=3DnBB9NZkTpUpbzHTA510tF_F1s-_IpYxOfAPhn6UUE,3651
|
|
1914
1914
|
mteb/tasks/classification/swe/__init__.py,sha256=phSBojx1lLs7Ow8fAsxFaewkc-_bKqZqZT03okvqRbg,489
|
|
1915
1915
|
mteb/tasks/classification/swe/dalaj_classification.py,sha256=x1GajvgbWwxqi85PBXh3CzPxpwf0UGQ6-klLvcEn678,2950
|
|
1916
1916
|
mteb/tasks/classification/swe/swe_rec_classification.py,sha256=f4qe5IOY2yw-Ud-wxWej35Hqrgn_dcCJ3TZY1ElEIgE,3302
|
|
@@ -1955,8 +1955,8 @@ mteb/tasks/clustering/__init__.py,sha256=on2FxT3bKFn4-ttmyd13nqKCPHGw1UYV5X2lsrI
|
|
|
1955
1955
|
mteb/tasks/clustering/deu/__init__.py,sha256=7vq3Nqz34nS1JSuS_Izm7vBpkDN8q4-uf809yPw3RF8,591
|
|
1956
1956
|
mteb/tasks/clustering/deu/blurbs_clustering_p2p.py,sha256=C8byjvsiO6YzqMrJt4C7ObtcNNFwxn2FzYAxvl7nHgE,3356
|
|
1957
1957
|
mteb/tasks/clustering/deu/blurbs_clustering_s2s.py,sha256=Zu9K75HpEbeWMvdPJS9euoEo_lrRY0S6CRdByaGDJyo,4347
|
|
1958
|
-
mteb/tasks/clustering/deu/ten_k_gnad_clustering_p2p.py,sha256=
|
|
1959
|
-
mteb/tasks/clustering/deu/ten_k_gnad_clustering_s2s.py,sha256=
|
|
1958
|
+
mteb/tasks/clustering/deu/ten_k_gnad_clustering_p2p.py,sha256=yDTe23_rvWgt_vtaxZgg4SKHpL62H0YbCWhDqRp5nvg,2532
|
|
1959
|
+
mteb/tasks/clustering/deu/ten_k_gnad_clustering_s2s.py,sha256=LOQP5fdHo94XXnexGGFzAumZZvwVbqFLcewJoobjMvI,2540
|
|
1960
1960
|
mteb/tasks/clustering/eng/__init__.py,sha256=TVoj51ZAZkrgByvsrYvqPXtxW_6h-gpUGB9tRFTOOnI,3143
|
|
1961
1961
|
mteb/tasks/clustering/eng/arxiv_clustering_p2p.py,sha256=UXozex9TMxctnmwkfWlgAAvhx6ufiVtPpM9r7uuB63A,3935
|
|
1962
1962
|
mteb/tasks/clustering/eng/arxiv_clustering_s2s.py,sha256=dIcS8YTP7J2ituucxwgAXv5PyfgtJrCdWSet394renA,1431
|
|
@@ -2016,7 +2016,7 @@ mteb/tasks/clustering/nob/__init__.py,sha256=de-t3amIyZAo0iPjy33xVMFKCQlcDNmS4M8
|
|
|
2016
2016
|
mteb/tasks/clustering/nob/snl_clustering.py,sha256=WOGSPRHr2us9OpHxkBGAxXtWDYCoMSLhN275NXh8Klo,3674
|
|
2017
2017
|
mteb/tasks/clustering/nob/snl_hierarchical_clustering.py,sha256=OfdGmodK0eHTQMLo22SMI4FxM47wUCJmYYL8OOPqrCg,3328
|
|
2018
2018
|
mteb/tasks/clustering/nob/vg_clustering.py,sha256=dARqlFm-uzO7-3s9pmTZS7bhvPP_Khtooe8hjlQ-8Fk,3695
|
|
2019
|
-
mteb/tasks/clustering/nob/vg_hierarchical_clustering.py,sha256=
|
|
2019
|
+
mteb/tasks/clustering/nob/vg_hierarchical_clustering.py,sha256=MyWjykOJG3n7FGRuGylNDbBXvw_9AfqyP5JRRXW4pEo,3951
|
|
2020
2020
|
mteb/tasks/clustering/pol/__init__.py,sha256=na-Vwcu9J6P-05_40WLSI0DvhP2hdSRzDRT4A38gbvY,370
|
|
2021
2021
|
mteb/tasks/clustering/pol/polish_clustering.py,sha256=TUzc8jjz1DJNGBfBqLUsJgGnZKEl8-uFfi1qZ_UGbSw,11263
|
|
2022
2022
|
mteb/tasks/clustering/rom/__init__.py,sha256=a0tC9aXwVpj8sis0icrgLegnhFKN5gQsFXo1BIpHSk8,96
|
|
@@ -2080,7 +2080,7 @@ mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py,sha256=w
|
|
|
2080
2080
|
mteb/tasks/multilabel_classification/multilingual/__init__.py,sha256=gYOJftJq07gP6SH5QMn-SZQ83MQINfWlz1fvFRDdqmI,139
|
|
2081
2081
|
mteb/tasks/multilabel_classification/multilingual/multi_eurlex_multilabel_classification.py,sha256=vfnIfW_oOy8dnrXd2zKBNmhTfg8ydVtYIJqZxRMsqr0,2405
|
|
2082
2082
|
mteb/tasks/multilabel_classification/nld/__init__.py,sha256=84hVtfQAZNYt1lGzf0Oc_Hrx6vBKHjN2L_h2ilcIKRk,297
|
|
2083
|
-
mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py,sha256=
|
|
2083
|
+
mteb/tasks/multilabel_classification/nld/covid_disinformation_nl_multi_label_classification.py,sha256=0F6Hltg7qoqhC3KqDBj6Pl-gv4EKeOctkCAtlXIm9uE,3114
|
|
2084
2084
|
mteb/tasks/multilabel_classification/nld/vabb_multi_label_classification.py,sha256=_eapD0SUYG8ZUhnc3-NmN86Qer8qkTGRnrSn_T-Ch5Y,1939
|
|
2085
2085
|
mteb/tasks/multilabel_classification/por/__init__.py,sha256=mJW70APO6ofl6XiPEbsRgL1qVi_RMsWpJwHrdx5_wmw,136
|
|
2086
2086
|
mteb/tasks/multilabel_classification/por/brazilian_toxic_tweets_classification.py,sha256=Ke5roy0MYEYgRsdNDL4q_AwmY_rYKpo0H_k8wFnt2s8,1929
|
|
@@ -2124,7 +2124,7 @@ mteb/tasks/pair_classification/multilingual/__init__.py,sha256=Se4NBy208UzG7ZYWL
|
|
|
2124
2124
|
mteb/tasks/pair_classification/multilingual/indic_xnli_pair_classification.py,sha256=8wmaLY1h5XZfz9dhkj2SkhGvwvpf5Mo-7YanQ4YEfN4,2230
|
|
2125
2125
|
mteb/tasks/pair_classification/multilingual/opusparcus_pc.py,sha256=h8LHHaWxuvsdtW9rFP5oKyLhnNJcEDq7b_a_DoH84rU,1500
|
|
2126
2126
|
mteb/tasks/pair_classification/multilingual/paws_x_pair_classification.py,sha256=0IpodQ1H3rM_YEcODUDQPNeOHbkKrBi4OCbwC9LI2OE,1651
|
|
2127
|
-
mteb/tasks/pair_classification/multilingual/pub_chem_wiki_pair_classification.py,sha256=
|
|
2127
|
+
mteb/tasks/pair_classification/multilingual/pub_chem_wiki_pair_classification.py,sha256=8dfz67oJA54jdtiOMeiXytIA1yXD_CGDoY1HqmvaaV4,2802
|
|
2128
2128
|
mteb/tasks/pair_classification/multilingual/rte3.py,sha256=JM-R1De9aa3yuls3spoTeB-pifGW1E4WQ7GX0hJsJeM,3085
|
|
2129
2129
|
mteb/tasks/pair_classification/multilingual/x_stance.py,sha256=NPLzF8j_d_Y8kLocfIr8qaeJzJBwWE-1uveXxmGYI8M,1536
|
|
2130
2130
|
mteb/tasks/pair_classification/multilingual/xnli.py,sha256=n30pByUOtlJHsC4YPOPMfUY_Ns_3CeCQ-R4VgcwbU_E,4696
|
|
@@ -2200,7 +2200,7 @@ mteb/tasks/retrieval/code/code1_retrieval.py,sha256=bFQjQtKw0Lpn5Yj_uRFbRYUKnd61
|
|
|
2200
2200
|
mteb/tasks/retrieval/code/code_edit_search_retrieval.py,sha256=HGyxyTC5HPGKnZp3bkLLQg0RTBNEj1Oz5KCug6VFmXA,2906
|
|
2201
2201
|
mteb/tasks/retrieval/code/code_feedback_mt_retrieval.py,sha256=CiJ8pYt3gmYR0mnk8KqdaO1jXgQbpU4aKvOe4d7lpu4,1489
|
|
2202
2202
|
mteb/tasks/retrieval/code/code_feedback_st_retrieval.py,sha256=eNV1DKxmKJzhIlBVP4u1JsxPRV_SrfKG4Uy6csbXZjM,1477
|
|
2203
|
-
mteb/tasks/retrieval/code/code_rag.py,sha256=
|
|
2203
|
+
mteb/tasks/retrieval/code/code_rag.py,sha256=L3_brhU2HXCSlLaZ1Xr4_0wUBtGuhxySdjhPyVm9C30,9617
|
|
2204
2204
|
mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py,sha256=T7f80kRBXaUAbB7r14cpMDdYXAQRLWXYLjmTpLlEquk,3845
|
|
2205
2205
|
mteb/tasks/retrieval/code/code_search_net_retrieval.py,sha256=BECmHuIQXeDjjUBKmvjYji395Ep-RnF0fCgpGXDZTus,1504
|
|
2206
2206
|
mteb/tasks/retrieval/code/code_trans_ocean_contest_retrieval.py,sha256=pkFKpaKuBbGYU-tezvSz_BMESUKY5Pp17CmSj4e0_K8,1497
|
|
@@ -2216,9 +2216,9 @@ mteb/tasks/retrieval/code/stack_overflow_qa_retrieval.py,sha256=NjD7b7234xrlA2xK
|
|
|
2216
2216
|
mteb/tasks/retrieval/code/synthetic_text2_sql_retrieval.py,sha256=TQikfAT_n65OzJEWmlxaj4mncce3hdzFpuB9ZIsBktQ,1640
|
|
2217
2217
|
mteb/tasks/retrieval/code/wiki_sql_retrieval.py,sha256=6hDRUIUvaM0QoBf1AFLi0Ba4PVq1fyW8L8RKWeAAbgI,3339
|
|
2218
2218
|
mteb/tasks/retrieval/dan/__init__.py,sha256=gHkyCxzEZ-Nyv5HBLsQ0VPs1y0JjoxNX5q5kOhPiCT4,280
|
|
2219
|
-
mteb/tasks/retrieval/dan/dan_fever_retrieval.py,sha256=
|
|
2220
|
-
mteb/tasks/retrieval/dan/tv2_nordretrieval.py,sha256=
|
|
2221
|
-
mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py,sha256=
|
|
2219
|
+
mteb/tasks/retrieval/dan/dan_fever_retrieval.py,sha256=7ROdaY_zOwTAezN9CyQJGuQZCi1GbaZHkeHYFOKzaAI,5664
|
|
2220
|
+
mteb/tasks/retrieval/dan/tv2_nordretrieval.py,sha256=C7zBXvAVFKkg34Y_D0hnSJcR6E2swGq27rTBJpQub4Y,3800
|
|
2221
|
+
mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py,sha256=GxFwmUK-FgnU7iR_49npZ7qkZutgl7M8flHaLzQCMKk,3433
|
|
2222
2222
|
mteb/tasks/retrieval/deu/__init__.py,sha256=xgC4Nt2DCgcoCAkiErKSCQENs18DJtHFbocSMWS_278,719
|
|
2223
2223
|
mteb/tasks/retrieval/deu/ger_da_lir_retrieval.py,sha256=ZQFzZLguoOmrZ_pZVk4w5N7vzhiUYcg8sTvs62S4EaY,1371
|
|
2224
2224
|
mteb/tasks/retrieval/deu/ger_da_lir_small_retrieval.py,sha256=zb5SGbztP3xQI9tt-3MEFsxEvxXzVlpo-ahx1cFd-WU,1572
|
|
@@ -2482,8 +2482,8 @@ mteb/tasks/retrieval/nld/touche2020_nl_retrieval.py,sha256=nPLZxNvhTDWkIJU6i2EPY
|
|
|
2482
2482
|
mteb/tasks/retrieval/nld/treccovidnl_retrieval.py,sha256=d9rL10YNTUBVubdFxIVxqEhkf8tx9Iuxsp1BZ-Ctoyk,1671
|
|
2483
2483
|
mteb/tasks/retrieval/nld/vabb_retrieval.py,sha256=FoudYkcY4IY0PNHCvx87bjoUnJJolWVwNhq6xH9HE84,1834
|
|
2484
2484
|
mteb/tasks/retrieval/nob/__init__.py,sha256=6PYJtnMhN5OtRwXWLAMu5V-3JnZnbHrLxMOk8Ir-b9w,126
|
|
2485
|
-
mteb/tasks/retrieval/nob/norquad.py,sha256=
|
|
2486
|
-
mteb/tasks/retrieval/nob/snl_retrieval.py,sha256=
|
|
2485
|
+
mteb/tasks/retrieval/nob/norquad.py,sha256=7ky8ONIeE7aeawAOCOMOk3v-DfpAQCAM-TKnNCcbE8M,3805
|
|
2486
|
+
mteb/tasks/retrieval/nob/snl_retrieval.py,sha256=XBYi0OU-nNK5Z6FbyqmQxt71fqBwfzNkKvvU3zea6p0,3169
|
|
2487
2487
|
mteb/tasks/retrieval/pol/__init__.py,sha256=Ha3wf63NJliq1z6cqxLE8uSZH8RlscnNV-5Sq9tqwCM,2017
|
|
2488
2488
|
mteb/tasks/retrieval/pol/argu_ana_pl_retrieval.py,sha256=ztNXnRDCp5nKCd2BhR6Fg2tgzMsx4jqIxRaNYvbU-Y8,1252
|
|
2489
2489
|
mteb/tasks/retrieval/pol/cqadupstack_pl_retrieval.py,sha256=mwBibm87FjrDgrmozkPZTVzgQiquOJ4s1a7X-j2eZk0,16558
|
|
@@ -2582,18 +2582,18 @@ mteb/tasks/sts/kor/kor_sts.py,sha256=h07kLWJj6aBDeYR5_VSHGN4IaW5_cW7c2Xw_rjriYU0
|
|
|
2582
2582
|
mteb/tasks/sts/multilingual/__init__.py,sha256=O14mSF1h5cEefkgFLf6PHiiOXeVPM20-aY5Pu0xVrQw,763
|
|
2583
2583
|
mteb/tasks/sts/multilingual/humests22.py,sha256=vAZieRmx269Mxc_HrgazEAxSFoLKayffR4vFdLlLdoc,1993
|
|
2584
2584
|
mteb/tasks/sts/multilingual/indic_crosslingual_sts.py,sha256=RHwbYd6egzA7Head4WlL3fGLx0WwvL7rHw_5hR64xYA,2565
|
|
2585
|
-
mteb/tasks/sts/multilingual/sem_rel24_sts.py,sha256=
|
|
2585
|
+
mteb/tasks/sts/multilingual/sem_rel24_sts.py,sha256=wHAf2ykmx8UbDRW8FLFtbj54h8NC9WdsluLF0mAm4Cs,2644
|
|
2586
2586
|
mteb/tasks/sts/multilingual/sts17_crosslingual_sts.py,sha256=C8689GeoBLmcDIfguxkE2TzSK-EYcb2-NRtx6_WMZus,2164
|
|
2587
2587
|
mteb/tasks/sts/multilingual/sts17_multilingual_visual_sts.py,sha256=k0Z1wv7esoKWwdm5ftOjfLtbLgRC2ZGCn_jV3JriSjQ,1833
|
|
2588
2588
|
mteb/tasks/sts/multilingual/sts22_crosslingual_sts.py,sha256=zf50mdAKKZZN_sU5Ga8DYoihWmo89eMTYEVQXt37D-g,4315
|
|
2589
|
-
mteb/tasks/sts/multilingual/sts_benchmark_multilingual_sts.py,sha256=
|
|
2589
|
+
mteb/tasks/sts/multilingual/sts_benchmark_multilingual_sts.py,sha256=iXyd26lQuivI4-xcRXth3OvHTQYXOq9XnbM11sDRqcc,1835
|
|
2590
2590
|
mteb/tasks/sts/multilingual/sts_benchmark_multilingual_visual_sts.py,sha256=yH4DLkgrBk6Qg7LHLfAyyclynN_XrichBraNDbxRWl8,1855
|
|
2591
2591
|
mteb/tasks/sts/nld/__init__.py,sha256=NdpfPHekoMIo9sw75Gahm_YCn8hzcVHixEStny107fk,67
|
|
2592
2592
|
mteb/tasks/sts/nld/sick_nl_sts.py,sha256=rnZ9KeM4Id_eeJJrqcYYdxoH7f6-2lr9obgiuxtHnGY,1557
|
|
2593
2593
|
mteb/tasks/sts/pol/__init__.py,sha256=Ob56PuMH_-J3gH9Pygg0fdEisWYKRT_fy_D0iE2zIpo,83
|
|
2594
2594
|
mteb/tasks/sts/pol/polish_sts.py,sha256=qJCw-28dZ-o3epx44Zz-u6ZLE8HIu4ocJaJRyD0JQkc,3418
|
|
2595
2595
|
mteb/tasks/sts/por/__init__.py,sha256=mUc8zOCeFl456-AEqKqgLQ4_sLnt_eUqD-cbcowRu0U,107
|
|
2596
|
-
mteb/tasks/sts/por/assin2_sts.py,sha256=
|
|
2596
|
+
mteb/tasks/sts/por/assin2_sts.py,sha256=8k7NEmcNVKgBrg17q0qJcaSbyyIdqcuzB1SaDoce-U8,1655
|
|
2597
2597
|
mteb/tasks/sts/por/sick_br_sts.py,sha256=0Ae5wmS_24nLtJJ081O5biTJnzGRHaY_qUhXf0H-9dE,2087
|
|
2598
2598
|
mteb/tasks/sts/ron/__init__.py,sha256=JM3_jsds0JzYpoMJln8tQV3MbqdqskxHJlpQLpGi5sI,50
|
|
2599
2599
|
mteb/tasks/sts/ron/ron_sts.py,sha256=AhthI43l1QSC2xSkiNjV87lE8EKsKCtRKBjmJ5MYxjY,1491
|
|
@@ -2644,9 +2644,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
|
|
|
2644
2644
|
mteb/types/_result.py,sha256=UKNokV9pu3G74MGebocU512aU_fFU9I9nPKnrG9Q0iE,1035
|
|
2645
2645
|
mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
|
|
2646
2646
|
mteb/types/statistics.py,sha256=gElgSShKBXpfcqaZHhU_d2UHln1CyzUj8FN8KFun_UA,4087
|
|
2647
|
-
mteb-2.7.
|
|
2648
|
-
mteb-2.7.
|
|
2649
|
-
mteb-2.7.
|
|
2650
|
-
mteb-2.7.
|
|
2651
|
-
mteb-2.7.
|
|
2652
|
-
mteb-2.7.
|
|
2647
|
+
mteb-2.7.12.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
2648
|
+
mteb-2.7.12.dist-info/METADATA,sha256=qFfnF_lPdIQWnBIiunbaPAatQI_x21ouRUpgasLHbM0,14458
|
|
2649
|
+
mteb-2.7.12.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
2650
|
+
mteb-2.7.12.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
|
|
2651
|
+
mteb-2.7.12.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
|
|
2652
|
+
mteb-2.7.12.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|